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1. Introduction and statement. It is well known (see, e.g., [5,
Chap. IIL.3]) that the logarithms of the prime factors of an integer normally
have exponential growth. Therefore, it is expected that the product of the
small prime factors of a typical integer remains small—a device which has
been employed by Erdds in many different contexts and for which various
effective versions appear in the literature. We return here to the problem of
finding a quantitative estimate for the number of exceptional integers. Some
similar results have been obtained concomitantly, through a more elemen-
tary approach, by Banks and Shparlinski [1].

Given an integer n and a real parameter y > 1, we define

Ny = H p’
p”lIn, p<y
to be the y-friable component of n and we put
O,y,2)=Y 1 (z>1y>12>1)

n<x
Ny >2

We also write, for complex s with positive real part,
((sy):i= > 1n*=[[-p)",
P(n)<y Py

where P(n) denotes the largest prime factor of n with the convention that
P(1) := 1. We let p designate Dickman’s function and we set

Sy, z) = Z %

P(m)<y
m>z

It has been shown in [6, Corollary 2] that, writing u := (logx)/logy, we
have

2000 Mathematics Subject Classification: Primary 11N25.

[287]



288 G. Tenenbaum

xS(y, 2)
¢(Ly)

uniformly for x > 2, y > 2, z > 2, and also that, denoting Euler’s constant
by v, and writing

(1-1) O(z,y,2) = + O(zo(u)20+W 4+ 29)

we have, with v := (log z) /log v,

1 2
(1-2) S(y,z) = {1—1—0(%)}7(1})10@/
for all € > 0 and uniformly for
(1-3) y>2, 1<z<expexp{(logy)®/°~}.
Thus, for all z > 2 and y, z satisfying (1-3) we have
1 2

) 0wz = {er+ 0 (I arto) 4 Ofaofup 9 + 49),

Note that ©(z,y,z) = 0 unless z < x and that, when the latter holds,
(1-3) is implied by Hildebrand’s condition
() 122, exp{(logy2)* M} <y<a

with n = 3e.
In particular, if condition (1-3) holds, u — 0o, y — oo, and, say, z < z'~¢,
then

(1-5) O(x,y,z) ~e "7(v)x.

Formula (1-1) has been derived in [6] as a by-product of a general re-
sult on the Kubilius model of probabilistic number theory. However, the
estimates established in [6] easily yield an asymptotic formula that is valid
also when u is bounded. Let w denote Buchstab’s function. We obtain the
following result in which we put

o(u,v)

= { ot
9(u,v) = o(u) + o (u,v)
Alu,) = (1= )e(u — 1) +7e(v)(u - v)

THEOREM 1.1. Let € > 0. Under conditions (1-3) and 1 < z < x/y, we
have uniformly

K(u,v T(v v)log(v + 2 1
(1-6) O(z,y,z) ::E{ﬁ(u,v) — ﬁ +O<10(g; I o( )(10551)2"’ ) I ;>}

wlu—t)dt
(uz=1,v=>=0).
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In particular, if (logy)? < z < min(x/y!Te/108tD) VW) we have

(17) O(z,y,2) = {1+0<%> }ﬁ(u,v)x.

REMARKS. (i) The condition z < z/y is not restrictive since O(z,y, z) =
U(z,y) —¥(z,y) otherwise.

(ii) It will be clear from the proof that, under suitable assumptions,
more precise estimates may be derived by the same method.

(iii) It follows from classical estimates on Dickman’s function (see e.g.
[5, Chap. IIL.5]) that

19w = bt () ) @2

Since 1/2 < w(t) < 1 for t > 1 and o(v + h) > o(v){vlog(v + 1)}~ for
0 < h <1< (seee.g. [5, Chaps. IIL.5 and II1.6]), this implies, for instance,
that ¥(u,v) < 7(v) whenever u — 1 — v > 1/log(v + 1).

2. Proof of Theorem 1.1. We start with an improvement of (1-2)
established by the same method. As usual, we define the derivatives of the
Dickman function at integer points by right continuity. It is known (see e.g.
5, Cor. I11.5.8.3]) that o) (w) ~ (=1)*(logw)¥o(w) as w — co. We also
denote by {a;}32, the Taylor coefficients of sC(s +1)/(s +1) at s = 0.

LEMMA 2.1. Let € > 0 and k € N be given. Then, uniformly under
condition (1-3), we have

D) ¥(zy)

o(v){log(v + 2)}*!
* O( (logy)k+t >

In particular, we have

(2-2) S(y,z) =71(v)logy —vyo(v) + O (g(v)lloog%g(;m + é)
Proof. We have
S(5,2) = (logy) | L) gy D28

v yw z

Inserting Saias’ estimate for ¥(y",y) (see [4] or [5, Th. II1.5.9]) in its range
of validity and estimating the contribution of large w as in [6], we obtain

oo

oy,
S(y y)

w
v Yy 0—

dw = {1+ O(e_(logy)3/5_6)} OSO (v —1t) d<@)

yt
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Formula (2-1) follows by integrating by parts and inserting the generalized
Taylor expansion for the Dickman function established in [2, Lemma 4.2].
We omit the details, which are very similar to those in [2]. Then we derive
(2-2) by appealing to Hildebrand’s formula [3]

(2:3)  W(z,y) = zg(v){l +0 <%> } +0(1)

(222, y > ellom2)?7
Fory > 2,t > 1, we write u; := (logt)/logy.

LEMMA 2.2. Under conditions (1-3) and 1 < z < z/y, we have uniformly

(2-4) Z wlw = tm) _ o(u,v)logy — k(u,v) + o(u — 1)
i
o(v)log(v+2) _ 1
—i—O(T(v)—i— Tog.y +Z>.

Proof. Since w(s) is continuous for s > 1 and differentiable for s > 1, we
have

u—1

> wz > %{1+ | w’(u—t)dt}
P(m)<y P(m)<y im
m>z z<m<z/y
u—1

= S(y,2) = Sy, x/y) + | ' (w—0){S(y,2) = S(y,y")}dt

v
u—1

=w(u—v)S(y,2) - S, z/y) — | ' (u—1)S(y,y")dt.

v
The required formula then follows by inserting (2-2), and using the estimate

(1-8). We omit the details which only involve standard partial integration
and the fact that w’ € LY(R). m

We are now in a position to complete the proof of Theorem 1.1.

We first consider the case when (x,y) lies outside the region H.. Appeal-
ing to the bound w(t) —e™” < o(t) (¢t > 0) established, in a more precise
form, in Lemma 4 of [6] and noting that, say, u > 3v provided y is large
enough, we see that

o(u,v) = e 7(v){1+ O(1/(logy)*)},
K(u,v) = ve Tp(v){1 4 O(1/(logy)*)}.

Thus (1-6) is in this case an immediate consequence of (1-1) and (2-2).
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When (x,y) € H, z < z/y, we apply the formula

Oy = Y o Loy)+uon) - ¥a/vn),

P(m)<y

z<m<z/y
where @(t,y) denotes the number of positive integers not exceeding ¢ and
all of whose prime factors exceed y. The last two terms may be evaluated
by (2-3). Note that ¥(x/y,y) may be regarded as an error term since it is
< zp(v)/y. Thus, we may restrict our attention to evaluating the m-sum.
To this end, we apply Corollary 3 of [6] in the form

x eTzw(u — Up,) ey xo(u — Up,)
o) = Tt i O i) <<
By formula (1-2), the contribution of the remainder term of the left-hand
side is dominated by that of (1-6) and that of the second term equals
—zo(u — 1)/logy to within an acceptable error. Since the remaining sum
depends on (2-4), this completes the proof of (1-6). Formula (1-7) then fol-
lows from the bound 7(v) > v=2.
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