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1. INTRODUCTION

An integer is said to be an almost prime of order r, and is denoted Pr,
if it is the product of at most r (not necessarily distinct) prime factors.
Schinzel’s celebrated hypothesis H may be reformulated in the language of
almost primes as follows:

Hypothesis H. Let F1, . . . , Fn be irreducible polynomials over the inte-

gers such that the product F := F1 · · ·Fn has no fixed prime divisor (that is,
there does not exist a prime p such that F (x) ≡ 0 (modp) for all x ∈ N).
Then there exist infinitely many x ∈ N such that F (x) = Pn.

The only verified case is that of one linear polynomial. This is Dirichlet’s
theorem on arithmetic progressions. As far as quadratic polynomials are
concerned, one of the best results is due to Iwaniec [9], who modified a
weighted linear sieve of Richert to demonstrate that x2+1 = P2 for infinitely
many x.

It has been known since the time of Dirichlet which binary quadratic
forms represent primes; see the books by Buell [1] and Cox [2], for example.
However the situation for pairs of forms appears to be completely open. In
this paper, we investigate an approximation to Schinzel’s hypothesis for the
case n = 2. The result we achieve involves binary quadratic forms rather
than polynomials, and we shall show that the product of the forms is P5 for
infinitely many values of the variables, as opposed to the P2 result predicted
by Schinzel’s hypothesis. Our present theorem is an improvement on Dia-
mond and Halberstam’s P7 result for quadratic polynomials, a special case
of a result in [5]. To be precise, our main theorem is the following:
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Theorem 1.1. Let qi(x, y) := aix
2 + 2bixy + ciy

2 for i = 1, 2 be irre-

ducible quadratic forms over the integers such that ai ≡ 1 (mod4). Let δi be

the discriminant of the form qi. Let D := 6Res(q1, q2)a1a2c1c2δ1δ2, where

Res(q1, q2) is the resultant of the forms q1 and q2. If D 6= 0 and if there

exists z ∈ Z
2 such that (qi(z);D) = 1 for i = 1, 2, then there exist infinitely

many pairs (x, y) ∈ Z
2 such that

q1(x, y)q2(x, y) = P5.

Moreover , if R(0) is a convex subset of R
2 with piecewise continuously dif-

ferentiable boundary , then there exists a positive absolute constant β < 1
such that for all sufficiently large X,

#{(x, y) ∈ XR(0) : q1(x, y)q2(x, y) = P5} ≫ X2
∏

p<Xβ

(

1 − ω(p)

p

)

,

where the implied constant depends at most on the forms q1 and q2, and on

the region R(0); and where

ω(p) = 2 + χ1(p) + χ2(p) − (1 + χ1(p) + χ2(p))/p,

the characters χ1 and χ2 defined by χi(p) :=
(

δi
p

)

.

Our principal external tool will be a multi-dimensional sieve of Diamond
and Halberstam [5], a special case of which is presented as Theorem 3.1 in
the present work. The most exacting aspect of our almost-primes problem is
the derivation of an upper bound for the error term

∑ |Rd| which appears
in Diamond and Halberstam’s sieve. We devote Section 2 to the necessary
groundwork. In doing so, we develop a “level of distribution” formula which
is strongly related to the sum of the |Rd|. Similar formulæ have been applied
by Heath-Brown [6], Daniel [3], and others in the investigation of asymptotic
formulæ for the number of points of bounded height on given varieties.

We shall use the following standard notation: d(n) is the number of
positive divisors of n; φ(n) is the number of nonnegative integers less than
and prime to n; µ(n) is the Möbius function; ν(n) is the number of distinct
prime factors of n; and

( ·
p

)

is the Legendre symbol. We will use the symbol
C to denote a positive numerical constant, though its value may vary in the
course of a proof.

2. THE LEVEL OF DISTRIBUTION

In our application of Diamond and Halberstam’s sieve, we shall encounter
a sum over error terms |Rd|, which we will be able to relate to quantities of
the form

#(Λ∗
d ∩R ∩ Ψ) − ̺∗(d1, d2)

(d1d2D)2
vol(R),
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where Λ∗
d is a lattice-like object, and (d1d2)

2/̺∗(d1, d2) plays a rôle similar
to the determinant of the lattice. Naturally, we wish to derive a good upper
bound for the error term involved. In the language of sieve theory, such a
result is often referred to as a “level of distribution formula”.

The sets Λd and Λ∗
d which we are concerned with are as follows:

(1)
Λd := {x ∈ Z

2 : di | qi(x) (i = 1, 2)},
Λ∗

d := {x ∈ Λd : (x; d1d2) = 1},
where we use (a; b) to denote the highest common factor of a and b.

A technicality arises due to problems for those x such that (qi(x);D) > 1,
with D as in Theorem 1.1. This leads us to consider the set

(2) Ψ := {x ∈ Z
2 : x ≡ z (modD)},

and hence the task of estimating #(Λd ∩R ∩ Ψ).

Define the multiplicative functions ̺ and ̺∗ by

(3)
̺(d) := #{x ∈ [0, d1d2)

2 : di | qi(x) (i = 1, 2)},
̺∗(d) := #{x ∈ [0, d1d2)

2 : (x; d1d2) = 1 and di | qi(x) (i = 1, 2)}.
One would expect to be able to estimate the size of the set Λd ∩ R ∩ Ψ

by vol(R)̺(d)(d1d2D)−2, and indeed, we shall prove the following result:

Theorem 2.1 (Level of distribution). Let qi(x, y) := aix
2 +2bixy+ciy

2

for i = 1, 2 be a pair of irreducible quadratic forms in Z[X,Y ], with ai, bi, ci
∈ Z, such that Res(q1, q2) 6= 0. Defining Λd and Ψ as in (1) and (2), let

T (M,Q) :=
∑

di≤Qi
(di;D)=1

sup
∂(R)≤M

∣

∣

∣

∣

#(Λd ∩R ∩ Ψ) − vol(R)̺(d1, d2)

(d1d2D)2

∣

∣

∣

∣

.

Then there exist absolute constants ν1 and ν2, both at least 1, such that

T (M,Q) ≪ Q1Q2(log 2Q1Q2)
ν1 +M

√

Q1Q2 (log 2Q1Q2)
ν2 .

We approach this theorem by first examining the functions ̺ and ̺∗,
then developing upper bounds and formulæ relating the two functions. As
in Daniel’s work, we shall reformulate the “starred” problem in terms of
lattices, and use a point-counting argument to generate the main term. The
evaluation of the error term will be elementary but technical.

2.1. Transition from Λ∗
d to Λd. We begin with the following bridging

result which will be employed in Section 2.4 to express the unstarred sum
in terms of the starred sum, leading to Theorem 2.1.
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Lemma 2.1 (Transition formula). Let D ∈ N and suppose that (d1;D) =
(d2;D) = 1. Then

#(Λd ∩R ∩ Ψ) =
∑

b|ψ(d)

#(Λ∗
c ∩R/b ∩ Ψb),

where ci := di/(di; b
2) for i = 1, 2, the multiplicative function ψ is defined

by

ψ(pα, pβ) := p⌈max(α,β)/2⌉,

and the lattice coset Ψb is defined by

Ψb := {x ∈ Z
2 : x ≡ b−1z (modD)},

where b−1 denotes the multiplicative inverse of b modulo D.

By definition, #(Λd ∩ R ∩ Ψ) = #{x ∈ R : di | qi(x), i = 1, 2, x ∈ Ψ}.
We partition this set according to (x;ψ(d)) to get

∑

b|ψ(d)

#{x ∈ R : qi(x) ≡ 0 (moddi), (x;ψ(d)) = b, x ∈ Ψ}.

Using the easily checked facts that ψ(d)/b = ψ(c), and that (y;ψ(c)) = 1
iff (y; c1c2) = 1, we rewrite this as

∑

b|ψ(d)

#{y ∈ R/b : qi(y) ≡ 0 (mod ci), (y; c1c2) = 1, y ∈ Ψb},

and hence the result.

2.2. Upper bounds for ̺. It is crucial to understand the number of
simultaneous zeros of our quadratic forms to given moduli. Two simplifica-
tions are useful to consider. First, we consider a “starred” function ̺∗ which
counts the number of solutions which are coprime to the modulus. Second,
we consider only one form at a time. The latter simplification is similar to
a problem considered by Daniel [3].

To begin with, we note the fact that ̺ and ̺∗ are multiplicative functions,
reducing the problem to evaluating the functions for prime power arguments.

2.2.1. The one-form problem. In the derivation of our upper bound for
the two-form ̺ function, we will be able to reduce to the simpler one-form
problem. It is possible to derive stronger results if we restrict to one form,
including an elegant formula for ̺(pα), which will be utilised in Section 3.

Let q be an irreducible quadratic form in the variables x1 and x2. Define

̺∗(a) := #{x ∈ [0, a)2 : q(x) ≡ 0 (moda), (x; a) = 1},
̺(a) := #{x ∈ [0, a)2 : q(x) ≡ 0 (moda)}.

Lemma 2.2. We have the upper bounds

̺∗(pα) ≪ φ(pα), ̺(pα) ≪ αpα
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for all primes p and for all positive integers α. Moreover ,

̺∗(pα) ≤ 2φ(pα), ̺(p) ≤ 2p

for all positive integers α and for all primes p which satisfy (e1e2δ; p) = 1,
where e1 and e2 are the coefficients of the monomials x2

1 and x2
2 respectively ,

and δ is the discriminant of q.

The argument presented below closely follows the work of Daniel [3].
Define

τ1(a) := #{x ∈ [0, a) : q(x, 1) ≡ 0 (moda)},
τ2(a) := #{x ∈ [0, a) : q(1, x) ≡ 0 (moda)}.

Note that e1e2 6= 0, by irreducibility of the form q. Let p be a prime such
that p does not divide e1e2. Suppose x is counted by ̺∗(pα) for α ≥ 1, that
is, q(x1, x2) ≡ 0 (modpα) and (x; p) = 1.

We shall show p is coprime to both x1 and x2. Suppose, for contradiction,
that p |x2; then e1x

2
1 ≡ 0 (modp), but p does not divide e1, hence p |x1,

a contradiction. We get a similar contradiction if we assume p |x1. Hence
the vectors x counted by ̺∗(pα) are precisely those for which q(x1, x2) ≡ 0
(modpα) and x1, x2 are both coprime to p. From this, we may deduce that

(4) ̺∗(pα) = τ1(p
α)φ(pα) = τ2(p

α)φ(pα)

for α ≥ 1 if p does not divide e1e2. To derive the second identity, for example,
note that

̺∗(pα) = #{x ∈ [0, pα)2 : q(x) ≡ 0 (modpα), (x1; p) = (x2; p) = 1}
= #{x ∈ [0, pα)2 : q(1, x2x

−1
1 ) ≡ 0 (mod pα), (x1; p) = (x2; p) = 1}

= #{y ∈ [0, pα)2 : q(1, y2) ≡ 0 (modpα), (y1; p) = (y2; p) = 1},
where x−1

1 denotes the inverse of x1 modulo pα.

Even if p | e1e2, we know that p does not divide x1 or p does not divide x2,
so ̺∗(pα) ≤ (τ1(p

α) + τ2(p
α))φ(pα) for all p and α ≥ 1. We now apply the

following theorem of Huxley [7]:

Theorem 2.2. If g ∈ Z[X] is a polynomial of degree n ≥ 2 and nonzero

discriminant δ, then for all prime powers pe, t(pe) ≤ npmp/2, where pmp ‖ δ
and where

t(a) := #{x ∈ [0, a) : g(x) ≡ 0 (moda)}.
The polynomials q(x, 1) and q(1, x) are irreducible, hence have no re-

peated root; so the theorem applies, giving τ1(p
α) + τ2(p

α) ≤ 4δ1/2 ≪ 1
uniformly for all p and α ≥ 1. Hence ̺∗(pα) ≪ φ(pα).

Huxley’s theorem also applies for the special case where (e1e2δ; p) = 1.
As p is coprime to the discriminant, we have τ1(p

α) ≤ 2 for all α, and an
application of (4) gives ̺∗(pα) ≤ 2φ(pα).
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We can express ̺ in terms of ̺∗, and we have

(5) ̺(pα) = p2(α−⌈α/2⌉) +
∑

0≤β<⌈α/2⌉
p2β̺∗(pα−2β).

To see this, we employ the more general result, equation (7), that

̺(d) =
∑

b|ψ(d)

̺∗(c)

(

(d1; b
2)(d2; b

2)

b

)2

for a two-form function ̺(d), where ψ(pα, pβ) = p⌈max(α,β)/2⌉, and ci =
di/(di; b

2). This immediately gives the desired result by reducing to the
one-form function ̺(d) := ̺(d, 1). Formula (5) gives our bound for ̺, and
Lemma 2.2 is proved.

For certain applications, we shall need a more exact formula, which is
provided by the following lemma:

Lemma 2.3. Let q(x1, x2) = ax2
1+2bx1x2+cx

2
2 be an irreducible quadratic

form. Suppose that p does not divide 2acδ. Then

̺(pα) = φ(pα)

{

1 +

(

δ

p

)}

⌈α/2⌉ + p2(α−⌈α/2⌉),

where δ := b2 − ac is the discriminant of q.

By the argument of Lemma 2.2, we have ̺∗(pα) = φ(pα)τ1(p
α), where

τ1(p
α) is the number of solutions of q(x, 1) ≡ 0 (modpα). Now x is such a

solution if and only if

(x+ a−1b)2 ≡ a−1(a−1b2 − c) (modpα),

where a−1 is the multiplicative inverse of a modulo pα. By Hensel’s lemma,
we only need to count the number of solutions to this equation modulo p,
so

τ1(p
α) = τ1(p) = 1 +

(

a−1(a−1b2 − c)

p

)

= 1 +

(

δ

p

)

,

hence ̺∗(pα) = φ(pα)
{

1 +
(

δ
p

)}

. Applying equation (5) yields the result.

2.2.2. The two-form problem. We now consider the two-form variants
of ̺∗ and ̺, defined in (3).

2.2.3. The function ̺∗

Lemma 2.4. For every prime p one has ̺∗(pe, pf ) ≪ pmax(e,f), and if p
is coprime to Res(q1, q2), then

(6) ̺∗(pe, pf ) = 0 if e > 0 and f > 0.
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First, we shall show that ̺∗(pe, pf ) ≪ pmax(e,f) for all p. We may assume
that ̺∗(pe, pf ) 6= 0. Thus there exists x = (x1, x2) such that (x; p) = 1,
q1(x) ≡ 0 (mod pe), and q2(x) ≡ 0 (modpf ). Without loss of generality,
assume p does not divide x2.

DefineQi(Y ) := qi(Y, 1), and y ≡ x1x
−1
2 (modpmax(e,f)), where x−1

2 is the

multiplicative inverse of x2 modulo pmax(e,f). Now 0 ≡ q1(x1, x2) ≡ x2
2Qi(y)

(modpe), and p does not divide x2, hence pe |Q1(y).

Similarly, pf |Q2(y), whence pmin(e,f) |Q1(y) and pmin(e,f) |Q2(y). We de-

duce that pmin(e,f) | Res(q1, q2). This restricts what min(e, f) can be. Pre-
cisely, define mp by pmp ‖ Res(q1, q2); then min(e, f) ≤ mp. Note that for
fixed q1, q2, we have mp = 0 for all but finitely many p. Now

̺∗(pe, pf ) ≤ #{x (modpe+f ) : pf | q2(x), (x; p) = 1}
= p2e#{x (modpf ) : pf | q2(x), (x; p) = 1},

whence ̺∗(pe, pf ) ≪ p2epf , where we have used the one-form result,
Lemma 2.2. A similar argument gives ̺∗(pe, pf ) ≪ p2fpe, which combine to
give

̺∗(pe, pf ) ≪ p2mppmax(e,f).

Now mp = 0 for all but finitely many p, so ̺∗(pe, pf ) ≪ pmax(e,f). Moreover,
we extract from the proof that if (p; Res(q1, q2)) = 1, and if min(e, f) > 0,
then min(e, f) > mp, and hence ̺∗(pe, pf ) = 0, which implies the result (6),
and our lemma is proved.

2.2.4. The function ̺

Lemma 2.5. For every prime p and for all nonnegative integers e and f ,
let m := min(e, f), M := max(e, f). Then ̺(pe, pf ) ≪ (M −m+ 1)p2m+M

and ̺(p, p) ≪ p2. Moreover , for all but a finite set of primes p, one has

̺(p, 1) ≤ 2p and ̺(1, p) ≤ 2p.

Assume e = min(e, f). Recall the definitions (1) of Λd and Λ∗
d. We may

write ̺(d) = #(Λd ∩ (0, d1d2]
2) and ̺∗(d) = #(Λ∗

d ∩ (0, d1d2]
2). Applying

Lemma 2.1 and using the notation of Section 2.1, we have

(7) ̺(d) =
∑

b|ψ(d)

#(Λ∗
c ∩ (0, d1d2/b]

2) =
∑

b|ψ(d)

̺∗(c)

(

(d1; b
2)(d2; b

2)

b

)2

,

where ci = di/(di; b
2). In particular,

(8) ̺(pe, pf ) =
∑

0≤β≤⌈f/2⌉
̺∗
(

pe

(pe; p2β)
,

pf

(pf ; p2β)

)(

(pe; p2β)(pf ; p2β)

pβ

)2

.
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Split the range of summation as 0 ≤ 2β ≤ e, e < 2β < f , and β = ⌈f/2⌉.
We have the following upper bound for ̺(pe, pf ):
∑

0≤β≤e/2
̺∗(pe−2β, pf−2β)p6β +

∑

e/2<β<f/2

̺∗(1, pf−2β)p2e+2β + (pe+f−⌈f/2⌉)2

≪
∑

0≤β≤e/2
pf+4β +

∑

e/2<β<f/2

p2e+f + p2e+f ≪ (f − e)p2e+f + p2e+f ,

as required.

We can do a little better in special cases. If e = 0 or f = 0, then ̺(pe, pf )
reduces to the one-form problem, so by Lemma 2.2 we have ̺(p, 1) ≤ 2p,
̺(1, p) ≤ 2p, for all but finitely many primes p. Also, by equation (8), we
have

(9) ̺(p, p) = ̺∗(p, p) + p2 = O(p2),

which completes proof of Lemma 2.5.

2.3. Level of distribution—starred version. In the calculation of
our sum, we need to evaluate #(Λd ∩ R ∩ Ψ). Here, Ψ is defined to be the
lattice coset {x ∈ Z

2 : x ≡ z (modD)} for chosen z and D which depend
only on the forms in question. We will see that it is only necessary to consider
those d for which (d1;D) = (d2;D) = 1.

The level of distribution formula gives us the error term involved in
estimating #(Λd ∩ R ∩ Ψ) by vol(R)̺(d)/(d1d2D)2, as we average over d

and R.

As mentioned in the background section, it is simpler to deal first with
a “starred” level of distribution formula. This is one in which we impose
coprimality conditions. We have

Lemma 2.6. Define

T ∗(M,Q) :=
∑

di≤Qi

(di;D)=1

sup
R: ∂R≤M

∣

∣

∣

∣

#(Λ∗
d ∩R ∩ Ψ) − ̺∗(d1, d2)

(d1d2D)2
vol(R)

∣

∣

∣

∣

.

If qi(x, y) = aix
2 + 2bixy + ciy

2 (for i = 1, 2) are a pair of irreducible

quadratic forms in Z[X,Y ] such that ai, bi, ci ∈ Z and such that Res(q1, q2)
6= 0, then

T ∗(M,Q) ≪M
√

Q1Q2 (log 2Q1Q2)
2255

+Q1Q2(log 2Q1Q2)
6

uniformly for M > 0 and Q1, Q2 ≥ 1.

2.3.1. The quantities Λ∗
d. Assume that d = (d1, d2) is fixed and define

a := d1d2. Let U(a) be the set of equivalence classes of x ∈ Z
2 under

multiplication with (x1;x2; a) = 1. That is, if (x; a) = (y; a) = 1, then we
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define a relation by

x ∼ y iff (∃λ ∈ Z)(x ≡ λy (moda)).

Our motivation for this definition is that we wish to partition Λ∗
d into equiv-

alence classes. It is easily checked that ∼ is an equivalence relation, and that
(λ; a) = 1. Moreover, suppose y ∈ A for some A ∈ U(a), then if (λ; a) = 1,
we have λy ∈ A. In fact, for a fixed y ∈ A,

A = {x ∈ Z
2 : x ≡ λy for some λ with (λ; a) = 1}.

Bringing forms into play, one may verify that if y ∈ Λ∗
d, then λy ∈ Λ∗

d,
given (λ; a) = 1. So for a given A ∈ U(a), either A ⊂ Λ∗

d or A ∩ Λ∗
d = ∅.

This suggests the definition U ′(d) := {A ∈ U(d1d2) : A ⊂ Λ∗
d}. Hence we

may partition Λ∗
d into disjoint sets as follows:

Λ∗
d =

⋃

A∈U ′(d)

A.

For a given A, fix y ∈ A. Then for any x ∈ A, we have x ≡ λy (moda)
for (λ; a) = 1. The vector x is uniquely determined modulo a by λ, so there
are exactly φ(a) choices for x modulo a. Stated another way, #(A∩ [0, a)2)
= φ(a). Hence,

(10) ̺∗(d1, d2) = #U ′(d)φ(d1d2).

Return to our summand:

(11)

∣

∣

∣

∣

#(Λ∗
d ∩R ∩ Ψ) − ̺∗(d1, d2)

(d1d2D)2
vol(R)

∣

∣

∣

∣

=

∣

∣

∣

∣

(

∑

A∈U ′(d)

#(A∩R ∩ Ψ)
)

− ̺∗(d1, d2)

(d1d2D)2
vol(R)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

A∈U ′(d)

{

#(A∩R ∩ Ψ) − ̺∗(d1, d2)

#U ′(d)(d1d2D)2
vol(R)

}∣

∣

∣

∣

≤
∑

A∈U ′(d)

∣

∣

∣

∣

#(A∩R ∩ Ψ) − φ(d1d2)

(d1d2D)2
vol(R)

∣

∣

∣

∣

,

where we have used equation (10) in the last line.

2.3.2. Estimating #(A ∩ R ∩ Ψ). The next task is to calculate the
quantity #(A∩R∩Ψ). Our line of attack will be to introduce lattices G(A)
generated by the sets A. Applying techniques from the geometry of numbers,
we will express the error in terms of a “minimal basis” of G(A).

Choose A ∈ U(a) and define G(A) by

G(A) := {x ∈ Z
2 : (∃λ ∈ Z)(∃y ∈ A)(x ≡ λy (moda))}.
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Fix y0 ∈ A. Then we may rewrite G(A) as

G(A) = {x ∈ Z
2 : (∃λ ∈ Z)(x ≡ λy0 (moda))}

and it becomes clear that G(A) is the sublattice of Z
2 generated by the

vectors of A. We can see that A = {x ∈ G(A) : (x; a) = 1}, so

#(A∩R ∩ Ψ) =
∑

x∈G(A)∩R∩Ψ

∑

b|(x;a)

µ(b)

=
∑

b|a
µ(b) · #{x ∈ R/b : bx ∈ G(A) ∩ Ψ}.

The appearance of bx ∈ G(A) in our equation for #(A ∩ R ∩ Ψ) suggests
that we should work modulo a/b, and motivates the following definition:
given c | a, and given A ∈ U(a), we define A (mod c) to be the unique
element of U(c) such that A ⊂ A (mod c). If b | a, then bx ∈ G(A) iff x ∈
G(A (moda/b)).

Moreover, bx ∈ Ψ iff x ≡ b−1z (modD). The inverse exists as b | a =
d1d2, and we have assumed that each di is coprime to D. Define Ψ ′ :=
{x ∈ Z

2 : x ≡ b−1z (modD)}. Then

(12) #(A∩R ∩ Ψ) =
∑

b|a
µ(b) · #(R/b ∩G(A (moda/b)) ∩ Ψ ′).

Define R1 := R/b, a1 := a/b, A1 = A (moda1). Then, bearing in mind
that det(G(A1)) = a1, an application of Lemma 2.1 in [3] allows us to de-
duce:

Lemma 2.7. There exist vectors v(1),v(2) ∈ G(A1) with the following

properties:

1. the pair (v(1),v(2)) is a basis of G(A1),
2. |v(1)| = min{|v| : v ∈ G(A1) \ {0}}, and

3. a1 ≤ |v(1)| |v(2)| ≤ 2a1/
√

3.

Let θ : R
2 → R

2 be the automorphism which maps the canonical basis
of R

2 to (v(1),v(2)). Then θ has matrix
(

v
(1)
1 v

(2)
1

v
(1)
2 v

(2)
2

)

,

and |det θ| = [Z2 : G(A1)] = a1.

We shall now derive a simple condition for x ∈ G(A1)∩Ψ ′. First note that
although b−1z may not be a member of G(A1), we may find a representative
z′ of b−1z modulo D which is in G(A1), as D is coprime to a1. Write x = θa,
z′ = θb. As (D; a1) = 1, we may invert θ modulo D and deduce that x ≡ z′
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(modD) iff a ≡ b (modD). Hence x ∈ R1∩G(A1)∩Ψ ′ iff a ∈ θ−1(R1)∩Z
2

and a ≡ b (modD).

Write a = b +Dc. The above condition is equivalent to

c ∈ Z
2 ∩
{

1

D
(θ−1(R1) − b)

}

.

We are now in a position to estimate the number of lattice points on
1
D (θ−1(R1) − b). The error term in approximating the number of lattice
points enclosed by a curve C by its area vol(C) is given by O(∂(C) + 1).
The reader is referred to Lemma 2.1.1 in [8] for further details. An applica-
tion of this result gives

(13) #(R1 ∩G(A1) ∩ Ψ ′) =
1

D2
vol(θ−1(R1)) +O(∂(θ−1(R1)) + 1)

and

(14) vol(θ−1(R1)) =
1

a1
vol(R1) =

b

a

1

b2
vol(R) =

1

ab
vol(R).

Note that

θ−1 =
1

a1

(

v
(2)
2 −v(2)

1

−v(1)
2 v

(1)
1

)

,

hence

|θ−1| := max
u∈R2\0

|θ−1(u)|
|u| ≪ 1

a1
max(|v(1)|, |v(2)|) ≪ |v(2)|

a1
≪ 1

|v(1)| ,

by Lemma 2.7.

Also, ∂(θ−1(R1)) ≪ |θ−1|∂(R1) and ∂(R1) = ∂(R)/b, so

∂(θ−1(R1)) ≪
∂(R)

b|v(1)| ≪
M

b|v(1)| .

Substituting this and equation (14) into (13) gives

(15) #(R1 ∩G(A1) ∩ Ψ ′) =
vol(R)

abD2
+O

(

M

b|v(1)| + 1

)

.

In what follows, we shall write v(A1) for v(1) in order to specify the
equivalence class.

We know v(A1) ≡ λy (moda/b) for some λ ∈ Z and some y ∈ A. Then
bv(A1) ≡ (λb)y (moda), so bv(A1) ∈ G(A), hence b|v(A1)| ≥ |v(A)|. Insert
this into equation (15):

#(R/b ∩G(A (moda/b)) ∩ Ψ ′) =
vol(R)

abD2
+O

(

M

|v(A)| + 1

)

.
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Then substituting this into equation (12) gives

#(A∩R ∩ Ψ) =
∑

b|a
µ(b)

(

vol(R)

abD2
+O

(

M

|v(A)| + 1

))

(16)

=
φ(a)

a2D2
vol(R) +O

(

d(a)

(

M

|v(A)| + 1

))

.

Finally, substituting this into equation (11), we have

(17) T ∗(M,Q)

≤
∑

di≤Qi
(di;D)=1

∑

A∈U ′(d)

sup
R: ∂R≤M

∣

∣

∣

∣

#(A∩R ∩ Ψ) − vol(R)φ(d1d2)

(d1d2D)2

∣

∣

∣

∣

≪
∑

di≤Qi
(di;D)=1

∑

A∈U ′(d)

d(d1d2)

(

M

|v(A)| + 1

)

≪M
∑

di≤Qi

d(d1d2)
∑

A∈U ′(d)

1

|v(A)| +
∑

di≤Qi

d(d1d2)#U ′(d)

= MT ∗
1 (Q) + T ∗

2 (Q), say.

2.3.3. Evaluating T ∗
1 (Q). It is our aim in this section to prove:

Lemma 2.8. The quantity

T ∗
1 (Q) :=

∑

di≤Qi

d(d1d2)
∑

A∈U ′(d)

1

|v(A)|
satisfies the upper bound :

T ∗
1 (Q) ≪

√

Q1Q2 (log 2Q1Q2)
2255

.

For A ∈ U ′(d), we have |v(A)| ≪
√
d1d2, by Lemma 2.7, and there exist

y ∈ A, λ ∈ Z such that v(A) ≡ λy (modd1d2). Therefore, for i = 1, 2,
qi(v(A)) ≡ λ2qi(y) ≡ 0 (moddi), so di | qi(v(A)). Consequently,

T ∗
1 (Q) ≤

∑

0<|v|≪
√
Q1Q2

1

|v|
∑

di≤Qi
di|qi(v)

d(d1d2)#U ′(d).

As one would expect, we shall proceed by tackling the innermost quan-
tity first. To begin with, we shall replace d(d1d2)#U ′(d) with a simpler
multiplicative function. The first step is the proof that #U ′(d) ≪ 2ν(d1d2).
Write d1 =

∏

pe and d2 =
∏

pf , and apply equation (10):

#U ′(d) =
̺∗(d)

φ(d1d2)
=
∏

p

̺∗(pe, pf )
φ(pe+f )

,

by multiplicativity of ̺∗.
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For the rest of this section, define P := Res(q1, q2). By Lemma 2.4, if
(p;P ) = 1 and if min(e, f) > 0, then ̺∗(pe, pf ) = 0. Thus #U ′(d) = 0 unless
for all p satisfying (p;P ) = 1 we have min(e, f) = 0, in which case, we may
write

#U ′(d) ≤
∏

p: (p;P )=1

̺∗(pe, 1)

φ(pe)

∏

p: (p;P )=1

̺∗(1, pf )
φ(pf )

∏

p: p|P
C
pmax(e,f)

φ(pe+f )

≪
∏

p: (p;P )=1

̺∗(pe, 1)

φ(pe)

∏

p: (p;P )=1

̺∗(1, pf )
φ(pf )

.

Now define ̺∗1(b) := ̺∗(b, 1) and ̺∗2(b) := ̺∗(1, b).
By an application of Lemma 2.2, there exist integers P1 and P2, depend-

ing only on the forms q1 and q2, such that ̺∗i (p
α) ≤ 2φ(pα) if (p;Pi) = 1,

and ̺∗i (p
α) ≪ pα for all pα.

Hence,

#U ′(d) ≪
∏

p: (p;PP1)=1

̺∗1(p
e)

φ(pe)

∏

p: (p;PP2)=1

̺∗2(p
f )

φ(pf )

∏

p: p|P1

C
̺∗1(p

e)

φ(pe)

∏

p: p|P2

C
̺∗2(p

f )

φ(pf )

≤
∏

p: (p;PP1)=1

2
∏

p: (p;PP2)=1

2
∏

p: p|P1

C
∏

p: p|P2

C ≪2ν(d1d2),

as required, bearing in mind that each factor of 2 comes from a prime which
divides either d1 or d2, but not both.

Observing that 2ν(d1d2) ≤ d(d1d2), and using the submultiplicativity
property of d, we deduce that

d(d1d2)#U ′(d) ≪ d(d1)
2d(d2)

2,

whence

T ∗
1 (Q) ≪

∑

0<|v|≤
√
Q1Q2

1

|v|
∑

di|qi(v)

d(d1)
2d(d2)

2.

Defining the function h by h(n) :=
∑

a|n d(a)
2, we have

(18) T ∗
1 (Q) ≪

∑

0<|v|≤
√
Q1Q2

1

|v| h(q1(v))h(q2(v)).

2.3.4. The function h. Our approach to the evaluation of this sum will
be to decompose it into dyadic intervals. Unfortunately, the arguments of
the function h are q1(v) and q2(v), which are, in order of magnitude, the
square of our summation variable |v|. To facilitate the decomposition, we
shall employ Lemma 2.10 below, which guarantees the existence of a divisor
mi of qi(v) of the correct order of magnitude, such that we can replace
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h(qi(v)) with h(mi)
5. To verify the conditions of Lemma 2.10, we shall need

the following preliminary lemma:

Lemma 2.9. The function h is multiplicative. Moreover , h is submulti-

plicative in the sense that h(m1m2) ≤ h(m1)h(m2) for all m1,m2. Further-

more, h(p) ≪ 1 uniformly in p.

Multiplicativity is trivial. To prove submultiplicativity, it suffices to show
that h(pe+f ) ≤ h(pe)h(pf ). Now

h(pe) =
e+1
∑

i=1

i2 = (e+ 1)(e+ 2)(2e+ 3)/6,

giving

h(pe)h(pf ) − h(pe+f )

= ef(61 + 81f + 81e+ 26e2 + 18e2f + 81ef + 4e2f2 + 18ef2 + 26f2);

this is clearly nonnegative, demonstrating submultiplicativity. We also have
h(p) = 5 ≪ 1 uniformly for all p, completing the proof of Lemma 2.9.

This is sufficient to satisfy the conditions of the following lemma, which
is to be found in [3] as Lemma 2.2:

Lemma 2.10. Let h be some positive submultiplicative arithmetical func-

tion such that h(p) ≪ 1 uniformly in p. Let η ≥ 1. Then for every natu-

ral number n, there exists a positive integer m satisfying m |n, m ≤ n1/η,
and

h(n) ≪η h(m)1+⌊η⌋.

We apply Lemma 2.10 to equation (18), with η = 4, to obtain

T ∗
1 (Q) ≪

∑

j≥0
P=2j≪

√
Q1Q2

1

P

∑

P≤|v|≤2P

∑

mi|qi(v)

mi≪P 1/2

i=1,2

h(m1)
5h(m2)

5,

where we have split the range for |v| into dyadic intervals, and used the fact
that qi(v) ≪ |v|2 to deduce that mi ≤ |qi(v)|1/4 implies mi ≪ P 1/2. We
have

T ∗
1 (Q) ≪

∑

j≥0
P=2j≪

√
Q1Q2

1

P

∑

m1,m2≪P 1/2

h(m1)
5h(m2)

5
∑

|v|≤2P
qi(v)≡0 (modmi)

i=1,2

1.

The innermost sum is of order ̺(m1,m2){P 2/(m1m2)
2+P/(m1m2)}, where

the second term accounts for the error at the boundary. We have arranged
that m1m2 ≪ P , whence the second term is subsumed by the first, and
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hence the innermost sum is of order ̺(m1,m2)P
2/(m1m2)

2, so

T ∗
1 (Q) ≪

∑

j≥0
P=2j≪

√
Q1Q2

P
∑

m1,m2≪P 1/2

h(m1)
5h(m2)

5̺(m1,m2)

m2
1m

2
2

≪
√

Q1Q2

∑

m1,m2≪(Q1Q2)1/4

h(m1)
5h(m2)

5̺(m1,m2)

m2
1m

2
2

.

At this point, we marshal together the facts we have uncovered con-
cerning the function ̺. We know that ̺ is multiplicative and we have
the results of Lemma 2.5, including ̺(p, p) ≪ p2. Furthermore we have
̺(pe, pf ) ≪ (M −m+ 1)p2m+M , where m = min(e, f) and M = max(e, f),
and, by the one-form problem, ̺(pe, 1), ̺(1, pe) ≪ epe. Moreover, there ex-
ists a natural number P such that if (p;P ) = 1 then ̺(p, 1) ≤ 2p and
̺(1, p) ≤ 2p.

Note that for a doubly multiplicative function g, one has

∑

m1,m2≤Q
g(m1,m2) ≤

∏

p≤Q

∞
∑

e,f=0

g(pe, pf ).

Applying this to the above expression for T ∗
1 , we deduce

T ∗
1 (Q) ≪

√

Q1Q2

∏

p≪(Q1Q2)1/4

∞
∑

e,f=0

h(pe)5h(pf )5̺(pe, pf )

p2e+2f
.

Let g(pe, pf ) denote the summand. In order to be able to apply our upper
bound for ̺, we split the sum as follows:

∞
∑

f=0

∞
∑

e=0

g(pe, pf ) =
∞
∑

f=0

f
∑

e=0

g(pe, pf ) +
∞
∑

e=1

e−1
∑

f=0

g(pe, pf ) =: S1 + S2.

Let p be a good prime, in the sense that (p;P ) = 1. Then, bearing in
mind that ̺(p, p) ≪ p2, we have

S1 ≤ 1 +
2 · 55

p
+
C

p2
+ C

∞
∑

f=2

f
∑

e=0

f16e15

pf
.

Call the double sum S′. Then

p2S′ ≪
∞
∑

f=2

f32

pf−2
≤

∞
∑

f=2

f32

2f−2
,

and this is convergent by the ratio test, so S′ = O(1/p2), and hence S1 ≤
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1 + 2 · 55/p+ C ′/p2. Similarly, S2 ≤ 2 · 55/p+ C/p2. So

S1 + S2 ≤ 1 +
2255

p
+
C

p2
,

given that p is any good prime.

The analysis above shows that S1 + S2 < ∞ even for the finitely many
bad primes p such that p |P .

Thus

T ∗
1 (Q) ≪

√

Q1Q2

∏

p≪(Q1Q2)1/4

(

1 +
2255

p
+
C

p2

)

,

and an application of Mertens’ theorem leads to our upper bound

T ∗
1 (Q) ≪

√

Q1Q2 (log 2Q1Q2)
2255

.

To be precise, we have used the following:

Lemma 2.11. Let Q > 1 and C > 0 be real numbers. Let k be a natural

number and define

S′ =
∏

p≤Q

(

1 +
k

p
+
C

p2

)

.

Then

S′ ≪k,C (logQ)k.

Observe

S′ =
∏

p≤Q

(

1 − 1

p

)−k
∏

p≤Q

(

1 − 1

p

)k(

1 +
k

p
+
C

p2

)

.

Define a function f : [0, 1] → R by f(x) = (1− x)k(1 + kx+Cx2). Then
f(x) = (1−kx+· · ·±xk)(1+kx+Cx2), so there exist constants ci depending
on k such that

f(x) = 1 + c2x
2 + · · · + ck+2x

k+2 ≤ 1 + |c2|x2 + · · · + |ck+2|xk+2

≤ 1 + {|c2| + · · · + |ck+2|}x2 ≤ 1 + Lx2 ≤ (1 + x2)L,

where L depends only on k and C.

Recall Mertens’ theorem, which states

∏

p≤z

(

1 − 1

p

)

=
e−γ

log z
+O

(

1

(log z)2

)

.

This gives us

S′ ≤
∏

p≤Q

(

1 − 1

p

)−k
∏

p≤Q

(

1 +
1

p2

)L

≪ (logQ)k
∏

p≤Q

(

1 +
1

p2

)L

.
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Now
∏

p≤Q

(

1 +
1

p2

)

=
∑

p|n⇒ p≤Q

1

n2
≤

∞
∑

n=1

1

n2
=: C ′

so S′ ≪ (logQ)k(C ′)L ≪k,C (logQ)k, as required.

2.3.5. Evaluating T ∗
2 (Q). We shall prove

Lemma 2.12. The quantity T ∗
2 satisfies the upper bound

T ∗
2 (Q) ≪ Q1Q2 log(2Q1Q2)

6.

Recall

T ∗
2 (Q) :=

∑

di≤Qi
i=1,2

d(d1d2)#U ′(d).

In our analysis of the sum T ∗
1 (Q), we demonstrated that #U ′(d) ≪ 2ν(d1d2).

We see that 2ν(a) ≤ d(a) for any a and that the d function satisfies d(ab) ≤
d(a)d(b) for any a and b. Thus,

T ∗
2 (Q) ≤

(

∑

d1≤Q1

d(d1)
2
)(

∑

d2≤Q2

d(d2)
2
)

≪ Q1Q2(logQ1)
3(logQ2)

3

≪ Q1Q2(log 2Q1Q2)
6.

In the last line, we use the AM-GM inequality to deduce

(19) (logA1)
n(logA2)

n ≪ (logA1A2)
2n

This proves Lemma 2.12.

Combining this with Lemma 2.8 gives us our starred level of distribution
formula, Lemma 2.6.

2.4. Level of distribution—unstarred version. Recall our conven-
tion that the symbol ci represents di/(di; b

2). We apply Lemma 2.1 and
equation (7) to give the following expression for T (M,Q):

∑

di≤Qi
(di;D)=1

sup
R:

∂(R)≤M

∣

∣

∣

∣

∑

b|ψ(d1,d2)

{

#(Λ∗
c ∩R/b ∩ Ψb) −

̺∗(c)
(c1c2D)2

vol(R/b)
}∣

∣

∣

∣

≤
∑

ci≤Qi
(ci;D)=1

∑

b≤Q1Q2

(bi;D)=1

δ(Q, c, b) sup
R:

∂(R)≤M

∣

∣

∣

∣

#(Λ∗
c ∩R/b ∩ Ψb) −

̺∗(c)
(c1c2D)2

vol(R/b)
∣

∣

∣

∣

,

where δ(Q, c, b) = #{(d1, d2) : di ≤ Qi, ci = di/(di; b
2), b |ψ(d1, d2)}.

We shall derive an upper bound for δ. The approach used is to fix a
prime p and to consider quantities β, αi, and γi for i = 1, 2 such that pαi ‖ di,
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pγi ‖ ci, and pβ ‖ b. We take the quantities β and γi to be fixed: our task is to
count the number of possibilities for αi. For a fixed prime p, it may be verified
that there are at most 8β possibilities, whence δ(Q, c, b) ≤∏pβ‖b 8β =: g(b).

By induction on β, we find that 8β ≤
(

β+7
7

)

, thus employing the fact that

d8(b) =
∏

pβ‖b
(

β+7
7

)

, we have g(b) ≤ d8(b). Consequently,

∑

b≤B
δ(Q, c, b) ≤

∑

b≤B
g(b) ≤

∑

b≤B
d8(B) ≪ B(logB)7,

where the last step uses
∑

b≤B dk(b) ≪ B(logB)k−1, which follows from
(12.1.4) in [10].

Note that we are summing over ci ≤ Qi, b ≤ Q1Q2, but we may re-
strict the range of summation by observing a relationship which holds when
δ(Q, c, b) 6= 0. Suppose that δ(Q, c, b) 6= 0; then there exist d1, d2 such that
b |ψ(d1, d2) and ci = di/(di; b

2). It is easily verified that b |ψ(d1, d2) implies
b | d1d2, and hence b | (d1; b

2)(d2; b
2). This may be rewritten as c1c2b | d1d2,

from which it follows that c1c2b ≤ Q1Q2.

For the sake of simplicity, we shall replace the expression
∣

∣

∣

∣

#(Λ∗
c ∩R/b ∩ Ψb) −

̺∗(c)
(c1c2D)2

vol(R/b)
∣

∣

∣

∣

with L(c, b,R). Then our sum T (M,Q) is estimated by

T (M,Q) ≪
∑

c1,c2:
(ci;D)=1
ci≤Qi

∑

b:
(b;D)=1

c1c2b≤Q1Q2

δ(Q, c, b) sup
R:

∂(R)≤M

L(c, b,R)

≤
∑

ji:
Ci=2ji≤Qi

∑

Ci≤ci≤2Ci
(ci;D)=1

∑

b:
(b;D)=1

b≤Q1Q2
c1c2

d8(b) sup
R:

∂(R)≤M

L(c, b,R).

If we further split the range for b into dyadic intervals, then

T (M,Q) ≪
∑

ji:
Ci=2ji≤Qi

∑

Ci≤ci≤2Ci
(ci;D)=1

∑

k:
B=2k≤Q1Q2

c1c2

∑

b:
(b;D)=1
B≤b≤2B

d8(b) sup
∂(R)≤M

L(c, b,R).

Our aim is to use the estimate for
∑

b d8(b), but we need to handle sensitively
the factor of supL(c, b,R). For each choice of B, define b(B) by requiring
B ≤ b(B) ≤ 2B, (b(B);D) = 1 and requiring that for all b with B ≤ b ≤ 2B
and (b;D) = 1, one has

sup
∂(R)≤M

L(c, b,R) ≤ sup
∂(R)≤M

L(c, b(B),R).
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Let S denote the set of integers B such that there are no b in the range
B ≤ b ≤ 2B with (b;D) = 1. We have the upper bound

T (M,Q) ≪
∑

ji:
Ci=2ji≤Qi

∑

Ci≤ci≤2Ci
(ci;D)=1

∑

k:
B=2k≤Q1Q2

c1c2
B 6∈S

B(log 2B)7 sup
∂(R)≤M

L(c, b(B),R)

≤
∑

ji:
Ci=2ji≤Qi

∑

k:
B=2k≤Q1Q2

C1C2

B 6∈S

B(log 2B)7
∑

Ci≤ci≤2Ci
(ci;D)=1

sup
∂(R)≤M

L(c, b(B),R).

Writing R′ := R/b(B), we may now apply our starred level of distribution
formula (Lemma 2.6) to the inner sum, which is bounded from above by

∑

Ci≤ci≤2Ci
(ci;D)=1

sup
∂(R′)≤M/B

∣

∣

∣

∣

#(Λ∗
c ∩R′ ∩ Ψb(B)) −

̺∗(c)
(c1c2D)2

vol(R′)

∣

∣

∣

∣

≪ M

B

√

C1C2 (log 8C1C2)
2255

+ C1C2(log 8C1C2)
6,

so

T (M,Q) ≪M
∑

ji:
Ci=2ji≤Qi

√

C1C2 (log 8C1C2)
2255

∑

k≤log2

Q1Q2
C1C2

(log 2k+1)7

+
∑

ji:
Ci=2ji≤Qi

C1C2(log 8C1C2)
6

∑

k≤log2

Q1Q2
C1C2

2k(log 2k+1)7.

Estimating the sums over k by the appropriate integrals, we arrive at

T (M,Q) ≪M
∑

ji:
Ci=2ji≤Qi

√

C1C2 (log 8C1C2)
2255

(log 2Q1Q2)
8

+
∑

ji:
Ci=2ji≤Qi

C1C2(log 8C1C2)
6 Q1Q2

C1C2
(logQ1Q2)

7

≪M(log 2Q1Q2)
8

∑

ji≤log2Qi

2(j1+j2)/2(log 2j1+j2+3)2
255

+Q1Q2(log 2Q1Q2)
7

∑

ji≤log2Qi

(log 2j1+j2+3)6.

Once more we estimate the sums via integrals to get

T (M,Q) ≪M(log 2Q1Q2)
8
√

Q1Q2 (log 2Q1)
2255

(log 2Q2)
2255

+Q1Q2(log 2Q1Q2)
7(log 2Q1)

7(log 2Q2)
7.
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Finally, we bring the result into the desired form by applying the AM-GM
inequality as in equation (19). This proves the level of distribution formula.

3. PAIRS OF FORMS WITH ALMOST PRIME VALUES

In the next section, we set the scene by introducing the terminology of
sieves, before going on to the derivation of Theorem 1.1 in Section 3.2.

3.1. The terminology of sieves. Sieve methods aim at finding the
primes in a multiset (essentially a sequence) of natural numbers A. Typically,
one defines a sifting set P of primes, then one tries to discover the value of
the sifting function

S(A,P, z) := |{a : a ∈ A, if p ∈ P and p | a, then p ≥ z}|.
This is useful in giving bounds for the number of primes in A.

In our case, we are examining almost-primes, so we will want a lower
bound for |{P5 : P5 ∈ A}|, where our multiset A will be

A := {q1(x, y)q2(x, y) : (x, y) ∈ Z
2 ∩XR(0) ∩ Ψ},

and, taking D = 6Res(q1, q2)a1a2c1c2δ1δ2, as in the statement of Theo-
rem 1.1, we define Ψ := {x ∈ Z

2 : x ≡ z (modD)}, where z is chosen such
that (q1(z);D) = (q2(z);D) = 1. For the sifting set P, we shall take all
primes which do not divide D.

In the evaluation of the sifting function, it is necessary to consider a num-
ber of auxiliary quantities, including Ad := {a : a ∈ A, a ≡ 0 (modd)}. We
will need to use an approximation Y for the number of elements in the set A.
In the case under consideration, it is natural to take Y = X2 vol(R(0))/D2.

We shall choose the function ω(p) such that

Y
ω(p)

p
=

{ |Ap| approximately for p ∈ P,

0 for p ∈ P,

where P is the complement of P in the set of all primes. We extend the
definition of ω by multiplicativity to all squarefree numbers.

The quantity Rd is, in some sense, the error in approximating |Ad| by
Y ω(d)/d, that is, we define

Rd := |Ad| −
ω(d)

d
Y if µ(d) 6= 0.

3.2. Proof of the main result. Our main tool will be the following
weighted sieve of Diamond and Halberstam [5]:

Theorem 3.1. With the notation of Section 3.1, suppose there exist real

constants κ > 1, A1, A2 ≥ 2, and A3 ≥ 1 such that

(A) 0 ≤ ω(p) < p,
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(B)
∏

z1≤p<z

(

1 − ω(p)

p

)−1

≤
(

log z

log z1

)κ(

1 +
A1

log z1

)

, 2 ≤ z1 < z,

(C)
∑

d<Y α/(logY )A3

(d;P)=1

µ2(d)4ν(d)|Rd| ≤ A2
Y

logκ+1 Y
,

for some α with 0 < α ≤ 1; that

(D) (a; P) = 1 for all a ∈ A;

and that

(E) |a| ≤ Y αµ for some µ, and for all a ∈ A.

Then there exists a real constant βκ > 2 such that for any real numbers u
and v satisfying

α−1 < u < v, βκ < αv,

we have

|{Pr : Pr ∈ A}| ≫ Y
∏

p<Y 1/v

(

1 − ω(p)

p

)

whenever

(20) r > αµu− 1 +
κ

fκ(αv)

v/u\
1

Fκ(αv − s)

(

1 − u

v

)

ds

s
,

where fk and Fk are solutions to a system of delay differential equations

specified in [5]. Let I(κ, α, µ) denote the minimum value of the lower bound

on the right of (20) as u and v vary , subject to the above constraints. As

tabulated in [5], I(2, 1, 2) < 5.

An examination of Diamond and Halberstam’s paper shows that I is a
continuous function of α and µ, so for our purposes, it will be sufficient to
demonstrate that Theorem 3.1 applies for κ = 2, and for any α < 1, and
µ > 2.

3.2.1. Condition (A). We shall now verify the conditions required for
the application of Theorem 3.1, critically employing the level of distribu-
tion formula in the estimation of the error-sum (C). To begin, we need to
formulate an appropriate definition for the quantity ω(p).

Recall that for p ∈ P, we would like Y ω(p)/p to be roughly |Ap|, so we
need an estimate for |Ap|. Writing Ω = XR(0) ∩ Ψ , we have

|Ap| = #{(a, b) ∈ Ω : p | q1(a, b)q2(a, b)}
= #{(a, b) ∈ Ω : p | q1(a, b)} + #{(a, b) ∈ Ω : p | q2(a, b)}

− #{(a, b) ∈ Ω : p | q1(a, b), p | q2(a, b)}
= #(Λ(p,1) ∩Ω) + #(Λ(1,p) ∩Ω) − #(Λ(p,p) ∩Ω).
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Now, we have the approximation

#(Λd ∩R ∩ Ψ) ≈ ̺(d1, d2)

(d1d2D)2
vol(R),

whence

|Ap| ≈
X2 vol(R(0))

p2D2
{̺(p, 1) + ̺(1, p)} − X2 vol(R(0))

p4D2
̺(p, p).

This leads us to define

ω(p) =

{

p−1(̺(p, 1) + ̺(1, p)) − p−3̺(p, p), p ∈ P,

0, p ∈ P.

With this definition, we may quickly verify condition (A). First, we must
check that 0 ≤ ω(p). We may assume that p ∈ P, and by equation (9), we
have ̺(p, p) = ̺∗(p, p) + p2. As (p;D) = 1, Lemma 2.4 provides us with
̺∗(p, p) = 0, so

ω(p) = (̺(p, 1) + ̺(1, p) − 1)p−1,

but, from the definition, ̺(p, 1) ≥ 1, so ω(p) ≥ 0.

On the other hand, by Lemma 2.3, we have

̺(p, 1) = 1 + (p− 1)

(

1 +

(

δ1
p

))

, ̺(1, p) = 1 + (p− 1)

(

1 +

(

δ2
p

))

,

so, writing χi(p) :=
(

δi
p

)

,

ω(p) = 2 + χ1(p) + χ2(p) − (1 + χ1(p) + χ2(p))/p,

whence ω(p) ≤ 4 < p, as we have assumed p ≥ 5. Incidentally, this inequality
explains the factor of 6 in our choice of D.

3.2.2. Condition (B). This condition expresses the κ-dimensionality
of the sieve problem. One should think of the quantity ω(p)/p as being the
probability that an element of A is divisible by p, and that κ is the “average”
value of ω(p), in some sense. In many sieve problems, one finds that κ = 1,
a linear sieve. However, in our problem, we will demonstrate that κ = 2, as
one would expect from the above definition of ω(p).

We must prove

∏

z1≤p<z

(

1 − ω(p)

p

)−1

≤
(

log z

log z1

)κ(

1 +
A1

log z1

)

, 2 ≤ z1 < z.

Without loss of generality, we may assume that z1 ≥ 5, as ω(p) = 0 if p = 2
or 3. So upon taking logs, we must demonstrate

∑

z1≤p<z

∞
∑

i=1

ω(p)i

ipi
≤ κ log log z − κ log log z1 + log(1 +A1/log z1)
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for z1 ≥ 5. Now for any B1 > 0 there exists a constant A1 such that
B1x ≤ log(1+A1x) whenever 0 ≤ x ≤ 1, so we may replace log(1+A1/log z1)
in the above equation by B1/log z1.

We expect the sum
∑

z1≤p<z ω(p)/p to contribute the main term, and
begin by considering the error term, bearing in mind that ω(p) ≤ 4 for all
primes p. We have

∞
∑

i=2

∑

z1≤p<z

ω(p)i

ipi
≤

∞
∑

i=2

∑

n≥z1

4i

ini
≤

∞
∑

i=2

4i

i

( ∞\
x=z1

1

xi
dx+

1

z1

)

≪ 1/z1 ≪ 1/log z1,

as required.
The main term is

∑

z1≤p<z ω(p)/p, which expands to

∑

z1≤p<z

2

p
+

∑

z1≤p<z

χ1(p)

p
+

∑

z1≤p<z

χ2(p)

p
−

∑

z1≤p<z

1 + χ1(p) + χ2(p)

p2

= 2 log log z − 2 log log z1 +
∑

z1≤p<z

χ1(p)

p
+

∑

z1≤p<z

χ2(p)

p
+O(1/z1).

In estimating the sums involving characters, we use a result of Mertens’,
to be found in Chapter 7 of [4], that for any nonprincipal character χ, one
has

∑

p p
−1χ(p) log p = O(1). So

∑

z1≤p≤z

χ(p)

p
=

∑

z1≤p≤z

χ(p) log p

p

1

log p
≤

∑

z1≤p≤z

χ(p) log p

p

1

log z1
≪ 1

log z1
.

This completes our verification of condition (B). We see that κ, the dimen-
sion of the sieve, has the value κ = 2.

3.2.3. Condition (C). Condition (C) is concerned with the quantity

|Rd| :=

∣

∣

∣

∣

|Ad| −
ω(d)

d
Y

∣

∣

∣

∣

for squarefree d. Essentially, we shall sum |Rd| as d varies in some range. In
this problem, the range of summation is referred to as the level of distribu-
tion, and it is our aim to ensure that the level of distribution is as large as
possible, whilst requiring that the sum be bounded above by Y/(log Y )3.

We would like to bring our work to bear on the level of distribution
formula, and thus to relate |Ad| to quantities of the form #(Λc∩XR(0)∩Ψ).
Our goal is fulfilled by the following formula:

Lemma 3.1.

|Ad| =
∑

c1,c2|d
d|c1c2

µ

(

c1c2
d

)

#(Λc ∩XR(0) ∩ Ψ).
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For the duration of this proof, let us write Ω for Z
2 ∩XR(0) ∩ Ψ ; then

|Ad| =
∑

d1d2=d

#{x ∈ Ω : (q1(x); d) = d1 and d2 | q2(x)}

=
∑

d1d2=d

∑

x∈Ω
di|qi(x)

(q1(x)/d1;d2)=1

1 =
∑

d1d2=d

∑

x∈Ω
di|qi(x)

∑

e|q1(x)/d1
e|d2

µ(e)

=
∑

d1d2=d

∑

e|d2
µ(e)

∑

x∈Ω
d1e|q1(x)
d2|q2(x)

1 =
∑

e,d1:
ed1|d

µ(e)
∑

x∈Ω
ed1|q1(x)
d/d1|q2(x)

1.

Write c1 = ed1 and c2 = d/d1. Then

|Ad| =
∑

d|c1c2
c1,c2|d

µ

(

c1c2
d

)

∑

x∈Ω
c1|q1(x)
c2|q2(x)

1,

and hence the result.

Naturally, it would be advantageous to express ω(d)/d in a similar form.
Indeed, we may write

ω(d)

d
=
∏

p|d

ω(p)

p
=
∑

c1,c2|d
d|c1c2

µ

(

c1c2
d

)

̺(c1, c2)

(c1c2)2
,

whence

|Rd| =

∣

∣

∣

∣

∑

c1,c2|d
d|c1c2

µ

(

c1c2
d

){

#(Λc ∩XR(0) ∩ Ψ) − Y
̺(c1, c2)

(c1c2)2

}
∣

∣

∣

∣

≤
∑

c1,c2|d
d|c1c2

∣

∣

∣

∣

#(Λc ∩XR(0) ∩ Ψ) − Y
̺(c1, c2)

(c1c2)2

∣

∣

∣

∣

.

Our ultimate aim is to derive a level of distribution of the form Y α, for
any positive α < 1.

We consider the sum

E :=
∑

d<Y α

(d;P)=1

µ2(d)4ν(d)
∑

c1,c2|d
d|c1c2

∣

∣

∣

∣

#(Λc ∩XR(0) ∩ Ψ) − Y
̺(c1, c2)

(c1c2)2

∣

∣

∣

∣

,

and we desire an upper bound for E. Let us introduce another variable, k,
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which specifies the highest common factor of c1 and c2. Define

U := {d ∈ Z : (d; P) = 1, µ2(d) = 1},
Tk := {(c1, c2) ∈ U2 : (c1; c2) = k}.

This leads to the expression

E =
∑

d<Y α

d∈U

µ2(d)4ν(d)
∑

k<Y α

k∈U

∑

(c1,c2)∈Tk

c1,c2|d
d|c1c2

c1c2≤kY α

| . . . |,

where | . . . | := |#(Λc∩XR(0)∩Ψ)−Y ̺(c1, c2)/(c1c2)2|. Note that [c1, c2] =
c1c2/k, so the condition c1, c2 | d implies that c1c2/k | d, and hence that
c1c2 ≤ dk. This is the origin of the “extra” condition c1c2 ≤ kY α in the
inner sum.

We now swap the order of summation:

E ≤
∑

k<Y α

k∈U

∑

(c1,c2)∈Tk
c1c2≤kY α

| . . . |
∑

d|c1c2
µ2(d)4ν(d).

Consider the inner sum. We have
∑

d|m µ
2(d)4ν(d) = 5ν(m) ≪ε m

ε for any
positive ε. Applied to our problem, the inner sum is bounded from above
by Y ε, leading to

E ≪ε Y
ε
∑

k<Y α

k∈U

∑

(c1,c2)∈Tk
c1c2≤kY α

| . . . |.

We will make use of the divisibility properties of c1 and c2 to exam-
ine the inner sum, which will be denoted by E(k). Write ci = kgi.
Then (g1; g2) = 1. We claim that the map x → x/k is a bijection from

Λc ∩ XR(0) ∩ Ψ to Λg ∩ k−1XR(0) ∩ Ψk. Clearly it is sufficient to prove
that the given map is a bijection from Λc to Λg. If x ∈ Λc then kgi | qi(x)
for i = 1, 2. Hence qi(x) ≡ 0 (modk) for i = 1, 2; but k is squarefree
and coprime to the resultant of q1 and q2, so, by an application of the
Chinese Remainder Theorem, we must have x ≡ 0 (modk). Write x =
ky for some y ∈ Z

2. Another direct application of the fact that x ∈
Λc gives gi | k2qi(y) for i = 1, 2. Now, as ci is squarefree for i = 1, 2,
we have (k; gi) = 1 for i = 1, 2, so we may deduce from gi | k2qi(y)
that gi | qi(y) for i = 1, 2, and hence that y ∈ Λc. It is trivial to
demonstrate that if y ∈ Λg, then ky ∈ Λc, completing the proof of bi-
jectivity.

To deal with the ̺ term, note that

̺(c1, c2)

(c1c2)2
=
̺(kg1, kg2)

(k2g1g2)2
=
̺(k, k)

k4

̺(g1, g2)

(g1g2)2
,
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where we use multiplicativity of ̺ and the coprimality of k and g1g2 in the
last line. Recall that the only solution of qi(x) ≡ 0 (modk) is the trivial
solution x ≡ 0 (modk). This allows us to deduce that the quantity ̺(k, k)
is equal to k2. In summary, we have

̺(c1, c2)

(c1c2)2
=
̺(g1, g2)

(kg1g2)2
.

Employing these relations, we have the following upper bound for the
inner sum:

E(k) ≤
∑

(g1,g2)∈T1:
kg1g2<Y α

∣

∣

∣

∣

#(Λg ∩ k−1XR(0) ∩ Ψk) − Y
̺(g1, g2)

(kg1g2)2

∣

∣

∣

∣

.

In order to be able to apply the level of distribution formula, we split
the summation into dyadic intervals. Given g1 and g2 such that kg1g2 < Y α,
there exist unique integers n and m such that 2n−1 ≤ g1 < 2n and 2m−1 ≤
g2 < 2m. Hence k2n−12m−1 ≤ kg1g2 < Y α. We arrive at the estimate

E(k) ≤
∑

n,m:
k2n+m<4Y α

∑

(g1,g2)∈T1:
g1<2n

g2<2m

∣

∣

∣

∣

#(Λg ∩ k−1XR(0) ∩ Ψk) − Y
̺(g1, g2)

(kg1g2)2

∣

∣

∣

∣

.

The inner sum is amenable to the level of distribution formula, and we see
that E(k) is bounded above by a quantity of order

∑

n,m:
k2n+m<4Y α

2n+m(log 2n+m+1)ν1 +
Y 1/2

k
(2n+m)1/2(log 2n+m+1)ν2 .

To calculate this, we introduce the quantity Q := log2(Y
α/k). Then

E(k) ≪
∑

0≤n<Q

∑

0≤m<Q−n
2n+m(n+m+ 1)ν1 +

Y 1/2

k
(2n+m)1/2(n+m+ 1)ν2

≪
∑

0≤n<Q
2n(n+ 1)ν1

∑

0≤m<Q−n
2m(m+ 1)ν1

+
Y 1/2

k

∑

0≤n<Q
2n/2(n+ 1)ν2

∑

0≤m<Q−n
2m/2(m+ 1)ν2 .

Now if β > 0, θ ≥ 1, and N ≥ 1, then
∑

0≤t<N
2tβ(t+ 1)θ ≪β N

θ2Nβ .
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Applying this result to our estimate for E(k), we arrive at

E(k) ≪ 2Q
∑

0≤n<Q
(n+ 1)ν1(Q− n)ν1 +

(2QY )1/2

k

∑

0≤n<Q
(n+ 1)ν2(Q− n)ν2

≪ 2QQ2ν1+1 +
(2QY )1/2

k
Q2ν2+1.

Recalling the definition of Q, we have the upper bound

E(k) ≪ Y α

k
(log Y )ν

′

+
Y (α+1)/2

k3/2
(log Y )ν

′

for some absolute constant ν ′.
Finally, we sum E(k) over k:

E ≪ε Y
εY α(logY )ν

′+1 + Y εY (α+1)/2(log Y )ν
′ ≪ε Y

max(α+ε,α/2+1/2+ε).

If we choose ε = min((1 − α)/5, α − 1/2), then E ≪α Y/(logY )3 and con-
dition (C) is satisfied for any α < 1.

3.2.4. Conditions (D) and (E). For a ∈ A, one has a = q1(x)q2(x) with
x ∈ Ψ . The set Ψ was chosen so that (q1(x);D) = (q2(x);D) = 1 for all
x ∈ Ψ , so (a;D) = 1, whence (a; P) = 1, satisfying condition (D).

In the consideration of condition (E), we observe that for all a ∈ A, one
has |a| ≪ X4 ≪ Y 2. That is, there exists a constant C (depending only on
the choice of forms q1 and q2) such that |a| ≤ CY 2 for all a ∈ A. Define θ
by C = Y θ. In order to satisfy condition (E), we need |a| ≤ Y µα, and it is
sufficient to chose α < 1 and µ such that µ ≥ (2 + θ)/α.

A more careful analysis is required if we wish to make use of Diamond
and Halberstam’s explicit result that I(2, 1, 2) > 5. By continuity of I, there
exists η > 0 such that I(2, α, µ) > 5, provided that |α−1|, |µ−2| < η. Set µ =
(2+θ)/α. For α < 1, the above condition translates into α > (2+θ)/(2+η)
and α > 1 − η. We can choose such a value of α provided that θ < η. Now
θ = logC/log Y , so the condition will be satisfied for all sufficiently large Y .

3.2.5. Application of Theorem 3.1. Having verified the conditions of
Theorem 3.1, we find that for sufficiently large X, there exists a constant
v > 2 such that

|{P5 : P5 ∈ A}| ≫ X2
∏

p<X2/v

(

1 − ω(p)

p

)

,

and this is sufficient for the proof of Theorem 1.1.
Before we conclude, let us consider the condition in Theorem 1.1 that

there exists z such that (qi(z);D) = 1 for i = 1, 2. The condition is not
always satisfied, as the following pair of forms demonstrate:

q1(x, y) = 3x2 + 2xy + y2, q2(x, y) = 2x2 − 4xy + 3y2.
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Here, at least one of q1(x, y) and q2(x, y) is divisible by 3 for every choice of
x and y, and 3 divides D.

On the other hand, we expect that the condition will be satisfied for
most pairs of forms and we exhibit the following infinite class of forms for
which the condition holds:

q1(x, y) = x2 + 2b1xy + c1y
2, q2(x, y) = x2 + 2b2xy + c2y

2.

Take z = (1, 0); then qi(z) = 1, satisfying the condition as long as the
resultant Res(q1, q2) is nonzero.

3.3. Conclusion. Our investigations into pairs of binary quadratic
forms depended crucially on deriving an appropriate level of distribution
formula and then applying the weighted sieve of Diamond and Halberstam.
This technique is not limited to pairs of forms and could be extended to
the consideration of arbitrarily many binary quadratic forms. The level of
distribution formula would give rise to parameters κ, α, and µ, and the
main computational problem would be the calculation of the number r in
Theorem 3.1.
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