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Hyperquadrati
 power series of degree fourby
Antonia W. Bluher (Fort Meade, MD)and Alain Lasjaunias (Bordeaux)

1. Introdu
tion. Let p be a prime number and q = ps with a positiveinteger s. We 
onsider the �nite �eld Fq with q elements. Then we introdu
e,with an indeterminate T , the ring of polynomials Fq[T ] and the �eld ofrational fun
tions Fq(T ). We also 
onsider the absolute value de�ned on
Fq(T ) by |P/Q| = |T |deg P−deg Q for P, Q ∈ Fq[T ], where |T | is a �xed realnumber greater than one. By 
ompleting Fq(T ) with this absolute value weobtain a �eld, denoted by F(q), whi
h is the �eld of formal power seriesin 1/T with 
oe�
ients in Fq. We re
all that this �eld is often denoted by
Fq((T

−1)). Thus if α is a nonzero element of F(q) we have
α =

∑

k≤k0

ukT
k with k0 ∈ Z, uk ∈ Fq, uk0

6= 0 and |α| = |T |k0 .There is a strong analogy between the 
lassi
al 
onstru
tion of the �eld ofreal numbers and the �elds of power series whi
h we are 
onsidering here.The r�les of {±1}, Z, Q, and R are played by F∗
q , Fq[T ], Fq(T ), and F(q)respe
tively.The study of rational approximation to algebrai
 elements in the �eld

F(q) was initiated by K. Mahler [M℄ by adapting a 
lassi
al theorem of Liou-ville 
on
erning rational approximation to algebrai
 real numbers. In hisarti
le Mahler pointed at the di�eren
e with the 
lassi
al 
ase by introdu
-ing an example. Given a prime p and an integer r = pt with t ≥ 1, the ele-ment α ∈ F(p) de�ned by α =
∑

k≥0 T rk does satisfy the algebrai
 equation
α − αr = T−1. We know by Roth's theorem that algebrai
 real numbersare badly approximable by rational numbers, but in the 
ase of power se-ries over a �nite �eld there is no analogue of Roth's theorem and the ele-ment introdu
ed above appears to be a 
ounterexample. Following Mahler'swork it be
ame progressively ne
essary to 
onsider a spe
ial subset of alge-2000 Mathemati
s Subje
t Classi�
ation: 11T55, 11J61, 12E10.Key words and phrases: �nite �elds, proje
tive polynomials, �elds of power series.[257℄
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 power series having parti
ular properties of rational approximation.The reader who is interested in a survey on the di�erent 
ontributionsto this topi
 and for full referen
es 
an 
onsult for example [L℄ and [T,Chap. 9℄.We introdu
e a spe
ial subset of elements in F(q) whi
h are algebrai
 over
Fq(T ). Let r = pt where t ≥ 0 is an integer. We denote by Ht(q) the subsetof irrational elements α in F(q) su
h that there exist A, B, C, D ∈ Fq[T ] with
(1) α =

Aαr + B

Cαr + D
.We 
an observe that if α ∈ F(q) is irrational then so is αr and thereforewe have Aαr + B 6= 0 and Cαr + D 6= 0. Consequently we see that AD −

BC = (A − Cα)(Cαr + D) 6= 0. Now we put H(q) =
⋃

t≥0 Ht(q). Be
auseof further analogies with quadrati
 real numbers, we 
all the elements ofthis subset hyperquadrati
 elements. In previous works the term algebrai
element of 
lass I has been used but we think the present denominationis more des
riptive and also 
onvenient for later pre
ision. In view of theshape of equation (1), H(q) 
an be viewed as the analogue of the subset ofquadrati
 real numbers, the Frobenius isomorphism being repla
ed by theidentity map.If α ∈ H(q) then it is a root of the polynomial
(2) uXr+1 + vXr + wX + z ∈ Fq[T ][X] with uz − vw 6= 0.These polynomials, where the 
oe�
ients belong to an arbitrary �eld F of
hara
teristi
 p, arise in other 
ontexts of number theory and have beenstudied from an algebrai
 point of view by Carlitz, Serre, Abhyankar, andothers; see [C℄, [A℄, and [B℄.Note that if α ∈ Ht(q) then α = f(αr) where f is the linear fra
tionaltransformation with integer 
oe�
ients involved in equation (1). By iterationwe obtain α = f((f(αr))r) = g(αr2

) where g is another linear fra
tionaltransformation with integer 
oe�
ients. Consequently, re
ursively we seethat if α is a root of a polynomial of type (2) then it satis�es for all integers
n ≥ 1 an algebrai
 equation of the type

unαrn+1 + vnαrn

+ wnα + zn = 0.So Ht(q) ⊂ Hnt(q) for all positive integers n.Now to be more pre
ise, we introdu
e the following terminology. If t isthe smallest nonnegative integer su
h that α ∈ F(q) satis�es an equationof type (1) we will say that α is a hyperquadrati
 element of order t. Withour de�nition, a hyperquadrati
 element of order zero is simply a quadrati
element. We observe that elements of F(q) whi
h are quadrati
 or 
ubi
 over
Fq(T ) belong to H1(q) sin
e then 1, α, αp, αp+1 are linked over Fq(T ) and
onsequently α satis�es an algebrai
 equation of type (2). Moreover H(q)
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ontains elements of arbitrarily large degree over Fq(T ). Indeed, for theelement α ∈ F(p) introdu
ed by Mahler and mentioned above with r = ptand t ≥ 1, it was proved by arguments of diophantine approximation thatit is algebrai
 of degree r over Fp(T ) and also hyperquadrati
 of order t. Onthe other hand, it will be
ome 
lear in the next se
tion that not all algebrai
numbers in F(q) are hyperquadrati
.We have to re
all a general and simple property of the subset H(q):it is stable under any linear fra
tional transformation with integer 
oe�-
ients and also under the Frobenius isomorphism x 7→ xp; moreover bothtransformations preserve the algebrai
 degree of ea
h element as well as thehyperquadrati
 order.Rational approximation to 
ertain hyperquadrati
 power series is wellknown, whi
h is also due to the possibility of des
ribing expli
itly their 
on-tinued fra
tion expansion. The �rst works in this area were undertaken byBaum and Sweet [BS℄. Later this has been done for many examples and alsofor di�erent sub
lasses of hyperquadrati
 elements (see in parti
ular [S℄).Here again we must underline the analogy with the 
lassi
al 
ase of realnumbers: the 
ontinued fra
tion expansion for quadrati
 real numbers iswell known and this is due to the fa
t that these elements are �xed pointsof a linear fra
tional transformation with integer 
oe�
ients. Neverthelessthe possibility of des
ribing the 
ontinued fra
tion expansion for all hyper-quadrati
 power series is still an open problem. In [MR℄ Mills and Robbinshave studied this problem and they des
ribed an algorithm to obtain in
ertain 
ases the 
ontinued fra
tion expansion for a hyperquadrati
 powerseries. At the end of their arti
le ([MR, p. 403℄) they 
onsidered the followingalgebrai
 equation: x4 +x2−Tx+1 = 0. They observed that it has a uniquesolution in F(p) for all primes p. They noti
ed that for this solution the 
on-tinued fra
tion expansion has a remarkable pattern in both 
ases p = 3 and
p = 13. The expansion for p = 3 has been expli
itly des
ribed (see [BR℄) andthis implies that the solution is not hyperquadrati
 (see [L, pp. 226�227℄).For p = 13 the expansion was only 
onje
tured (see [BR, pp. 342�344℄), butas we will see the solution is then hyperquadrati
. This fa
t may lead to aproof of this 
onje
ture.Sin
e all algebrai
 power series of degree two or three are hyperquadrati
,it is natural to ask, for a quarti
 power series over Fq given by its de�ningequation, whether it is a hyperquadrati
 element or not. Inspired by Mills andRobbins' equation we have investigated this question. In the next se
tion wedes
ribe the 
onne
tion between hyperquadrati
 power series and di�erentialalgebra. We derive from it a ne
essary 
ondition for quarti
 power series tobe hyperquadrati
. In the last se
tion we prove that under a simple andgeneral 
ondition a quarti
 power series is hyperquadrati
 of order one ortwo, depending on di�erent possible 
hara
teristi
s.
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 power series. We 
onsider the formaldi�erentiation on Fq(T ) whi
h 
an be extended to F(q). We have the usualrules for di�erentiation of sums and produ
ts of elements in F(q) and if
x ∈ F(q) then the derivative is denoted by x′. Observe that be
ause of thepositive 
hara
teristi
 p the sub�eld of 
onstants in F(q) is the �eld of powerseries over Fq in T p.Proposition 2.1. Let f(X) = Xn+an−1X

n−1+· · ·+a0 be a polynomialin Fq(T )[X], irredu
ible over Fq(T ) and of degree n > 1. Let M be the n×nsquare matrix with 
oe�
ients in Fq(T ) de�ned by
M =

∣

∣

∣

∣

∣

∣
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∣
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∣

∣

∣

∣

∣

0 0 0 . . . −a0

1 0 0 . . . −a1

0 1 0 . . . −a2... . . . ...
0 . . . 1 0 −an−2

0 . . . 0 1 −an−1

∣

∣

∣
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∣

∣

∣

∣

∣

∣

.

Let U0 = (ui,0)0≤i≤n−1 be the 
olumn ve
tor with u0,0 = 1 and ui,0 = 0for 1 ≤ i ≤ n − 1. Let (Um)m≥1 be the sequen
e of 
olumn ve
tors Um =
(um,i)0≤i≤n−1 in (Fq(T ))n de�ned by

Um = MmU0 for m ≥ 1.Let A be the (2n − 1) × (2n − 1) square matrix with 
oe�
ients in Fq(T )de�ned by

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

1 an−1 . . . a0 . . . 0

0 1 an−1 an−2 . . . 0... . . . ...
0 . . . 1 . . . a2 a1 a0

n (n − 1)an−1 . . . a1 . . . 0

0 n (n − 1)an−1
. . . . . . 0... ...

0 . . . n . . . 3a3 2a2 a1

∣

∣

∣

∣

∣

∣

∣
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∣
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∣
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∣

∣

∣

∣

∣

.

Let Ai,j be the matrix obtained from A by deleting the ith row and jth 
olumn.For 0 ≤ k ≤ 2n − 2, we set
ck =

i+j=k
∑

0≤i,j≤n−1

(−1)ja′i det(A2n−1−j,2n−1),
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bk = ck +

2n−2
∑

i=n

ciui,k.Finally , we denote by D(f) the dis
riminant of the polynomial f . Then if
α ∈ F(q) is su
h that f(α) = 0, we have

α′ = ((−1)n(n−1)/2+1/D(f))

n−1
∑

k=0

bkα
k.

Proof. Let α ∈ F(q) be su
h that f(α) = 0. Then α is algebrai
 over
Fq(T ) of degree n and αm ∈ Fq(T, α) for m ≥ 0. Consequently, we have
αm =

∑n−1
i=0 vm,iα

i for a ve
tor Vm = (vm,i)0≤i≤n−1 of (Fq(T ))n. From αm =
∑n−1

i=0 vm,iα
i, mutiplying by α and using the relation αn = −

∑n−1
i=0 aiα

i,we obtain Vm+1 = MVm where M is the matrix de�ned in the proposition.Sin
e V0 = U0 we see that Um = Vm and that Um = MmU0 holds for m ≥ 1.We introdu
e the polynomials in Fq(T )[X] de�ned by f ′
X(X) = nXn−1+

(n − 1)a1X
n−2 + · · · + an−1 and f ′

T (X) = a′1X
n−1 + a′2X

n−2 + · · · + a′n.Consequently, by formal di�erentiation of the equality f(α) = 0, we obtain
(1) α′f ′

X(α) + f ′
T (α) = 0.Sin
e the extension �eld Fq(T, α) of Fq(T ) is separable we have f ′

X(α) 6= 0.Therefore (1) implies
(2) α′ = −f ′

T (α)/f ′
X(α).Now we introdu
e the resultant R(f, f ′
X) of f and f ′

X in Fq(T )[X]. It isthe determinant of the square matrix A de�ned in the proposition. Sin
e f isunitary this resultant is known to be equal to (−1)n(n−1)/2D(f) where D(f)is the dis
riminant of f . Moreover sin
e the extension Fq(T, α) is separablethis dis
riminant is not zero. Now we know that there are two polynomials
P1 and P2 in Fq(T )[X] su
h that
(3) R(f, f ′

X) = P1(X)f(X) + P2(X)f ′
X(X).Therefore repla
ing X by α in (3) we have (−1)n(n−1)/2D(f) = P2(α)f ′

X(α).Combining this last equality and (2) we obtain
(4) α′ = ((−1)n(n−1)/2+1/D(f))f ′

T (α)P2(α).The expli
it expression for P2(X) is a 
lassi
al result. Indeed, with thenotations introdu
ed in the proposition we have
(5) P2(X) =

n−1
∑

j=0

(−X)j det(A2n−1−j,2n−1),
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T (X), we obtain

(6) P2(α)f ′
T (α) =

2n−2
∑

k=0

ckα
k

where ck is de�ned as in the proposition for 0 ≤ k ≤ 2n − 2. Clearly (6)be
omes
(7) P2(α)f ′

T (α) =
n−1
∑

k=0

ckα
k +

2n−2
∑

k=n

ck

(

n−1
∑

i=0

uk,iα
i
)

.Finally, (7) implies
(8) P2(α)f ′

T (α) =
n−1
∑

k=0

bkα
k

where bk is de�ned as in the proposition for 0 ≤ k ≤ n − 1. Now 
ombining(4) and (8) we see that α satis�es the desired di�erential equation.Proposition 2.2. Let α ∈ F(q) be a hyperquadrati
 element of algebrai
degree n > 3. Then in the di�erential equation satis�ed by α with the abovenotations we have bk = 0 for 3 ≤ k ≤ n − 1. In this 
ase the di�erentialequation satis�ed by α is 
alled a Ri

ati di�erential equation.Proof. Sin
e α is algebrai
 of degree n it is 
lear that the di�erentialequation obtained in the previous proposition is unique. Now if α is hyper-quadrati
 then α = f(αr) where f is a linear fra
tional transformation with
oe�
ients in Fq[T ]. Thus αr = f−1(α). By di�erentiating this last equalityand re
alling that (αr)′ = 0, we see that α satis�es a Ri

ati di�erentialequation.The introdu
tion of Ri

ati di�erential equations in the study of diophan-tine approximation in positive 
hara
teristi
 goes ba
k to Osgood's work [O℄.We must add that the statement of the above proposition was �rst observedby Volo
h in [V, p. 218℄.Proposition 2.3. Let p be a prime with p > 2 and q be a power of p.Let α ∈ F(q) be hyperquadrati
 and algebrai
 of degree four. Then there is
u ∈ Fq(T ) su
h that β = α + u satis�es the algebrai
 equation

β4 + aβ2 + bβ + c = 0with a, b, c ∈ Fq(T ) and we have
(∗) (9b2 + 2a3 − 8ac)(a2 + 12c)′ − 4(3b′b + a′a2 − 4a′c)(a2 + 12c) = 0.Proof. If α ∈ F(q) is algebrai
 of degree four then we have

α4 + Aα3 + Bα2 + Cα + D = 0
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β4 + aβ2 + bβ + c = 0 with a, b, c ∈ Fq(T ).Now α is hyperquadrati
 if and only if β is so. Thus, a

ording to the se
-ond proposition, β satis�es a di�erential Ri

atti equation. Therefore in thedi�erential equation des
ribed in Proposition 2.1 we have b3 = 0. Using thesame notations as above we have b3 = c3 +c4u4,3 +c5u5,3 +c6u6,3 and �nally

(9) b3 = −a′ det(A6,7) + b′ det(A5,7) + (aa′ − c′) det(A4,7).If we now 
ompute the determinants of A4,7, A5,7 and A6,7 we obtain
det(A4,7) = 4(9b2 + 2a3 − 8ac), det(A5,7) = 4b(a2 + 12c),(10)

det(A6,7) = 2(21b2a + 32c2 − 24ca2 + 4a4).(11)Finally, from (9)�(11) we 
an see that b3 = 0 is equivalent to the 
ondition
(∗) stated in the proposition.This last proposition gives a ne
essary 
ondition (∗) on the 
oe�
ients ofthe algebrai
 equation satis�ed by β for this element to be hyperquadrati
.It is 
lear that (∗) is satis�ed in two simple 
ases: if (1) a = b = 0 or if (2)
a2 + 12c = 0. We will see in the next se
tion that both 
onditions (1) and(2) are su�
ient for the element to be hyperquadrati
. We re
all Mills andRobbins' algebrai
 equation x4+x2−Tx+1 = 0, whi
h has a unique solutionin F(p) for all primes p. As pointed out in the introdu
tion, this solution in
F(3) is not hyperquadrati
. Nevertheless, in the 
ase p = 13, 
ondition (2)above is satis�ed, therefore the solution in F(13), a

ording to Theorem 3.4below, is hyperquadrati
 of order one.3. Hyperquadrati
 power series of degree four. The de�nition ofhyperquadrati
 
an be extended to any �eld K of 
hara
teristi
 p. Namely, aseparable algebrai
 element α ∈ K will be 
alled hyperquadrati
 if it satis�esan equation α = γ(αr) for some γ ∈ PGL2(K), where r is a power of p. Inthis wider 
ontext, we 
an prove that a large family of algebrai
 elements ofdegree four are hyperquadrati
.Theorem 3.1. Let p be a prime number with p ≥ 5. Let r = p if p ≡ 1
(mod3) and r = p2 if p ≡ 2 (mod3). Let K be a �eld of 
hara
teristi
 p. Let
a, b ∈ K and f ∈ K[X] with f(x) = x4 + ax2 + bx − a2/12. Then there is anontrivial polynomial g ∈ K[x] of the form g(x) = Axr+1 + Bxr + Cx + Dsu
h that f(x) divides g(x).Note that if AD − BC 6= 0, then a root of f will be hyperquadrati
,be
ause g(α) = 0 implies α = −(Bαr + D)/(Aαr + C). In parti
ular, AD −
BC is nonzero whenever f has an irrational root α, sin
e AD − BC =
(A − Cα)(Cαr + D) 6= 0.
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onsequen
e of the lemma below, is ob-tained by redu
ing the statement to the 
ase of a �nite �eld K.Lemma 3.2. Suppose that Theorem 3.1 holds when K = Fr. Then it holdsfor all �elds K of 
hara
teristi
 p.Proof. Let R = K[x]/(f) be the 4-dimensional K-ve
tor spa
e spannedby 1, x, x2, x3. In parti
ular, there are unique m
(n)
i ∈ K su
h that

xn = m
(n)
1 x3 + m

(n)
2 x2 + m

(n)
3 x + m

(n)
4where the equality holds in the ring R. Obviously the m

(n)
i depend on aand b. The theorem is equivalent to the assertion that xr+1, xr, x, and 1are linearly dependent in R. Sin
e x and 1 are linearly independent, a linearrelation would have to involve xr+1 and/or xr. Then it is 
lear that thetheorem holds if and only if m

(r+1)
1 m

(r)
2 − m

(r+1)
2 m

(r)
1 = 0.Let w, z be trans
endentals over Fp, and F = x4 + wx2 + zx − w2/12 ∈

Fp[w, z, x]. This is a spe
ial 
ase of the polynomial f , with a, b being tran-s
endental quantities. Assign to w a weight of 2, to z a weight of 3, and to x aweight of 1. Then F is homogeneous of weight 4. In the ring Fp[w, z, x]/(F ),for k ≥ 4, we may write xk as −xk−4(wx2 + zx − w2/12), and the resultingpolynomial still has weight k and is a polynomial in w, z, and x. Continuingin this manner, we see that xk (modF ) has the form ∑3
i=0 hi(w, z)xi, whereea
h hi is either zero or a homogeneous polynomial in w and z of weight

k− i. In parti
ular, ea
h m
(k)
i (w, z) belongs to Fp[w, z], and m

(k+1)
1 , m

(k+1)
2 ,

m
(k)
1 , m

(k)
2 have weights (k +1)−3, (k+1)−2, k−3, and k−2, respe
tively(or they are zero). It follows that m

(k+1)
1 m

(k)
2 − m

(k+1)
2 m

(k)
1 is either zero ora polynomial Hk(z, w) of weight 2k − 4. If a, b are arbitrary elements of a�eld K in 
hara
teristi
 p, then f is the spe
ialization of F to w = a, z = b.Thus, m

(k)
i may be obtained by spe
ializing the above polynomials at w = a,

z = b. It follows that there is a polynomial Hr(w, z) ∈ Fp[w, z], dependingon p but not on K, a, or b, su
h that m
(r+1)
1 m

(r)
2 − m

(r+1)
2 m

(r)
1 = Hr(a, b)and Hr(w, z) has the form ∑

hijw
izj , where the sum is over all i, j ≥ 0 su
hthat 2i + 3j = 2r − 4.If the theorem holds when K = Fr, then Hr(α, β) = 0 for all α, β ∈ Fr.Let β ∈ Fr. Then Hr(w, β) =

∑

hijβ
jwi ∈ Fr[w] is a polynomial of degreeat most (2r − 4)/2 = r − 2, yet it has at least r roots. Thus, H(w, β) isidenti
ally zero. This shows that ∑

j hijβ
j is zero for ea
h i and for ea
h

β ∈ Fr. Thus, ∑

j hijz
j has at least r roots, for ea
h i. But its degree is atmost (2r − 4)/3, and so it must also be identi
ally 0. It follows that all hijare zero, and so Hr(w, z) is identi
ally zero. But then Hr(a, b) is zero for a, bbelonging to any �eld of 
hara
teristi
 p, and so the theorem holds for allsu
h �elds.
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 power series of degree four 265To �nish the proof of Theorem 3.1, it remains to prove it when K = Fr.We do a 
ase-by-
ase analysis, depending on how f fa
tors and using thefollowing lemma.Lemma 3.3. Let f(x) = x4+ax2+bx−a2/12 ∈ Fr[x]. Then f(x) fa
torsover Fr in one of the following ways:(i) f(x) = (x − u)3(x + 3u) with u ∈ Fr. (This happens if and only if
8a3 = −27b2, in whi
h 
ase u = −3b/(4a).)(ii) f(x) is the produ
t of four distin
t linear fa
tors.(iii) f(x) is the produ
t of two distin
t irredu
ible quadrati
s.(iv) f(x) is the produ
t of a linear fa
tor and an irredu
ible 
ubi
.Proof. The dis
riminant of f is −3(8a3/9 + 3b2)2. Note that −3 is asquare in Fp if and only if p ≡ 1 (mod3). Thus, −3 is always a square in Fr.It follows that the dis
riminant of f is a square in Fr.Now f has a repeated root if and only if the dis
riminant is zero, whi
hhappens if and only if 8a3 = −27b2. In that 
ase, the reader 
an verify that(i) holds.If the dis
riminant of f is a nonzero square, then by Sti
kelberger's the-orem (see, for example, [Be, p. 164℄), the degree of f minus the number offa
tors of f must be even. That is, f has an even number of fa
tors, and soone of the fa
torizations (ii), (iii), or (iv) holds.Now we prove Theorem 3.1 with K = Fr in ea
h 
ase of Lemma 3.3.Proof of Theorem 3.1. Case (i): We have f(x + u) = x3(x + 4u) =

x4 + 4ux3. Then xr+1 + 4uxr ≡ 0 (mod f(x + u)). It follows that (x− u)r+1

+ 4u(x − u)r ≡ 0 (mod f(x)). Sin
e (x − u)r+1 = (xr − u)(x − u) =
xr+1 − uxr − ux + u2, this gives the relation

xr+1 + 3uxr − ux − 3u2 ≡ 0 (mod f(x)).

Case (ii): f(x) =
∏

(x − ui) with ui ∈ Fr. Sin
e xr − x vanishes atea
h ui, and the ui are distin
t, we see that f(x) divides xr − x.
Case (iii): f(x) = (x − ζ)(x − ζr)(x − λ)(x − λr), where ζ, λ belong to

F2
r \ Fr. Let

M =

(

ζ · ζr λ · λr

ζ + ζr λ + λr

)

∈ M2(Fr).If M is singular, then there is a row ve
tor (A B) ∈ F2
r su
h that (A B)M

= (0 0). In that 
ase, ζ and λ both satisfy Axr+1 + Bxr + Bx = 0. The
onjugates ζr, λr would also satisfy this equality. Thus, ea
h linear fa
tor of
f divides Axr+1 + Bxr + Bx, and so f itself divides that polynomial.If M is nonsingular, then there exists a ve
tor (A B) ∈ F2

r su
h that
(A B)M = (1 1). In that 
ase, f divides Axr+1 +Bxr +Bx− 1 by the samereasoning as above.
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Case (iv): Let ζ be a root of the 
ubi
 fa
tor, and denote the other tworoots by ζ ′ = ζr and ζ ′′ = ζr2 . Let τ1, τ2, τ3 denote the elementary symmetri
fun
tions of ζ, ζ ′, ζ ′′. Let u denote the rational root of f . Then

x4 + ax2 + bx − a2/12 = (x − u)(x3 − τ1x
2 + τ2x − τ3),whi
h gives the identities u = −τ1, a = τ2 − τ2

1 , b = τ1τ2 − τ3, τ1τ3 = a2/12.Consequently,
12τ1τ3 = (τ2 − τ2

1 )2.Let µ = ζ−u, µ′ = µr = ζ ′−u, and µ′′ = µr2

= ζ ′′−u. Let σ1, σ2, σ3 denotethe elementary symmetri
 fun
tions in µ, µ′, µ′′. Then
f(x + u) = x(x3 − σ1x

2 + σ2x − σ3).We 
ompute:
σ1 = µ + µ′ + µ′′ = τ1 − 3u = 4τ1,

σ2 = (ζ − u)(ζ ′ + ζ ′′ − 2u) + (ζ ′ − u)(ζ ′′ − u)

= τ2 − 2uτ1 + 3u2 = τ2 + 5τ2
1 ,

σ3 = (ζ − u)(ζ ′ − u)(ζ ′′ − u) = τ3 − uτ2 + u2τ1 − u3 = τ3 + τ1τ2 + 2τ3
1 .We 
laim that

3σ1σ3 = σ2
2 .Indeed, 3σ1σ3 = 12τ1τ3 + 12τ2

1 τ2 + 24τ4
1 = (τ2 − τ2

1 )2 + 12τ2
1 τ2 + 24τ4

1 =
(τ2 + 5τ2

1 )2 = σ2
2. Sin
e Fr3 is a 3-dimensional Fr-ve
tor spa
e with basis

1, µ, µ′, we know there are A, B, C in Fr su
h that(1) µµ′ = Aµ′ + Bµ + C.Taking the tra
e to Fr, we �nd(2) σ2 = (A + B)σ1 + 3C.On multiplying equation (1) through by µ′′ and then taking the tra
e, we�nd(3) 3σ3 = (A + B)σ2 + Cσ1.Now subtra
t σ1 times equation (3) from σ2 times equation (2). Sin
e σ2
2 =

3σ1σ3, the left sides 
an
el, and we obtain
C(3σ2 − σ2

1) = 0.Thus, either C = 0 or 3σ2 = σ2
1 .First assume C = 0. Then we have a relation µµ′ = Aµ′ + Bµ, so that

µr+1−Aµr −Bµ = 0. Then (ζ−u)r+1−A(ζ −u)r −B(ζ−u) = 0. It followsthat ζ satis�es the equation xr+1−(u+A)xr−(u+B)x+u2 +Au+Bu = 0.Then ζ ′, ζ ′′ also satisfy this equation. Furthermore, u satis�es this equation.Sin
e all roots of f satisfy this equation, we 
on
lude that f divides therelevant polynomial, and so the theorem holds for f .



Hyperquadrati
 power series of degree four 267Next assume C 6= 0, so 3σ2 = σ2
1. We also know 3σ1σ3 = σ2

2. If σ1 = 0then σ2 = 0 also, so a = 0, and f(x) = x4 + bx. In that 
ase, x5 ≡ bx2

(mod f), x6 ≡ bx3 (mod f), x7 ≡ b2x (mod f), and so on. Note that r ≡ 1
(mod3), and thus xr ≡ cx (mod f) for some 
onstant c. Thus, f divides
xr − cx, showing the theorem holds in this 
ase. If σ1 6= 0, then σ2 = σ2

1/3,
σ3 = σ2

2/(3σ1) = σ3
1/27. It follows that σ1/3 is a root of x3−σ1x

2+σ2x−σ3,
ontradi
ting that this polynomial is an irredu
ible 
ubi
.We have 
ompleted the proof that the theorem holds when K = Fr, andby Lemma 3.2 this implies the general form of the theorem.Theorem 3.4. Let p be a prime with p > 2 and let q be a power of p. Let
α ∈ F(q) be an algebrai
 element of degree four. Then there exists u ∈ Fq(T )su
h that β = α + u satis�es the algebrai
 equation
(∗∗) β4 + aβ2 + bβ + c = 0with a, b, c ∈ Fq(T ). We have:

(1) If a = b = 0 then α is hyperquadrati
 of order one.
(2) If a2 + 12c = 0 then α is hyperquadrati
 of order one for p = 3or p ≡ 1 (mod3) and of order at most two for p ≡ 2 (mod3).Proof. As in Proposition 2.3, it is 
lear that there is β ∈ F(q) as stated inthe theorem satisfying (∗∗). Sin
e β = α+u we know that α is hyperquadrati
if and only if β is so and with the same order. In 
ase (1) the result is 
learfor p = 3. Now if p = 4k + 1 we have βp − (−c)kβ = 0 and if p = 4k + 3we have βp+1 − (−c)k+1 = 0 so the result follows. In 
ase (2) the result isalso 
lear for p = 3 sin
e the 
ondition redu
es to a = 0 and (∗∗) be
omes

β4+bβ+c = 0. If p > 3 then the result follows immediately from Theorem 3.1with K = Fq(T ).In the above theorem, 
ase (1) is trivial: β is then a fourth root of arational fun
tion. Su
h power series nth roots of rational fun
tions were �rst
onsidered in diophantine approximation by Osgood (see [O, p. 109℄). In 
ase(2) a natural question arises: if p ≡ 2 (mod3), what is the exa
t order of β?With the notations of Lemma 3.2, we have seen that Hp2(a, b) is identi
allyzero. This implies that β is hyperquadrati
 of order less than two, but thisorder is one if and only if Hp(a, b) = 0. For instan
e, if p = 5, a simple
omputation gives H5(a, b) = a3 − b2. But then D(f), the dis
riminant of fgiven in Lemma 3.3, is 3(a3−b2)2. Sin
e β is algebrai
 of degree four we have
D(f) 6= 0 and therefore H5(a, b) 6= 0, whi
h implies that β has order two. Inthe same way we have 
omputed the polynomials Hp(a, b) for p = 5, 11, 17, 23and in ea
h 
ase we have 
he
ked that H2

p = −3(D(f))(p−2)/3. So we knowwith the same argument as above that in these 
ases β has order two. It isthen natural to 
onje
ture that if β satis�es (∗∗) with a2+12c = 0 and p > 3
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 and its order is the residue of p modulo 3. A lastand important question remains open: may β be hyperquadrati
 without
onditions (1) or (2)?
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