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Tame kernels of cubic cyclic fields
by

HaryaN Zuou (Nanjing)

1. Introduction. Let K/k be a Galois extension of number fields and
G its Galois group. The tame kernel of K, KsOg, is a G-module. This fact
can often be used to investigate the structure of KoOg. The tame kernels
of number fields have been investigated by many authors (see the list of
references). In particular, J. Browkin gave some explicit results for cubic
cyclic fields with exactly one ramified prime in [Brl]. In this paper, we
study cubic cyclic fields with only two ramified primes.

This paper is organized as follows. In Section 2, we study the 2-primary
part of tame kernels of cubic cyclic fields F. Section 3 applies reflection
theorems to study the f-rank of KoOp. In particular, we obtain a bound
on the 3-rank of KoOp. Finally, we use the G-module structure of KoOp
to study the 3-primary and /-primary parts of tame kernels of cubic cyclic
fields ' where ¢ = 5 (mod 6). Moreover, we obtain some results about the
3i-rank of KO, i > 1. In particular, we compute the structure of the
3-primary part of K5O in the cases left open in [Brl]. Moreover, we prove
the following theorem for all cubic cyclic fields. In particular, Conjecture 4.6
in [Brl] is true.

THEOREM. Let F be a cubic cyclic field and T a generator of the Galois
group Gal(F/Q). If ¢ =5 (mod 6) is a prime, then

Syle(KQOF) = A/ X T(AI)
for some subgroup A" of the Sylow £-subgroup of KsOp.

Let F be a cubic cyclic field with only two ramified primes. In Sects. 4—6
we investigate the tame kernel KoOp, where Op is the ring of integers of F'.
Using the well-known Birch—Tate conjecture, it is easy to compute the order
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of KoOp. We discuss its divisibility by small primes. To get information on
the structure of the group KoOp we investigate its g-rank for ¢ = 2,3,7,13.
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2. The 2-primary part of the tame kernel

2.1. The 2-rank of KsOp. Let F be a cubic cyclic field.
LEMMA 2.1 ([Brl, (3.2)]). We have

3+ 2-rank C1(Op[1/2]) if 2 is inert in F,
5+ 2-rank Cl(Op[1/2]) if 2 splits in F.
LEMMA 2.2. The 2-rank of Cl(Op[1/2]) is even.

Proof. Let V = 32Cl(Op[1/2]) and r = 2-rank C1(OFp[1/2]), so V has 2"
elements. Let 7 generate the Galois group Gal(F'/Q). Then 7 acts on V. Let
v eV, v+#0 and let 7(v) = v. Therefore

v = (147 +712)v = Norm(v),

2-rank KoOp = {

where the norm is induced by the norm from F to Q. It is easy to see that
v3 = 0. But v2 = 0, so v = 0, contradiction. It follows that the orbit of every
v # 0 has three elements, so 2" = 1 (mod 3). Therefore 2 | r. This completes
the proof. m

LEMMA 2.3. Let F be a cubic cyclic field with at least two ramified
primes. For a prime number q, let A, be the Sylow q-subgroup of the class
group CI(OF) of F. Then

(i) The class number of F is divisible by 3.

(ii) 3-rank Cl(Op) =1 if and only if 3 || #CL(OF).

(iii) If g =2 (mod3), then Ay = By xT1(By) for some subgroup By of A,.
The same holds if we replace Op by the ring Opy = Op[1/l] of integers
of F localized at £, where £ is a prime.

Proof. (i) follows from [CH, Theorem 9.3], (ii) follows from [CR, Corol-

lary] and (iii) follows from [Wa, Theorem 10.8]. The last statement follows
from Lemma 2.2. m

THEOREM 2.4. The 2-rank of KoOp is odd.
Proof. This follows from Lemmas 2.1 and 2.3. =

2.2. Elements of order 2 in KoOp. Elements of order 2 in KoOp can
be described explicitly. Let €1, €2 be fundamental units of F. Changing sign
if necessary, we may assume that Ne; = 1, and €3 = 7(e1), where 7 is
a generator of the Galois group T = Gal(F/Q). In view of Lemma 2.3
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we can take independent generators of the group 2Cl(Op[1/2]) of the form
Cl(p;), Cl(7(p;)), 5 = 1,...,t, where 2t = 2-rank C1(OFp[1/2]), and g, are
prime ideals satisfying p;{2. Then the ideals p? are principal, p? = (v5)
for j = 1,...,t. We may assume that Nv; > 0. If 2 splits in F, (2) =
©-1(p)-72(p), and the class Cl(p) in Cl(OF) has order r, then the ideal "
is principal, " = (7). From [Brl, 3.2], we have the following result:

THEOREM 2.5.

(i) If 2 is inert in F, then the subgroup of elements of order < 2 in
K>Op is generated by

{_1> _1}> {_1’ 51}7 {_17 7-(51)}7 {_17 7]']’? {_1> T(’}/j)},
where j =1,...,t.
(ii) If 2 splits in F, then the subgroup of elements of order < 2 in KyOp
1s generated by

{_17_1}7{_1751}’{_1’7—(51)}7{_177}7{_177—(7)}7
{_137j}>{_1>7_(7j)}>
where j =1,...,t.

THEOREM 2.6. For r > 2 the 2"-rank of KoOp is even and if there are
n elements in the set {e1,7v,7; : 1 < j < t} that are not totally positive,
then
4-rank KoOp < 2-rank KoOp — (2n + 1).

Proof. If an element o € F* is not totally positive, then applying the
three real Hilbert symbols of F' to {—1,a} we see that {—1,a} is not a
square in KsF. In particular {—1, —1} is not a square. Since {—1,a} is a
power of some element of F*, {—1,7(«)} is the same power of some element
of F*. It follows from Theorem 2.5 that the 2"-rank of KoOp is even, where
r > 2. The inequality follows from the fact that if « is not totally positive,
then 7(«) is not totally positive. m

3. The /-primary parts of tame kernels for an odd prime /

3.1. Notation. In this paper, we use the same notation as in [Brl]. Let
¢ be an odd prime number, (; a primitive ¢th root of unity, and G :=

Gal(Q(¢)/Q). Then
G={o,:1<a</(l-1}

where 0,(¢;) = (. For a fixed primitive root k¥ modulo ¢ the automorphism
o = o} generates G.

Let w be the f-adic Teichmiiller character of the group (Z/¢Z)*. Then, for
1 <a <{—1, the value w(a) € Zj is uniquely determined by the conditions
w(a)*~!' =1 and w(a) = a (mod¥). It is well known that w?, 0 < j < ¢ — 2,
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are all irreducible characters of G = (Z/¢Z)*. The corresponding primitive
idempotents of the group ring Z,[G] are

~

TR, A 1 £2—2 N
(3.1) &= 1 wa)yo;t = 1 wk)do™! 0<j<l—2.

a=1 =0

In particular, g = F11N7 where N=1+0+0%2+ - - +072= No(eo/o 18
the norm element in the group ring Z,[G].

For a Z¢[G]-module M, we get a decomposition of M into a direct sum
of Z¢[G]-submodules:

-2 £—2
M=PeM=NMa& Pe;M.
j=0 j=1

The group pe of ¢th roots of unity has the natural structure of a Z[G]-
module. We define the action of G on puy ® M by
((®@m)? =¢7®@m°, where( € uy, me M, oeG.

Since |G| = ¢ — 1, we have

(32) (e ® M)© = eo(e @ M).
From [Brl],
(33) €0(M[®M) :Mg®€g_2M.

In the following we always assume that £ = F((;), where F' is a cubic
cyclic field. Denote by A : C1(Og) — Cl(Og[1//]) the homomorphism of the
class groups induced by the imbedding O — Og[l1/{], and let A = Ag
be the Sylow ¢-subgroup of Cl(Og). Then A(A) is the Sylow ¢-subgroup of
Cl(Og[1/4]) by the surjectivity of A.

Since A is an ¢-group on which G = Gal(Q({,)/Q) = Gal(E/F) acts, we
have

LEMMA 3.1. If £ does not ramify in F or £ = 3, then for j # 0 the
mapping X : ;A — €;A(A) is an isomorphism.

Proof. If ¢ does not ramify in F, then the result follows from the same
proof as [Brl, Lemma 4.1]. If 3 ramifies in F' and ¢ = 3, then 3 is totally
ramified in £ = F((3) since (2,3) = 1. Thus o(p) = p for every o € G,
where p is the prime ideal of E which divides 3. Therefore Ker(A\)NA C o A.
Consequently, Ker(A) Ne;jA =0 for j # 0. This completes the proof. =
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THEOREM 3.2. Let F' be a cubic cyclic field and E = F((y). If £ does not
ramify in F or £ = 3, then

{-rank KQOF = f-rank 6572AE.

Proof. The result follows from the same proof as [Brl, Theorem 4.3] and
Lemma 3.1. =

3.2. The 3-primary part of the tame kernel of F. If { = 3, then E =

F(¢3), G = Gal(Q(¢3)/Q) = (o) where o is the complex conjugation. So
1 1
—5(1+U), 61—5(1—0').

By Theorem 3.2, 3-rank KoOp = 3-ranke; Ag. According to [Br2, Lemma
2.1], Ng,p : Ap — Ap is surjective and Ker(Ng/p) = €1Ag. So we have
the following important theorem:

THEOREM 3.3. 3-rank KoOp = 3-rank A — 3-rank Ap.

€o

We apply reflection theorems to prove some estimates of the 3-rank Ko Op.
Let E/Q be a Galois extension with (, € E. Let L be the maximal un-
ramified and elementary abelian /-extension of E with the Galois group
H := Gal(L/E). Then the Artin reciprocity map gives an isomorphism of
Gal(E/Q)-modules A/¢ — H.

By Kummer theory, L = E(B'/*), where B is a subgroup of E* con-
taining E*‘. Set By := B/E*‘. Then every principal ideal (b), where b € B,
is the ¢th power of an ideal in E, since L/E is unramified. Moreover By is
isomorphic to the dual H of H as a Gal(E/Q)-module.

Define yA = {a € A : a* = 1}. Then there is a homomorphism of
Gal(E/Q)-modules

w:By— A
such that p(bE*) = Cl(a), where the ideal a of O is defined by the con-
dition (b) = a‘.
LEMMA 3.4.

(i) If 3 is ramified in F, then 3-rank Ap — 1 < 3-ranke; Ap.
(ii) If 3 does not ramify in F, then 3-rank Ap < 3-ranke; Ap.

Proof. 1t is obvious that F' is the maximal real subfield of £ = F((3).
And we know that if 3 does not ramify in F, then F'({g)/E is totally ramified.
Thus the lemma follows from [Wa, Theorem 10.11]. m

ProrosITION 3.5.
(i) If 3 is ramified in F, then
3-rank Ap — 1 < 3-rank KoOp < 3-rank Ap + 2.
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(ii) If 3 does not ramify in F, then
3-rank Ap < 3-rank KoOp < 3-rank Ap + 2.

Proof. By the above arguments, we have A = ggA @ 1 A. Note that
H = A/3 as G-modules. So ¢;H = ¢;(A/3) for i = 0,1. Let h € ¢;H.
Then o,h = h*" (@ for all a € (Z/3)*, where 01 = 1, 03 = 0 and w is the
Teichmiiller character of the group (Z/3)*. Let b € €, By. Then

<h,b>w(a) = <h7 b>oa _ <hwi(a),bwk(a)> _ (h, b>wi+k(a)

for all a. If i + k # 1 (mod2), then (h,b) = 1. Since the pairing between
B =¢yB®¢e1B and H = ¢gH ®¢1 H is nondegenerate, it follows easily that
the induced pairing

eH xe;B—pu3, i1=0,7=1lori=1,75=0
is nondegenerate. Hence we have
0By = e1H =2 e1(A/3) as abelian groups.
Now the reflection map ¢ : By — 3A is G-linear, so
p:e0By — e0(34).
Therefore we have the exact sequence
0 — Ker(¢) NegBy — €9By — Ap.
We also have
Ker(p) NegBy = subgroup of eo(Ug/Up).
Thus by Theorem 3.2 and Dirichlet’s unit theorem, we have
3-rank KoOp = 3-ranke1 A = 3-rank g By
< 3-rank Ap + Ker(p) NegBy

< 3-rank Ap + 3-rank Up /3
< 3-rank Ar + 2.

The proposition now follows from Lemma 3.4. m

THEOREM 3.6. Let F' be a cubic cyclic field with v ramified primes and
r > 2. Then 3-rank KoOp < 2r. Moreover, if 3 does not ramify in F, then
1 < 3-rank KoOp < 2r.

Proof. Suppose T = Gal(F/Q) and 3-rank AL = s. By the well-known
fact that 3-rank AL is one less than the number of ramified primes, we have
s = r — 1. From the proof of [CR, Proposition 5], we have the following
cases:



Tame kernels of cubic cyclic fields 299

CAsEe 1. If Ap is an elementary 3-group, then

Ap = @ (z/3)*,  where a; < 2.
i=1
Thus 3-rank Ap < 2(r —1).

CASE 2. If Ap contains an element of order 9, then
Ap/3=(Z/3)* @ @ (Z/3)%,  where b; < 2.
i=2

So, 3-rank Ap < 2+ 2(r —2) = 2(r — 1). Therefore the result follows from
Lemma 2.3 and Proposition 3.5. =

COROLLARY 3.7. Let F be a cubic cyclic field with at least two ramified
primes. If 3 does not ramify in F and 3 || #K20F, then 3| #AF.

THEOREM 3.8. Let p|3 be the prime ideal of E. If 3 is ramified in F,
then

3-rank KoOp — 3-rank Ap if p is principal,
3-rank KoOp — 3-rank Ar — 1  otherwise.

Proof. Since 3 is ramified in F, it is totally ramified in E. By [Ke, Corol-
lary 3.9], we have 3-rank KoOp = 3-rank C1(Og[1/3]). If p is principal, then
Ap = Cl(Og[1/3]). Otherwise, 3-rank C1(Og[1/3]) = 3-rank Ag — 1. Thus
the assertion follows from Theorem 3.3. m

Let F' be a cubic cyclic field and T' = Gal(F/Q). Denote by 7 a gen-
erator of G. Let K/E be an extension of number fields. Denote by tr the
transfer homomorphism tr : Ko K — KoFE. Let j : KoFE — KK be the
homomorphism induced by the inclusion map £ C K. Let M be a finite
abelian group and p a prime number. Denote by (M), the p-primary part
of M.

LEMMA 3.9. If K5Op has an element of order 9, then
3-rank KoOp > 1 4+ 3-rank (KQOF)G.

Proof. 1t is well known that K27 = 7Z/2. Note that j - tr = deG g. The
lemma follows from [CR, Proposition 5]. m

3-rank KoOp = {

COROLLARY 3.10. The 3-primary part of KoOp is cyclic if and only if
3| #K20p.

Proof. Since G is a 3-group, it is easy to see that ((K2O0r)3)¢ # 0. So
by Lemma 3.9, the presence of an element of order 9 implies 3-rank > 2.
This completes the proof. m

From Propositions 6 and 7 of [CR], we have the following results:
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COROLLARY 3.11. The 3-primary part of KoOp cannot be the sum of
three summands each cyclic of order divisible by 9.

COROLLARY 3.12. If 3'-rank KoOp > 2r + 1, then 3" !-rank KoOp >
2(r +1). In particular, if 3*-rank KoOp > 1, then 3'~!-rank KoOp > 2.

As an application of Corollary 3.12, we determine the structure of the 3-
primary parts of those KO which are left open in [Brl], for p = 1747, 2593,
3061, 3583, 4789. Now, using the GP/PARI, we compute the 3-primary part
of C1(Og), and obtain the following table:

P (K20F)3 (CI(OR))3
1747 ZJ9xZ]9  ZJ3 x Z]9
2593 727 x )27 73 x /9
3061 Z/9xZ/9  Z/9xZ)9
3583 7/9x7/9 /3 x 79
4789 Z/9 x Z)2T  7)3 x Z)9

where E = F((3).
3.3. The (-primary part of KoOp, where { =5 (mod 6) is a prime
THEOREM 3.13. The (' -rank of KoOF is even, where i > 0.

Proof. Let B be the Sylow f-subgroup of KoOp and V = BZi_l/BEi. So
ri := l-rank KoOp = dimV and V has " elements. Suppose v € V, v # 0
and 7(v) = v. Then

v® = vr(v)3(v) = j(tr(v)),

where j is induced by the inclusion Q C F and tr is the transfer homomor-
phism of K5. Note that K7 = Z/2. Therefore, v = 0. But £13, so v = 0,
contradiction. It follows that 7(v) # v, so £ = 1 (mod 3). Therefore 2 |r;.
This completes the proof. m

COROLLARY 3.14. Let F' be a cubic cyclic field and 7 a generator of the
Galois group Gal(F/Q). If ¢ =5 (mod6) is a prime, then

Sylg(KQOF) = A/ X T(A/)
for some subgroup A" of the Sylow £-subgroup of KsOp.
Proof. The corollary follows easily from Theorem 3.13. =

REMARK. Conjecture 4.6 in [Brl] follows from Corollary 3.14.

4. Orders of tame kernels

4.1. Basic information on the field F. In the following, let F' be a cubic
cyclic field with only two primes p > 7, ¢ > 7 ramified in F. From [Co,
Theorem 6.4.6], it follows that p = 1 (mod6) and ¢ = 1 (mod6), and the
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discriminant of F' is p?¢?. We describe such a field in detail as follows. By
the conductor-discriminant formula [Wa, Theorem 3.11], the conductor of F'
is pg. So F is a cubic subfield of the cyclotomic field Q((p,). We may assume
that g, h € Z satisfy:

e g is a primitive root modulo p, and g =1 (modq),
e h is a primitive root modulo ¢, and h =1 (mod p).

For a € Z with (a,pq) = 1 denote by o, the automorphism of the field
Q(Cpq) satisfying o4 (¢p) = (p,- Then the Galois group Gal(Q((p,)/Q) is
generated by o, and op; and there are four subgroups of index 3: H; =
(03,0n), Hy = (0g4,04), Hs = (03, 0404), Hy = (03,090}:1>.

Denote by F; the fixed field of H;, i = 1, 2, 3, 4. It is obvious that
Fy € Q(¢p) and F» C Q(({;). Then F is F3 or Fy. In what follows we
consider only the field F' = F3, the arguments for the field F, are similar.
Define the Gauss sums:

(41) o = Z Z g;lhm7

j1=1 J2=1
j2=j1 (mod 3)

p—1 q—1
Jj1+1p3
(42) ar=ogla) =3, 3, G

Jji=1 J2=1
jZEjl (mod 3)

p—1 qg—1
J1+2pd
(4.3) as=oo(an) = > > M

Jji=1 J2=1
ngjl (mod 3)

Then F' = Q(«;), j =1,2,3, and a1, az, ag are conjugate in F. Moreover,
by Section 1 of [Gr|, the minimal polynomial for the Gauss sums is

£(X) :Xs_Xz_pq?’—lXerq(A;i’))

where 4pg = A2 +27B?, A,B€Z, A=1 (mod3), B > 0.

_1emm

REMARK. It is well known that there are only two pairs A, B € Z such
that 4pg = A2 +27B?, A = 1 (mod3), B > 0. Thus F3 and Fj are the
corresponding splitting fields of f(x) according to the value of A.

Substituting X — (X + 1) we get another polynomial with the same
splitting field:

(4.4) 9(X) = X* = 3pgX + Apq.

Now we state some known facts on the class group of the field F. Let
T = Gal(F/Q), and let 7 be the restriction of o, to the subfield F.
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4.2. Orders of tame kernels. By the Birch-Tate conjecture, we can ac-
tually compute the order of the group K>Op. Recall that the conjecture
states that whenever L is a totally real number field,

#K201 = wa(L)[CL(=1)],

where (7, is the Dedekind zeta function of the field L and ws(L) is the max-
imal order of a root of unity belonging to the compositum of all quadratic
extensions of L. The conjecture is known to be true when L is abelian over
Q and is known to be true in general up to a power of 2. (See [Ko], [MW]
and [Wi].)

Now, in our case, wy(F') = 24.

Recall that the Dedekind zeta function of an abelian number field F is
the product of L-series:

¢r(s) = [T Lis. ).

where y runs over the linear characters of the Galois group Gal(F/Q).
In our case there are two nontrivial cubic Dirichlet characters y and ¥,
where

¢k if (a,pq) =1, 04 € ognH, k=0,1,2,
x(a) = .
0 ifp|laorq|a,
and  is the complex conjugate character of y. Hence
CF(S) = C(S)L(Sa X)L(S’Y)
Applying the formula (see [Wa, Theorem 4.2])
L(_17 X) = _BQ,X/Qa

where By,  is the generalized Bernoulli number corresponding to a Dirichlet
character x of conductor f, since ((—1) = —1/12 and B,, y = B, y, we get

le ’ BQ,Y

1
= —— |By,|>
4 48| 2,x|

Cr(—1) =¢(-1)
Hence 1
#KZOF = 5 |BQ,X|2-

So it is necessary to compute Bo .
For k=0,1,2, we define T}, :={j : 1< j<pg—1,0; € on H} and

1 .
Sk = — Z 52
pq jeTy

Since j € Ty iff j = ¢* " *+h (modpq) for some 7, 0 < r < (p — 1)/3,
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and ¢, 0 <7< q—1, we have

(p—4)/3 q—2
OIS SVED 0L
r=0 =0

JETy
_ g2r—1 1 ‘ (gh)2le=1) —1
9% -1 (gh)? —
=0 (mod pq),

hence the S} are integers. Moreover

1 Pz 1 ) p—1 )
So+ 51+ 5 = pq(Zn—p Zn nzz:ln>
= §((pg — 1)(2pq — 1) —p(q —1)(2¢-1) —q(p—1)(2p - 1))
=t(p—1D(2pg+1)(g—1).
By [Wa, Exercise 4.2(&)] it is easy to get

1 & V3
B27X_p_z ] _SO__(51+S2)+72(51 52)

Consequently,
(4.5) #K30p = £|Ba,|?

((So = S1)? + (81 — S2)* + (S2 — S0)?)

((So + 81 + S2)% — 3(SS1 + 5152 + S250))

(3 =1)- (2pg+1) - (4—1))*= 3(S0S1 + 5152+ $20)).

In the following, we use another method to compute #K>Op. We know
that the Dedekind zeta function (r(s) of the field F' can be defined by the
Euler product

o= (-4) (- 2)’

L6 LA

£ splits £ isinert

1
2
1
4
1
2
1
2

By the functional equation we have

Therefore,
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From the above formula for (z(s) it follows that 1 < (#(2) < ((2)3, where
¢(s) is the Riemann zeta function. Consequently

3 1
(4.6) g (pg)® < #K20p < = (pg)*.

THEOREM 4.1. If we fiz a prime number p, then
lim #K;0F = .

q—00
Proof. This follows from (4.6). m
THEOREM 4.2. Let v,(m) be the p-adic valuation of m. Then

(1) ’UQ(#KQOF) 18 odd.

(ii) For every prime number ¢ = —1 (mod 6), the number vy (#K20F)
is even. Moreover q| #K;0p iff So = S1 = Sz (mod q).

(iii) Sp =51 =52 (mod?2).

(IV) Ug(#KQOF) Z 1.

(v) 3| #K20pF iff S1, S, Ss are distinct modulo 3. In this case we have
#K50p =6 (mod9). Moreover,

32| #K,0p iff So=S1 =S (mod3).
Proof. Part (iv) follows from (4.5) since 9| (p—1) - (¢ — 1).
Other parts can be proved analogously to [Brl, Theorem 2.4]. m

REMARK. (i) also follows from Theorem 2.3, and (iv) can be obtained
from Theorem 3.6.

4.3. The 2-rank of KoOp
LEMMA 4.3. 2 splits in F if and only if A is even.

Proof. The polynomial defined by (4.4) satisfies g(X) = X3+ X + A
(mod 2). Hence by the Hensel lemma ¢(X) splits in Qo[ X] iff A is even iff 2
splits in F. =m

COROLLARY 4.4. We have
3 if Ais odd,
2-rank KoOp = 2-rank C1(Op2) + ) )
’ 5 if A is even.

Proof. By Lemmas 2.1 and 4.3. =

4.4. The 3-rank of KoOp
PRrROPOSITION 4.5. 1 < 3-rank KoOp < 4.

PROPOSITION 4.6. 3-rank Ag > 2. Moreover, 3-rank Ag = 2 if and only
if 3||#K20F.

Proof. This result easily follows from Theorem 3.3, Lemma 2.3, Corollary
3.7 and Proposition 4.5. =
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4.5. The case { = p or q. Suppose { = p. Let E = F((,), where F is the
cubic cyclic field defined above.

LEMMA 4.7. Let f be the order of p (mod q). If 3| f and q— 1 is not
divisible by 9, then for j #0, X : ;A — ¢;A(A) is an isomorphism.

Proof. Since the inertia index of p in Q((pq) is f, we have f|q — 1. If
3| f, then f)(qg;l As [E : Q(¢p)] = 3, the inertia index of p in E is 3. Thus
prime divisors p of p in F' are not split in E. It follows that op = g for

every o € Gal(Q((p)/Q).

Since A commutes with the action of o, we have A(g;A) = ;A\(A), 1.e. X is
surjective. Moreover, the group Ker(\) is generated by the classes containing
prime ideals p of E which divide p. Consequently, Ker(\) N A C A% = gy A.
Therefore Ker(A\) Ne;A =0 for j # 0, and the lemma follows. m

LEMMA 4.8. Let f be the order of p (mod q). If f = q—1, then for j # 0,
A:eg; A — g;A(A) is an isomorphism.

Proof. Since f = ¢ — 1 and p does not split in F, it follows that prime
divisors g of p in F' do not split in E. Consequently, by the same proof of
Lemma 4.7, the lemma follows. =

THEOREM 4.9. Under the conditions of Lemma 4.7 or Lemma 4.8,
p-rank KoOp = p-ranke, 2Ag.
Proof. Since there is an exact sequence

0 — (pp © CUOB[1/p)) = K201 /p — €D 1y — 0
peS’

(see [Ke, Theorem 5.4], and [Ge]), the theorem follows from (3.2), (3.3),
Lemma 4.7 or Lemma 4.8, and [Brl, Lemma 4.2]. =

5. Some estimates of the /-rank of Ky;Op. Let E = F((;). Let L
be the maximal unramified and elementary abelian f-extension of E with
the Galois group H := Gal(L/E). Let By := B/(E*)‘. By the arguments
in Section 3, for every b € E* and by := b(E*)¢, we have by € By iff b is
singular primary, i.e. (b) = @’ for some ideal p of E and

(5.1) ' =b (mod l(1 —¢)) for some z € E*

(see [Wa, Exercise 9.3]).

Let Ug be the group of units of O, and denote by Uy, its subgroup of
units u satisfying (5.1). Such a w is called a singular primary unit. It is easy
to see that U5 C Uy, and Ker(p) = Ul /U%, where ¢ is defined in Section 3
(see [Br2, (3.1)]).
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THEOREM 5.1. Let F' be as above and let E = F((;). For { # p,q, we
have
(-rank e5(Uy /Ug) < f-rank K,Op

< f-rank ey Ap + l-rank eo (U /UL).
Proof. See the proof of [Brl, Theorem 5.3]. m

COROLLARY 5.2. Under the conditions of Theorem 5.1, if f-rank Ag = 0,
then f-rank KoOFp = (-rank e5(U}, /UL).

In Theorem 5.1, we give some estimates of the ¢-rank of K5O in terms of
the /-ranks of some subgroups of the class group and of the group of singular
primary units (modulo ¢th powers) of the field £ = F((;). Unfortunately,
for large prime numbers ¢, the degree (E : Q) = 3(¢ — 1) is large, and it is
difficult to determine its class group and the group of units, and the action of
the Galois group Gal(E/Q) on them. By part 5 of [Brl], E can be replaced
by its proper subfields.

Recall that o, T are generators of G := Gal(Q({y)/Q) and T":= Gal(F/Q),
respectively, where £ = 1 (mod6). For every subfield L of E we define U]
to be the group of singular primary units in L, i.e.

U,=UgNL.

THEOREM 5.3. Lett = ({—1)/2, r = (£ —1)/6, and let E; be the sub-
field of E fized by the group T; = (o*,0™ 771, where j = 0,1,2. If { # p, q,
then

m §2€—rank52(U}3j/Uéj) < l-rank K2OFp

0<j
2

2
< Z (-rank e Ap; + Z C-rank e2(Up, /Uéj).
§=0 §=0
Moreover, if the class number of the field Q((y) is not divisible by £, and in
the field Lo := Ey N Ey we have Uy /U =1, then
2
> trank ey (U, /Uf,) < b-rank K2OF

=0

2 2
< trankeyAp, + Y brankesy(Up, /Uf,).
j=0 =0

6. Application. Using PARI-GP, we apply the above results and the
following two lemmas (see [Brl, Lemmas 6.1 and 7.1]) to determine the
structure of KoOp, where F' is a cubic cyclic field with two ramified primes
p,q, 7 < p,q < 100.
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6.1. Important lemmas

LEMMA 6.1. Let a cyclic group G = (o) of order 6 act on an elementary
abelian 7-group A, and let a € A.

(i) If
(6.1) (1+o+0cHa=1
then eja =1 for j =0,1,3,5.
(ii) Moreover,
o(a) =a* iff (e2a =a and (6.1) holds),
o(a) =a* iff (e4a = a and (6.1) holds).

LEMMA 6.2. Let a cyclic group G = (o) of order 12 act on an elementary
abelian 13-group A, and let a € A.

(i) If
(6.2) (1+c*+oha=1 and (1+0%)a=1,

then eja =1 for 0 < j <11, 5 # 2,10.
(ii) Moreover,

ola) =a* iff (e2a =a and (6.2) holds),
o(a) =a' iff (c10a =a and (6.2) holds).

6.2. Computation of the 2-rank and 3-rank of KoOp. The structure of
the 2-primary part of KoOp can be determined by Corollary 4.4, except for
the following four cases: p =19, ¢ = 61, A = —44; p = 37, ¢ = 61, A = 46;
p="7Tq=97, A=4;,p =13, ¢ = 73, A = 58. However, for the above
four fields, 2-rank C1(Op2) = 0 and the fundamental unit ¢; is not totally
positive by GP. Thus we can apply the inequality of Theorem 2.6.

To determine the structure of the 3-primary part of KoOp we use The-
orem 3.3. For p =7, ¢q =79, A= -5 and p = 43, ¢ = 79, A = —95, we
obtain 9-rank (K2Op) = 2 by Corollary 3.12.

6.3. Computation of the 7-rank of KoOp. We compute the 7-rank of
K50OpF via the T-ranks of other groups appearing in Theorem 5.3. The argu-
ments are similar to those in Section 6 of [Brl], so we omit some details.

For fixed primitive roots g modulo p, and h modulo g, where p,q = 1
(mod 6) are primes, we have defined the Gauss sums

alzzcjv Qg = ZC]7 Qg = Z <]

If we replace g by g~ and h by h~! then as and as permute, hence the

number (a1 — as)(a — as)(as — o) changes sign.
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We shall assume henceforth that primitive roots ¢ modulo p and A mod-

ulo g are chosen in such a way that
(1 — ag)(ag — as)(ag —aq) > 0.

In particular, for the prime 7, we choose the primitive root 3. Then the
Gauss periods are
N=CGAGt =124, =G +G3=-180, y3=C4G2=—-044,
hence (71 — 72)(v2 — 73)(v3 — 71) > 0, and 1, 72,73 are the roots of the
polynomial f(X) = X3+ X2 - 2X — 1.

We denote by o the automorphism of the field Q(¢;) satisfying o((7)
= (2. Then o(7;) = vit1, where the indices are taken modulo 3.

We recall that the field F' is generated by any root §; of the polynomial

g(X) = X3 = 3pgX + Apq.

From our assumption on primitive roots it follows that

(B1 — B2)(B2 — B3)(B3 — B1) = 27(a1 — a2) (2 — a3) (a3 — vg) > 0.

Moreover, the automorphism 7 € Gal(Q((pq)/Q) given by 7((py) = (5,
satisfies 7(3;) = Bi+1, where the indices are taken modulo 3.

It then follows from [Brl, 6.1] that Ey = Q(¢7)T = Q(v), E1 = Q(01),
Es = Q(02), where

01 =mP1 +7203 +73082, 02 =7181 + 1202 + V30s.

Applying the Viete formulas one can verify that the minimal polynomials
for p1 and g, are, respectively,

A—27B
g1(X) = X* = 21pgX + Tpg ——,
A+ 27B
92(X) = X* = 21pgX + Tpg ———.

If pg # 7, then A> — B? = A% +27B%? = 4pq # 0 (mod7). So A #
+B (mod 7). Hence, ¢;(X) is an Eisenstein polynomial with respect to 7.
Consequently, every unit v = ag 4+ a1z + agx? € U £, is a singular primary
unit iff w =1 (mod 7z) or equivalently,

ap =1 (mod49), a3 =az=0 (mod7)

where x := p; (see [Brl, 6.4]). Finally, we can determine the 7-rank of KoOp
in terms of Theorem 5.3 and Lemma 6.1, except for p =7, ¢ =73, A= —44
and p =7, ¢ = 97, A = 4. The results of the computations are given in
Table 3, where we used the following shorthand notation, for j =1, 2:

vr = v7(#K20p), d;:= 7—rank52(U}3j/UZ;j), hj := T-rankes Ap,,
and (K2Op)7 is the 7-primary part of KoOp.
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6.4. Computation of the 13-rank of KoOp. The arguments are similar
to those in Section 7 of [Brl], so we omit some details.

Let v = (% + (>, 1 < j < 6. Then Ey = Q(y;). Define

01 =mP1 + 7502 +73083, 02 =7181 + 7302 + V50s.
Then E; = Q(p;) for j = 1,2. Assume

A= (71 +74)61 + (v2 +75) 62 + (73 + 76) 35
Ao = (v1 +74)B1 + (v3 +76) B2 + (v2 + 75) Bs.

Then F}; := Q(};) is a cubic subfield of E;, j =1,2.
There are three fields F' corresponding to primes 7 < p, ¢ < 100 such
that 132 | #K20p. Namely,

p=31, q¢=43, A= —38,
p=31l, ¢=61, A= —83,
p=37, q=43, A= —T1.

In the above list, there are no nontrivial singular primary units in F}. Sim-
ilarly, we can determine the 13-rank of KoOp in terms of Theorem 5.3 and
Lemma 6.2. The results of the computations are given in Table 4, where we
used the following shorthand notation, for j = 1, 2:

V13 ‘= ’Ulg(#KQOF), Uj = 13—rankz—:2(Ugj/UE’_), wj; = 13—rank52AEj,
and (K2Op)13 is the 13-primary part of KoOp.

6.5. Description of the tables. The field F' in Table 1 is the fixed field
of Hsz, and F' in Table 2 is the fixed field of Hy, where Hs, H4 are defined
in Section 4. The first and second columns of Tables 1 and 2 list all primes
p,q = 1 (mod6), 7 < p,q < 100, and the third the corresponding values
of A. The fourth and fifth columns give the orders of KoOp; moreover the
fifth column provides information about the structure of the group K>Op.
We use the same convention as in [Brl]. That is, if the order of a group is
written in the form (n1)*!(ny)*2 ..., it means that the group is isomorphic
to the product of ky copies of Z/nq, ko copies of Z/no, etc. However, if a

factor (an ) is written in bold type, it means that there is a direct summand

of order n? , but its structure is unknown. Thus (2)? means Z/2 x Z/2, and
(22) means Z/4, but (31%) means a group of order 312, i.e. one of the groups
Z/31 x Z/31 and Z/31%.

The sixth column of Tables 1 and 2 gives the class group of E = F((3),
and the seventh column the class group of F'. We use the same convention
here, e.g. (2)2 means Z/2 x Z/2.
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Table 1 (cont.)
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Table 2 (cont.)
p q A #K20p K2Op Cl(Og) Cl(OF)
31 37 49 7427616 (2)5(3)(72)(1579) (156)(12) (6)
31 43 70 21462912 (2)3(4)%(3)%(31)(601) (6)(6)(6)(2) (6)
31 61 79 25413864 (2)3(3)(7)(151273) (129)(3) (3)
31 67 91 30947424 (2)°(3)(31)(10399) (258)(6)(2)(2)  (6)
31 73 —95 43262232 (2)3(3)(13)(138661) (903)(3) (21)
31 79 7 51167256  (2)3(3)(7)(151)(2017)  (687)(3) (3)
31 97  —65 101213592 (2)3(3)(4217233) (183)(3) (3)
37 43 —17 21571224 (2)3(3)(193)(4567) (42)(6) (3)
37 61 —35 46722312 (2)3(3)(9)(7)(13)(2377)  (63)(3)(3) (3)
37 67 13 49912152 (2)3(3)(61)(103)(331)  (471)(3) (3)
37 73 —2 166536288 (2)°(3)%(578251) (21)(3)(3) (3)
37 79 —107 115300248 (2)3(3)(7)(61)(11251)  (186)(6) (21
37 97 91 259724472 (2)3(3)(7)(43)(157)(229) (84)(12) (3)
43 61 =77 64650600 (2)3(3)2(5)%(7%)(733) (63)(9)(3) (3)
43 67 61 78701064 (2)3(3)(13)(31)(79)(103) (399)(3) (3)
43 73 —53 99880008 (2)3(3)(4161667) (453)(3) (3)
43 79 —95 146562696 (2)3(3%)%(7)(79)(409) (93)(3)(3) (3)
43 97 49 253136184 (2)3(3)(7)(43)(67)(523)  (813)(3) (3)
61 67 —119 335806632 (2)3(3)%(7)(31)(21493)  (126)(6)(3) (3)
61 73 118 952235808 (2)°(3)(97)(102259) (114)(6) (3)
61 79 49 429057312 (2)°(3)(4469347) (222)(6)(2)(2)  (6)
61 97 31 664492968 (2)3(3)%(9229069) (219)(3)(3) (3)
67 73 —104 1305878496 (2)°(3)(13)(103)(10159) (24)(24) (3)
67 79 —83 479092632 (2)3(3)(19962193) (579)(3) (3)
67 97 7 953343384 (2)3(3)(7)(5674663) (741)(3) (3)
73 79 100 1710388608 (2)3(4)2(3)(283)(15739)  (84)(12) (6)
73 97  —26 2789750688 (2)°(3)(571)(50893) (201)(3) (3)
79 97 175 1737265608 (2)3(3)%(13)(19)(97687) (1953)(3)(3)(3) (21
Table 3
p q A vy di d2 hy hy Trank KoOp (K20p)7
13 37 =412 1 1 0 0 2 (7)?
1397 612 0 1 0 0 1 (7%)
31 37 492 0 1 0 0 1 (7%)
43 61 =772 1 0 0 0 1 (7%)
Table 4
p q A wvizg ur uz wi; wz 13-rank KoOp (K20F)13
31 43 —=382 0 1 0 0 1 (13%)
31 61 —833 1 0 0 0 1 (13%)
37 43 -712 0 1 0 0 1 (13%)
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