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A new upper bound for finite additive bases

by

C. Si̇nan Güntürk (New York, NY)
and Melvyn B. Nathanson (Bronx, NY)

1. An extremal problem for finite bases. Let N0 and Z denote
the nonnegative integers and integers, respectively, and let |A| denote the
cardinality of the set A.

Let A be a set of integers, and consider the sumset

2A = {a + a′ : a, a′ ∈ A}.
Let S be a set of integers. The set A is a basis of order 2 for S if S ⊆ 2A.
The set A is called a basis of order 2 for n if the sumset 2A contains the
first n nonnegative integers, that is, if A is a basis of order 2 for the interval
of integers [0, n − 1] := {0, 1, . . . , n − 1}. We define n(2, A) as the largest
integer n such that A is a basis of order 2 for n, that is,

n(2, A) = max{n : [0, n − 1] ⊆ 2A}.
Rohrbach [6] introduced the extremal problem of determining the largest
integer n for which there exists a set A consisting of at most k nonnegative
integers such that A is a basis of order 2 for n. Let

n(2, k) = max{n(2, A) : A ⊆ N0 and |A| = k}.
Rohrbach’s problem is to compute or estimate the extremal function n(2, k).
The set A is called an extremal k-basis of order 2 if |A| ≤ k and n(2, A) =
n(2, k).

For example, n(2, 1) = 1 and n(2, 2) = 3. The unique extremal 1-basis
of order 2 is {0}, and the unique extremal 2-basis of order 2 is {0, 1}. For
k = 3 we have n(2, 3) = 5, and the extremal 3-bases of order 2 are {0, 1, 2}
and {0, 1, 3}. If k ≥ 2 and A is an extremal k-basis of order 2, then 0, 1 ∈ A.
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If A is a finite set of k nonnegative integers and n(2, A) = n, then n 6∈ A. If
a ∈ A and a > n, then the set A′ = (A \ {a}) ∪ {n} has cardinality k, and
n(2, A′) ≥ n + 1 > n(2, A). Therefore, if A is an extremal k-basis of order 2
and n(2, k) = n, then

{0, 1} ⊆ A ⊆ {0, 1, . . . , n − 1} ⊆ 2A.

If A is an extremal k-basis for n, then |A| = k and A ⊆ {0, 1, . . . , n − 1}.
Rohrbach determined order of magnitude of n(2, k). He observed that if

A is a set of cardinality k, then there are exactly
(k+1

2

)
ordered pairs of the

form (a, a′) with a, a′ ∈ A and a ≤ a′. This gives the upper bound

n(2, k) ≤
(

k + 1

2

)
=

k2

2
+ O(k).

To derive a lower bound, he set r = [k/2] and constructed the set

A = {0, 1, . . . , r − 1, r, 2r, . . . , (r − 1)r}.
We have

|A| = 2r − 1 ≤ k

and {0, 1, . . . , r2} ⊆ 2A. Then

n(2, A) ≥ r2 + 1 ≥ (k − 1)2/4 + 1 = k2/4 + O(k)

and so

n(2, k) ≥ k2/4 + O(k).

Thus,

lim inf
n→∞

n(2, k)

k2
≥ 1

4
= 0.25, lim sup

n→∞

n(2, k)

k2
≤ 1

2
= 0.5.

It is an open problem to compute these upper and lower limits. Mrose [5]
(see also [1]) proved that

lim inf
n→∞

n(2, k)

k2
≥ 2

7
= 0.2857 . . . ,

and this is still the best lower bound. Rohrbach used a combinatorial argu-
ment to get the nontrivial upper bound

lim sup
n→∞

n(2, k)

k2
≤ 0.4992.

Moser [3] introduced a Fourier series argument to obtain

lim sup
n→∞

n(2, k)

k2
≤ 0.4903,

and subsequent improvements by Moser, Pounder, and Riddell [4] produced

lim sup
n→∞

n(2, k)

k2
≤ 0.4847.
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Combining Moser’s analytic method and Rohrbach’s combinatorial tech-
nique, Klotz [2] proved that

lim sup
n→∞

n(2, k)

k2
≤ 0.4802.

In this paper, we use Fourier series for functions of two variables to obtain

lim sup
n→∞

n(2, k)

k2
≤ 0.4789.

We note that Rohrbach used a slightly different function n(2, k): He de-
fined n(2, k) as the largest integer n for which there exists a set A consisting
of k+1 nonnegative integers such that the sumset 2A contains the first n+1
nonnegative integers. Of course, Rohrbach’s function and our function have
the same asymptotics.

2. Moser’s application of Fourier series. In this section we describe
Moser’s use of harmonic analysis to obtain an upper bound for n(2, k).
Let A be an extremal k-basis of order 2. Let r2,A(j) denote the number of
representations of j as a sum of two elements of A, that is,

r2,A(j) = card({(a1, a2) ∈ A × A : a1 + a2 = j and a1 ≤ a2}).
We introduce the generating function

fA(q) =
∑

a∈A

qa.

Then

k = fA(1) = |A| and
fA(q)2 + fA(q2)

2
=

∑

j∈2A

r2,A(j)qj.

If [0, n − 1] ⊆ 2A, then r2,A(j) ≥ 1 for all 0 ≤ j ≤ n − 1. Hence there exist
integers δ(j) ≥ 0 such that

fA(q)2 + fA(q2)

2
= 1 + q + q2 + · · · + qn−1 +

∑

j∈2A

δ(j)qj,

where

δ(j) =

{
r2,A(j) − 1 if j ∈ {0, 1, . . . , n − 1},
r2,A(j) otherwise.

Let

∆(q) =
∑

j∈2A

δ(j)qj.

Then ∆(q) ≥ 0 for q ≥ 0, and

(1)
fA(q)2 + fA(q2)

2
= 1 + q + q2 + · · · + qn−1 + ∆(q).
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Evaluating the generating function identity (1) at q = 1, we obtain

(2) (k2 + k)/2 = n + ∆(1).

Since ∆(1) ≥ 0, we have

n ≤ k2/2 + O(k).

The strategy is to find a lower bound for ∆(1) of the form

∆(1) ≥ ck2 + O(k)

for some c > 0, and deduce

n ≤
(

1

2
− c

)
k2 + O(k).

One obtains a simple combinatorial lower bound for ∆(1) by noting that
if a1, a2 ∈ A and n/2 ≤ a1 ≤ a2, then a1 + a2 ≥ n. Let ℓ denote the number
of elements a ∈ A such that a ≥ n/2. Then

(3) ∆(1) ≥
∑

j≥n

δ(j) =
∑

j≥n

r2,A(j) ≥ ℓ(ℓ + 1)

2
≥ ℓ2

2
.

Let ω = e2πi/n be a primitive nth root of unity. Let r be an integer not
divisible by n. Then

1 + ωr + ω2r + · · · + ω(n−1)r = 0

and so

fA(ωr)2 + fA(ω2r)

2
= 1 + ωr + ω2r + · · · + ω(n−1)r +

∑

j

δ(j)ωjr = ∆(ωr).

Applying the triangle inequality, we obtain

∆(1) ≥ |∆(ωr)| =
|fA(ωr)2 + fA(ω2r)|

2
≥ |fA(ωr)|2 − k

2
.

Let

M = max{|fA(ωr)| : r 6≡ 0 (modn)}.
Then

(4) 0 ≤ M ≤ k

and

(5) ∆(1) ≥ (M2 − k)/2.

It is also possible to obtain an analytic lower bound for ∆(1). For all
integers r not divisible by n, we have

M ≥ |fA(ωr)| =
∣∣∣
∑

a∈A

e2πira/n
∣∣∣ =

∣∣∣
∑

a∈A

cos(2πra/n) + i sin(2πra/n)
∣∣∣,
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and so ∣∣∣
∑

a∈A

cos(2πra/n)
∣∣∣ ≤ M,

∣∣∣
∑

a∈A

sin(2πra/n)
∣∣∣ ≤ M.

Let ϕ(t) be a real-valued function with period 1 and with a Fourier series

ϕ(t) =
∞∑

r=0

ar cos(2πrt) +
∞∑

r=1

br sin(2πrt)

whose Fourier coefficients are absolutely summable, that is,

∞∑

r=0

|ar| +
∞∑

r=1

|br| < ∞.

Define C = C(n) by

C =
∞∑

r=0
n|r

|ar|.

For any integer a we have

∑

a∈A

ϕ

(
a

n

)
=

∑

a∈A

∞∑

r=0

ar cos(2πra/n) +
∑

a∈A

∞∑

r=1

br sin(2πra/n)

=
∞∑

r=0

ar

∑

a∈A

cos(2πra/n) +
∞∑

r=1

br

∑

a∈A

sin(2πra/n)

=
∞∑

r=0
n∤r

ar

∑

a∈A

cos(2πra/n) +
∞∑

r=1
n∤r

br

∑

a∈A

sin(2πra/n) + k
∞∑

r=0
n|r

ar,

and so ∣∣∣∣
∑

a∈A

ϕ

(
a

n

)∣∣∣∣ ≤ M

∞∑

r=1
n∤r

(|ar| + |br|) + kC.

Let α1 and α2 be real numbers such that

ϕ(t) ≥
{

α1 for 0 ≤ t < 1/2,

α2 for 1/2 ≤ t < 1.

Recall that ℓ denotes the number of elements a ∈ A such that n/2 ≤ a ≤
n − 1. Then

∑

a∈A

ϕ

(
a

n

)
≥ (k − ℓ)α1 + ℓα2 = kα1 − (α1 − α2)ℓ.
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We obtain the inequality

(6) kα1 − (α1 − α2)ℓ ≤ M
∞∑

r=1
n∤r

(|ar| + |br|) + kC.

In this way, the function ϕ(t) produces a lower bound for M , which, by (5),
gives a lower bound for ∆(1).

Moser applied inequality (6) to the function

ϕ(t) =
1

2
cos(4πt) + sin(2πt),

whose nonzero Fourier coefficients are a2 = 1/2 and b1 = 1. Then C = 0 for
n ≥ 3, and ∣∣∣∣

∑

a∈A

ϕ

(
a

n

)∣∣∣∣ ≤
3M

2
.

The function ϕ(t) satisfies the inequality

ϕ(t) ≥
{

1/2 for 0 ≤ t < 1/2,

−3/2 for 1/2 ≤ t < 1,

and so
∑

a∈A

ϕ

(
a

n

)
≥ k − ℓ

2
− 3ℓ

2
=

k − 4ℓ

2
.

This implies that

M ≥ 2

3

∣∣∣∣
∑

a∈A

ϕ

(
a

n

)∣∣∣∣ ≥
k − 4ℓ

3
.

Defining λ = ℓ/k and µ = M/k, which both lie in [0, 1], we obtain the
constraint

4

3
λ + µ ≥ 1

3
.

Recalling the combinatorial lower bound (3) and the analytical bound (5),
we next obtain

2∆(1)

k2
≥ max

(
λ2, µ2 − 1

k

)
≥ max(λ, µ)2 − 1

k
.

It is now easy to see that

max(λ, µ) ≥
4
3λ + µ
4
3 + 1

≥ 1

7
,

hence we obtain

∆(1) ≥ k2

98
− k

2
.
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Inserting this into inequality (2), we obtain

k2 + k

2
= n + ∆(1) ≥ n +

k2

98
− k

2
,

and so

n ≤
(

1

2
− 1

98

)
k2 + k ≤ 0.4898k2 + k,

which, in fact, has a slightly better constant than derived by Moser origi-
nally. The constant in this estimate can be further improved by optimizing
the function ϕ.

In the next section we shall employ a more general method using Fourier
series in two variables that ultimately yields an even better lower bound for
∆(1).

3. Fourier series in two variables. We use the same notation as in
the previous section. In particular, ℓ denotes the number of integers a ∈ A
such that a ≥ n/2. Let L denote the number of pairs (a1, a2) ∈ A × A
such that a1 + a2 ≥ n. Then L ≥ ℓ2, and k2 − L is the number of pairs
(a1, a2) ∈ A×A such that a1 +a2 ≤ n−1. We have the combinatorial lower
bound

(7) ∆(1) ≥
∑

j≥n

r2,A(j) = (L + ℓ)/2 ≥ L/2.

Let ϕ(t1, t2) be a real-valued function with period 1 in each variable and
with a Fourier series

ϕ(t1, t2) =
∑

r1∈Z

∑

r2∈Z

ϕ̂(r1, r2)e
2πir1t1e2πir2t2

which converges absolutely, that is,
∑

r1∈Z

∑

r2∈Z

|ϕ̂(r1, r2)| < ∞.

We choose ϕ(t1, t2) with zero mean, that is,

ϕ̂(0, 0) =

1\
0

1\
0

ϕ(t1, t2) dt1 dt2 = 0.

Let
R1 = {(t1, t2) ∈ [0, 1) × [0, 1) : t1 + t2 < 1},
R2 = {(t1, t2) ∈ [0, 1) × [0, 1) : t1 + t2 ≥ 1}.

If a1, a2 ∈ A and a1 + a2 ≤ n − 1, then (a1/n, a2/n) ∈ R1. If a1 + a2 ≥ n,
then (a1/n, a2/n) ∈ R2.
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Let α1 and α2 be real numbers such that

ϕ(t1, t2) ≥
{

α1 for (t1, t2) ∈ R1,

α2 for (t1, t2) ∈ R2.

We choose the function ϕ(t1, t2) such that α1 > α2. Then

(8)
∑

a1∈A

∑

a2∈A

ϕ

(
a1

n
,
a2

n

)
≥ (k2 − L)α1 + Lα2 = α1k

2 − (α1 − α2)L.

We can rewrite this sum as follows:
∑

a1∈A

∑

a2∈A

ϕ

(
a1

n
,
a2

n

)
=

∑

a1∈A

∑

a2∈A

∑

r1∈Z

∑

r2∈Z

ϕ̂(r1, r2)e
2πir1a1/ne2πir2a2/n

=
∑

r1∈Z

∑

r2∈Z

ϕ̂(r1, r2)
∑

a1∈A

e2πir1a1/n
∑

a2∈A

e2πir2a2/n

=
∑

r1∈Z

∑

r2∈Z

ϕ̂(r1, r2)fA(ωr1)fA(ωr2).

Consider the partition of the integer lattice Z2 = S0 ∪ S1 ∪ S2, where

S0 = {(r1, r2) ∈ Z
2 : r1 ≡ r2 ≡ 0 (modn)},

S1 = {(r1, r2) ∈ Z
2 : r1 ≡ 0 (modn), r2 6≡ 0 (modn)}

∪ {(r1, r2) ∈ Z
2 : r1 6≡ 0 (modn), r2 ≡ 0 (modn)},

S2 = {(r1, r2) ∈ Z
2 : r1 6≡ 0 (modn), r2 6≡ 0 (modn)}.

We define Ci = Ci(n) for i = 0, 1, 2 by

Ci =
∑

(r1,r2)∈Si

|ϕ̂(r1, r2)|.

Recall that |fA(ωr)| ≤ M if r is not divisible by n and |fA(ωr)| = k if r is
divisible by n. Then

(9)

∣∣∣∣
∑

a1∈A

∑

a2∈A

ϕ

(
a1

n
,
a2

n

)∣∣∣∣ ≤ C0k
2 + C1kM + C2M

2.

Combining (8) and (9), we obtain

α1k
2 − (α1 − α2)L ≤ C0k

2 + C1kM + C2M
2.

Since α1 > α2, we have

L ≥ (α1 − C0)k
2 − C1kM − C2M

2

α1 − α2
.

We again define µ = M/k. Since 0 ≤ M ≤ k, we have 0 ≤ µ ≤ 1. By (7), we
have 2∆(1) ≥ L, and so

2∆(1)

k2
≥ L

k2
≥ (α1 − C0) − C1µ − C2µ

2

α1 − α2
.
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By (5), we also have 2∆(1) ≥ M2 − k, and so

(10)
2∆(1)

k2
≥ max

(
µ2,

(α1 − C0) − C1µ − C2µ
2

α1 − α2

)
− 1

k
.

Since the Fourier series of ϕ(t1, t2) converges absolutely and since ϕ̂(0, 0)
= 0, we can arrange the Fourier series in the form of a sum over concentric
squares

∞∑

R=1

∑

max(|r1|,|r2|)=R

ϕ̂(r1, r2)e
2πir1t1e2πir2t2 .

For any ε > 0 there exists an integer N = N(ε) such that

∞∑

n=N

∑

max(|r1|,|r2|)=n

|ϕ̂(r1, r2)| < ε(α1 − α2).

For all n ≥ N, we shall approximate the sums C0, C1, and C2 by 0, Caxial,
and Cmain, respectively, where

Caxial =
∑

r∈Z
r 6=0

(|ϕ̂(0, r)| + |ϕ̂(r, 0)|), Cmain =
∑

r1∈Z
r1 6=0

∑

r2∈Z
r2 6=0

|ϕ̂(r1, r2)|.

Then

|(α1 − C0) − C1µ − C2µ
2 − (α1 − Caxialµ − Cmainµ

2)|
= |C0 + (C1 − Caxial)µ + (C2 − Cmain)µ

2|
≤ |C0| + |C1 − Caxial| + |C2 − Cmain|

≤
∑

max(|r1|,|r2|)≥N

|ϕ̂(r1, r2)| < ε(α1 − α2),

and so ∣∣∣∣
(α1 − C0) − C1µ − C2µ

2

α1 − α2
− α1 − Caxialµ − Cmainµ

2

α1 − α2

∣∣∣∣ < ε.

It follows from inequality (10) that

2∆(1)

k2
≥ max

(
µ2,

α1 − Caxialµ − Cmainµ
2

α1 − α2

)
− ε − 1

k
.

Let

(11) ̺ = inf
0≤µ≤1

max

(
µ2,

α1 − Caxialµ − Cmainµ
2

α1 − α2

)
.

From (10) and the definition of ̺ in (11), we now have

2∆(1)/k2 ≥ ̺ − ε − 1/k.
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Applying (2), we obtain

k2 + k

2
= n + ∆(1) ≥ n +

(̺ − ε)k2 − k

2
.

Therefore, we obtain the desired estimate

(12) n ≤ 1 − ̺ + ε

2
k2 + k

for all sufficiently large n, where the number ̺ depends only on the function
ϕ(t1, t2) and ε > 0 can be arbitrarily small.

It is clear that we always have ̺ ≥ 0, and that ̺ > 0 if and only if
α1 > 0. It is also clear that when α1 ≥ 0, we have ̺ = ξ2, where ξ is the
unique solution in [0, 1] to the quadratic equation

ξ2 =
α1 − Caxialξ − Cmainξ

2

α1 − α2
,

i.e.,

(α1 − α2 + Cmain)ξ
2 + Caxialξ − α1 = 0,

which yields the formula

(13) ̺ =

(−Caxial +
√

C2
axial + 4α1(α1 − α2 + Cmain)

2(α1 − α2 + Cmain)

)2

.

Hence we have an optimization problem in which we maximize ̺ over
all real-valued functions ϕ defined on the unit square [0, 1)2 such that ϕ has
zero mean and ϕ > 0 on R1. We do not know the optimal function for this
problem, but we have found a simple piecewise polynomial function that
improves Klotz’s upper bound for n(2, k). Before we proceed to the main
result of this paper, which also includes the definition of this function, let us
present some of the heuristics which have lead us to our “educated guess.”

First, without loss of generality, we may assume that α1 = 1. We then
necessarily have

0 =
\\
R1

ϕ(t1, t2) dt1 dt2 +
\\
R2

ϕ(t1, t2) dt1 dt2 ≥ 1

2
+

1

2
α2,

hence α2 ≤ −1. We also have

Caxial ≥
∣∣∣
∑

r

(ϕ̂(r, 0) + ϕ̂(0, r))
∣∣∣ =

∣∣∣
1\
0

(ϕ(0, t) + ϕ(t, 0)) dt
∣∣∣ ≥ 2

and

Cmain ≥
∣∣∣
∑

r

ϕ̂(r, r)
∣∣∣ =

∣∣∣
1\
0

ϕ(t, 1 − t) dt
∣∣∣ ≥ 1.
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In any case we are interested in the positive root ξκ,τ of the equation

κξ2 + τξ − 1 = 0

where κ = 1 − α2 + Cmain ≥ 3 and τ = Caxial ≥ 2. Clearly, the smaller κ
and τ are, the larger this root will be. The bounds κ ≥ 3 and τ ≥ 2 already
imply that ξκ,τ ≤ 1/3, hence ̺ = ξ2

κ,τ ≤ 1/9. In reality, α2 < −1 because
equality can happen only if ϕ is constant on both R1 and R2, in which case
ϕ̂ is not absolutely summable. This results in the heuristic that if we try to
push α2 close to −1, then Caxial and Cmain will become large, and conversely
if we try to push Caxial and Cmain close to their respective minimum values,
then ϕ may not be bounded from below on R2 by a small value. The right
trade-off between these two competing quantities will result in the solution
of this optimization problem.

It is interesting to note that the value of ̺ is fairly robust with respect
to variations in κ and τ , which we will only be able to estimate numerically
and not compute exactly. The following lemma gives an explicit estimate
for this purpose:

Lemma 1. Let ξκ,τ and ξκ0,τ0
be the respective positive roots of the equa-

tions κξ2 + τξ − 1 = 0 and κ0ξ
2 + τ0ξ − 1 = 0. Let ̺ = ξ2

κ,τ and ̺0 = ξ2
κ0,τ0

.

If min(κ, κ0) ≥ 3 and min(τ, τ0) ≥ 2, then

(14) |̺ − ̺0| ≤
1

54
|κ − κ0| +

1

18
|τ − τ0|.

The proof of this lemma is given in the Appendix. Now we can state and
prove the main theorem of this paper.

Theorem 1. We have

lim sup
n→∞

n(2, k)

k2
≤ 0.4789.

Proof. We define the function ϕ(t1, t2) on the unit square [0, 1)2 by

(15) ϕ(t1, t2)

=

{
1, (t1, t2) ∈ R1,

1 − 40(1 − t1)(1 − t2)(1 − (2 − t1 − t2)
6), (t1, t2) ∈ R2.

The graph of this function is plotted in Figure 1.
Clearly we have α1 = 1. Computation of the three other parameters used

in formula (11) for ̺ yields

α2 = 1 − 15

25/3
= −3.72470 . . . ,

2.90278 ≤ Caxial ≤ 2.90289, 4.75145 ≤ Cmain ≤ 4.76146.

Taking κ0 = 1 + 3.72471 + 4.76146 = 9.48617 and τ0 = 2.90289, we obtain
̺0 > 0.04240, |κ − κ0| < 0.01002 and |τ − τ0| < 0.00011, so it follows that
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Fig. 1. Graph of the function ϕ defined in (15)

|̺ − ̺0| < 0.0002. Hence

̺ ≥ ̺0 − |̺ − ̺0| > 0.0422.

Consequently, choosing ε sufficiently small and using (12), we obtain

n ≤ 0.4789 k2 + k.

The details of the computations are in the Appendix to this paper. This
completes the proof.

4. Open problems. A major open problem concerning the extremal
function

n(2, k) = max{n(2, A) : A ⊆ N0 and |A| ≤ k}
is to compute lim infn→∞ n(2, k)/k2 and lim supn→∞ n(2, k)/k2, and to de-
termine if the limit limn→∞ n(2, k)/k2 exists. We have no conjecture about
the existence of this limit, nor about the values of the lim inf and lim sup.

It is also difficult to compute the exact values of the function n(2, k).

We can generalize the extremal functions n(2, A) and n(2, k) as follows.
Let A be a finite set of integers, and let m(2, A) denote the largest integer
n such that the sumset 2A contains n consecutive integers. Let

m(2, k) = max{m(2, A) : A ⊆ Z and |A| ≤ k}.
Let ℓ(2, A) denote the largest integer n such that the sumset 2A contains
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an arithmetic progression of length n, and let

ℓ(2, k) = max{ℓ(2, A) : A ⊆ Z and |A| ≤ k}.
We can also define the extremal function

n′(2, k) = max{n(2, A) : A ⊆ Z and |A| ≤ k}.
Then

n(2, A) ≤ n′(2, A) ≤ m(2, A) ≤ ℓ(2, A),

and so

n(2, k) ≤ n′(2, k) ≤ m(2, k) ≤ ℓ(2, k).

For any integer t and set A, we have the translation A+ t = {a+ t : a ∈ A}.
The functions ℓ and m are translation invariant, that is, ℓ(2, A+t) = ℓ(2, A)
and m(2, A + t) = m(2, A). We also have the trivial upper bound ℓ(2, k) ≤(
k+1
2

)
, but it is an open problem to obtain nontrivial upper bounds for any

of the extremal functions n′(2, k), m(2, k), or ℓ(2, k).

Appendix. We describe here the computations.

Proof of Lemma 1. We start with the formula

ξκ,τ =
−τ +

√
τ2 + 4κ

2κ
=

2

τ +
√

τ2 + 4κ
.

We next evaluate the partial derivatives of ξκ,τ with respect to κ and τ :

∂ξκ,τ

∂κ
= − 4√

τ2 + 4κ (τ +
√

τ2 + 4κ)2
,(16)

∂ξκ,τ

∂τ
= − 2√

τ2 + 4κ (τ +
√

τ2 + 4κ)
(17)

from which it follows that in the set {(κ, τ) : κ ≥ 3, τ ≥ 2}, we have
∣∣∣∣
∂ξκ,τ

∂κ

∣∣∣∣ ≤
1

36
and

∣∣∣∣
∂ξκ,τ

∂τ

∣∣∣∣ ≤
1

12
.

These bounds then imply

|ξκ,τ − ξκ0,τ0
| ≤ 1

36
|κ − κ0| +

1

12
|τ − τ0|.

We then note that ξκ,τ ≤ 1/3, which yields

|̺ − ̺0| = |ξκ,τ − ξκ0,τ0
| |ξκ,τ + ξκ0,τ0

| ≤ 2

3
|ξκ,τ − ξκ0,τ0

|,

hence the result of the lemma.
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Absolute summability of ϕ̂. While the result explained in this subsection
is elementary, we will provide a certain amount of detail in its derivation
because our main concern is more than absolute summability of ϕ̂. We would
like to provide explicit estimates on the rate of the convergence; this will
be necessary later in the section when we will analyze the accuracy of the
numerical computation of the constants Cmain and Caxial.

Lemma 2. Let f be a smooth function on [0, 1]. Then for all L ≥ 0 and

n 6= 0, the following formula holds:

(18) f̂(n) =

L∑

k=0

f (k)(0) − f (k)(1)

(2πin)k+1
+

f̂ (L+1)(n)

(2πin)L+1
.

Proof. The case L = 0 follows from integration by parts and the general
case follows from iterating this result.

Theorem 2. Let F be a smooth function on R2 which vanishes on the

boundary of R2, i.e.,

F (t, 1 − t) = F (1, t) = F (t, 1) = 0 for all t ∈ [0, 1].

Define

ΨF (t1, t2) =

{
0 if (t1, t2) ∈ R1,

F (t1, t2) if (t1, t2) ∈ R2.

Then the Fourier series expansion of ΨF is absolutely convergent.

Note. Later we will simply set ϕ = ΨF + 1.

Proof. We will prove this result by deriving a suitable decay estimate on
|Ψ̂F (r1, r2)|, where

Ψ̂F (r1, r2) =

1\
0

e−2πir1t1
{ 1\

1−t1

F (t1, t2)e
−2πir2t2 dt2

}
dt1.

The case r1 = 0 or r2 = 0. Due to the symmetry on the assumptions on
F , it suffices to consider only one of these cases. Let us assume that r2 = 0.
Define

J1(t1) =

1\
1−t1

F (t1, t2) dt2,

so that

(19) Ψ̂F (r1, 0) = Ĵ1(r1).

Clearly we have J1(0) = J1(1) = 0. Setting L = 1 and f = J1 in Lemma 2,
we see that for r1 6= 0,

(20) |Ψ̂F (r1, 0)| ≤ 1

|2πr1|2
(
|J ′

1(0) − J ′
1(1)| +

1\
0

|J ′′
1 |

)
= O

(
1

r2
1

)
.
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With a similar estimate for |Ψ̂F (0, r2)|, we have
∑

r 6=0

(|Ψ̂F (r, 0)| + |Ψ̂F (0, r)|) < ∞.

The case r1 6= 0 and r2 6= 0. We will derive a general formula for
Ψ̂F (r1, r2). To do this, we momentarily forget that F vanishes on the bound-
ary of R2, and for t ∈ [0, 1], define the following functions:

g0(t) = F (t, 1 − t), h0(t) = F (t, 1),

g1(t) = (∂2F )(t, 1 − t), h1(t) = (∂2F )(1, t),

g2(t) = (∂1∂2F )(t, 1 − t), h2(t) = (∂1∂2F )(t, 1),

g3(t) = (∂1∂
2
2F )(t, 1 − t), h3(t) = (∂1∂

2
2F )(1, t).

We start with the formula for Ψ̂F (r1, r2) above. Integrating by parts in the
second variable, we obtain

Ψ̂F (r1, r2) =

1\
0

dt1 e−2πir1t1

{[
e2πir2t2

−2πir2
F (t1, t2)

]t2=1

t2=1−t1

−
1\

1−t1

dt2
e−2πir2t2

−2πir2
(∂2F )(t1, t2)

}

=
1

(2πi)r2
(ĝ0(r1 − r2) − ĥ0(r1) + Ψ̂∂2F (r1, r2)).

We apply the same method to Ψ̂∂2F (r1, r2), but integrate by parts in the
first variable. This results in

Ψ̂F (r1, r2) =
1

(2πi)r2
(ĝ0(r1 − r2) − ĥ0(r1))

+
1

(2πi)2r1r2
(ĝ1(r1 − r2) − ĥ1(r2) + Ψ̂∂1∂2F (r1, r2)).

We repeat the first two steps in the same order, which gives us

Ψ̂F (r1, r2) =
1

(2πi)r2
(ĝ0(r1 − r2) − ĥ0(r1))(21)

+
1

(2πi)2r1r2
(ĝ1(r1 − r2) − ĥ1(r2))

+
1

(2πi)3r1r2
2

(ĝ2(r1 − r2) − ĥ2(r1))

+
1

(2πi)4r2
1r

2
2

(ĝ3(r1 − r2) − ĥ3(r2) + Ψ̂∂2

1
∂2

2
F (r1, r2)).

Note that from our assumptions on F , we have g0 = h0 = h1 = 0. We
will have two subcases:
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(1) r1 = r2 = r. In this case, we easily see from the second formula above
that

(22) |Ψ̂F (r, r)| ≤ |ĝ1(0)| + ‖Ψ∂1∂2F ‖1

4π2r2
.

(2) r1 6= r2. This case is slightly more subtle. We first note that g1(1) =
h1(0) = 0. It is also true that g1(0) = (∂2F )(0, 1). To see this, note that
(∂1F )(0, 1) = 0 and ∇F (0, 1) · (1,−1) = 0, both of which follow from the
fact that F vanishes on the boundary of R2. The function g1 being smooth
otherwise, we conclude that

|ĝ1(r1 − r2)| ≤
|g′1(1) − g′1(0)| + ‖g′′1‖1

4π2|r1 − r2|2
.

The estimates for g2 and h2 are simpler in nature. We use the bounds

|ĝ2(r1 − r2)| ≤
|g2(1) − g2(0)| + ‖g′2‖1

2π|r1 − r2|
,

|ĥ2(r1)| ≤
|h2(1) − h2(0)| + ‖h′

2‖1

2π|r1|
,

as well as

|ĝ3(r1 − r2)| ≤ ‖g3‖1, |ĥ3(r1)| ≤ ‖h3‖1, |Ψ̂∂2

1
∂2

2
F (r1, r2)| ≤ ‖Ψ∂2

1
∂2

2
F ‖1.

Putting all these together, we see that

|Ψ̂F (r1, r2)| = O

(
1

|r1r2|(r1 − r2)2
+

1

|r1(r1 − r2)|r2
2

+
1

r2
1r

2
2

)
,

which is easily verified to be summable over all admissible values of r1 and r2.
We will return to this shortly for a more explicit estimate.

Explicit numerical estimates. In this subsection we will work with the
specific function ϕ in (15) for which

F (t1, t2) = −40(1 − t1)(1 − t2)(1 − (2 − t1 − t2)
6).

We will numerically estimate Caxial and Cmain using appropriate tail bounds
on their defining infinite series. This procedure is illustrated in Figure 2.

Estimating the value of Caxial. Since F is symmetric, we have ϕ̂(r, 0) =
ϕ̂(0, r). We use the formula (19) to evaluate ϕ̂(r1, 0). It is a simple calculation
to show that

J1(t1) = −15(1 − t1) +
240

7
(1 − t1)

2 − 20(1 − t1)
3 +

5

7
(1 − t1)

9.

Using this expression, we find that |J ′
1(0) − J ′

1(1)| = 15 and

1\
0

|J ′′
1 | ≤

( 1\
0

(J ′′
1 )2

)1/2
= 8

√
15.
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r
1

r
2

Fig. 2. Estimating the values of Caxial and Cmain. Circled dots correspond to the Fourier
coefficients along the diagonal for which a separate decay estimate holds.

Hence by (20), we obtain the estimate

|ϕ̂(r, 0)| = |ϕ̂(0, r)| ≤ 15 + 8
√

15

4π2

1

r2
.

If we define

(23) Caxial(N) =
∑

|r|≤N

(|ϕ̂(r, 0)| + |ϕ̂(0, r)|),

then it follows that

0 ≤ Caxial − Caxial(N) ≤ 15 + 8
√

15

π2

1

N
<

5

N
.

To estimate Caxial(N), we still need the actual expression for ϕ̂(r, 0), which
is given in (30). Taking N = 50000, numerical computation shows that
Caxial(N) = 2.90278 . . .; hence it follows that

2.90278 ≤ Caxial ≤ 2.90289.

Estimating the value of Cmain. We shall estimate the diagonal terms
first. We have

g1(t) = −240t(1 − t)



252 C. S. Güntürk and M. B. Nathanson

from which we obtain
|ĝ1(0)| = 40,

and

|∂1∂2F (t1, t2)| = |1200(1− t1)(1− t2)(2− t1 − t2)
4 +280(2− t1 − t2)

6 − 40|
≤ 1200(1− t1)(1− t2)(2− t1 − t2)

4 + 280(2− t1 − t2)
6 + 40

from which we obtain

‖Ψ∂1∂2F ‖L1([0,1)2) ≤ 80.

Hence by (22), we obtain the estimate

|ϕ̂(r, r)| ≤ 30

π2

1

r2

from which it follows that
∞∑

|r|=N+1

|ϕ̂(r, r)| ≤ 60

π2

1

N
.

We next estimate ϕ̂(r1, r2) in the case when r1 6= r2. We begin by noting
that

ĝ1(r1 − r2) =
120

π2(r1 − r2)2
, r1 6= r2.

We have

g2(t) = 240(1 + 5t(1 − t)), g3(t) = 240(−12 − 15t + 20t2),

h2(t) = −40 + 280(1 − t)6, h3(t) = −1680(1 − t)5,

∂2
1∂2

2F (t1, t2) = 14400(2 − t1 − t2)
2(5 + t21 + t22 − 5t1 − 5t2 + 3t1t2),

from which we obtain

ĝ2(r1 − r2) = − 600

π2(r1 − r2)2
, r1 6= r2,

|ĥ2(r1)| ≤
280

π|r1|
, r1 6= 0,

|ĝ3(r1 − r2)| ≤ 3080, |ĥ3(r1)| ≤ 280, ‖Ψ∂2

1
∂2

2
F ‖1 = 2800.

Putting these together, we finally obtain the estimate

(24) |ϕ̂(r1, r2)| ≤
105

π4

1

|r1r2|(r1 − r2)2
+

420

π4

1

r2
1r

2
2

.

The following is a simple lemma:

Lemma 3. For any N ≥ 1, one has

(25)

∞∑

R=N+1

∑

max(|r1|,|r2|)=R
min(|r1|,|r2|) 6=0

1

r2
1r

2
2

<
4π2

3

1

N
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and

(26)

∞∑

R=N+1

∑

max(|r1|,|r2|)=R
min(|r1|,|r2|) 6=0

r1 6=r2

1

|r1r2|(r1 − r2)2
< 4

(
π2

3
+ 1

)
1

N
.

Proof. The first inequality simply follows from

∑

max(|r1|,|r2|)=R
min(|r1|,|r2|) 6=0

1

r2
1r

2
2

=
8

R2

R−1∑

r=1

1

r2
≤ 4π2

3

1

R2
.

For the second inequality, we first use the symmetries to write

∑

max(|r1|,|r2|)=R
min(|r1|,|r2|) 6=0

r1 6=r2

1

|r1r2|(r1 − r2)2
=

4

R

R−1∑

r=1

1

r(R − r)2
+

4

R

R∑

r=1

1

r(R + r)2
− 1

2R4
.

Using the identity

1

r(R − r)2
=

1

Rr(R − r)
+

1

R(R − r)2

and the Cauchy–Schwarz inequality we have

4

R

R−1∑

r=1

1

r(R − r)2
=

4

R2

( R−1∑

r=1

1

r(R − r)
+

R−1∑

r=1

1

(R − r)2

)
<

4π2

3

1

R2
.

For the remaining terms, we use the trivial estimate

4

R

R∑

r=1

1

r(R + r)2
− 1

2R4
<

4

R2
.

Hence ∑

max(|r1|,|r2|)=R
min(|r1|,|r2|) 6=0

r1 6=r2

1

|r1r2|(r1 − r2)2
< 4

(
π2

3
+ 1

)
1

R2
,

and the result follows.

If we define

(27) Cmain(N) =

N∑

R=1

∑

max(|r1|,|r2|)=R
min(|r1|,|r2|) 6=0

|ϕ̂(r1, r2)|,

then we have

(28) 0 ≤ Cmain − Cmain(N) <

(
340

π2
+

420

π4

)
1

N
<

40

N
.
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For N = 4000, numerical computation using the formulas (31) and (32)
reveals that Cmain(N) = 4.75145 . . .; hence with the above error estimate,
we have

(29) 4.75145 ≤ Cmain ≤ 4.76146.

Explicit expressions for ϕ̂(r1, r2). The following formulas have been com-
puted using Mathematica, though it is also possible to compute them easily
using the iterative procedure based on integration by parts which was out-
lined in this section earlier.

ϕ̂(r, 0) =
15

4π2r2

(
1 − 6

π2r2
+

45

π4r4
− 135

π6r6

)
(30)

− i
60

7π3r3

(
1 +

63

8π2r2
− 315

8π4r4
+

945

16π6r6

)
,

ϕ̂(r, r) =
10

π2r2

(
1 − 21

π2r2
+

315

2π4r4
− 945

2π6r6

)
(31)

+ i
55

π3r3

(
1 − 126

11π2r2
+

630

11π4r4
− 945

11π6r6

)
,

(32) ϕ̂(r, s)

= − 1575

4π8r6(r − s)2
+

525

4π6r4(r − s)2
− 35

2π4r2(r − s)2
− 1575

4π8(r − s)2s6

+
225

2π8r(r − s)2s5
+

525

4π6(r − s)2s4
+

225

2π8r2(r − s)2s4
+

225

2π8r3(r − s)2s3

− 75

2π6r(r − s)2s3
− 35

2π4(r − s)2s2
+

225

2π8r4(r − s)2s2
− 75

2π6r2(r − s)2s2

+
225

2π8r5(r − s)2s
− 75

2π6r3(r − s)2s
+

5

π4r(r − s)2s

+ i

(
− 1575

4π9r7(r − s)2
+

525

2π7r5(r − s)2
− 105

2π5r3(r − s)2
− 1575

4π9(r − s)2s7

+
225

2π9r(r − s)2s6
+

525

2π7(r − s)2s5
+

225

2π9r2(r − s)2s5
+

225

2π9r3(r − s)2s4

− 75

π7r(r − s)2s4
− 105

2π5(r − s)2s3
+

225

2π9r4(r − s)2s3
− 75

π7r2(r − s)2s3

+
225

2π9r5(r − s)2s2
− 75

π7r3(r − s)2s2
+

15

π5r(r − s)2s2
+

225

2π9r6(r − s)2s

− 75

π7r4(r − s)2s
+

15

π5r2(r − s)2s

)
.
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