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On some equalities for the Weierstrass modular
units of level p

by

HemmMA Havasui (Kumamoto)

1. Terminology and statement of results. Let C,R,Q and Z be
respectively the fields of complex, real and rational numbers and the ring of
rational integers. For each algebraic number field F', we denote the ring of
integers in F' by op. For two numbers (or ideals) A and B in some algebraic
number field, let the relation A ~ B mean that Aop = Bop as an ideal in
a sufficiently large algebraic number field F'. By a C-lattice we mean a free
Z-module in C of rank 2 which spans C over R. In any C-lattice a basis
{wi,ws} can be chosen so that Im(w;/wy) > 0. Hereafter we denote the
C-lattice Zwi + Zws simply by [w1,wa].

Let 2 be a C-lattice. The Weierstrass p-function po(z) attached to 2
is defined by

1 1 1
o) =3+ ¥ [=ap )
we\{0}

As usual let g2(£2), g3(£2) and A(f2) be the lattice functions respectively
defined by

1 1
92(2)=60 ) — 93(02) =140 > 5
we\{0} we2\{0}

and

A(02) = g5(92) - 27g3(2).

Let 7 be in the complex upper half plane §), and let 2, = [r,1]. We
write g2(7), g3(7) and A(7) respectively for g2(£2;), g3(£2;) and A(£2;). Let
I' = SLy(Z). For a prime number p, let I'(p) and IH(p) be the subgroups
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of I'" given by

P) I'(p)] =p(p—1) (cf. [1], [7]). More precisely the
x (Z/pZ) given by

(Z Z) — (a,b) (modp)

induces an injective map from the factor group I'(p)\Io(p) onto (Z/pZ)*
(Z/pZ).
We define a function A, on § by

(1.1) M) = <%> i} MT<T;:> |
P <119> e <T p )

It is called a Weierstrass modular unit (cf. Kubert-Lang [8]). Especially
Ao is well known as a function which appears in the Legendre model of
elliptic curves (cf. [4], [5]). By the properties of the p-function, we see that
Ap is a modular function for I'(p) which is holomorphic and non-zero on $).
Hereafter, when the subscript 2, is clear from the context, we often write
©(2) in place of pg_(z), that is,

oG]
() -+(57)
For o = (“)) in Iy(p), we have

c_l B ar +b+d
& P & P . ar +b

Aplo () = p<ar+b> _p(aT—i-b—i-d) with - o(r) = T
P P

As is well known, [I}
map [y(p) — (Z/pZ)*

\_/o
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We consider the function on $) defined by

02 o= JL M)
e
e o L) p(errbrd
it b

p p

In each factor of the expression (1.2), d is determined modulo p so that
ad =1 (mod p). It is easy to see that A,(7) is a modular function for Ij(p)
which is holomorphic and non-zero on £.

For example, for p = 2,

o(z)-o(5) o))
Ao(r) = 2 2 . 2 2
T T+1 T+1 T
o(3)-o(57) o(57)-+(3)
= Xo(7)(1 — Aa(7)).
Cougnard gave the following equality:

(1.3) As(7) - (212 Aﬁ:) —_—t

([4, Theorem 7]). Also if p is an odd prime number, an equality analogous
to (1.3) should be expected. Our first aim is to prove the following

THEOREM 1. For any odd prime number p,

20\ 12 A(p7) (p+1)/2_ 6
g0 (" 5) -

In particular, if p =3 (mod4), then

‘ IQM (p+1)/4 o
Ap(T) (p A(T)) =—-p.

Section 2 is devoted to proving Theorem 1. In Section 3 we consider a
few applications of Theorem 1. First we compute the equation relating the
function A, and the modular invariant j (see Proposition 2). Next we apply
Theorem 1 to the complex multiplication case. In the expressions (1.1) and
(1.2), we can replace p(*) = pq_(*) by the Weber function

—27.35 gao(7) - g3(7)

h(*) := hg, (%) :== A7) P, ().
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Namely we may write

() ()
;) h(;?) -
oI h> ()

1:[ (aT b> h<a7‘—|—b—|—d>'
p p

Let k = Q(v/—d) with a square free positive integer d. For simplicity we
assume that d # 1,3. Let 7 (€ $) be in k and assume that 2. = [r,1] is
an og-ideal. For (a,b) € Z x Z such that (a,b) #Z (0,0) (mod p), (aT +b)/p
represents a non-zero p-division point of C/[r, 1], and hence by the classical
theory of complex multiplication (cf. Cassou-Nogues and Taylor [3], Deuring
[6]), h((aT + b)/p) is an integer belonging to the ray class field k(poy) over k
with conductor poy. Therefore \,(7) and A,(7) also belong to k(poy). Using
the equality in Theorem 1, we shall show some arithmetic properties of A,(7)
(see Theorem 4). In Section 4, we shall treat the arithmetic of A,(7). Therein
we first show how to compute the equation relating A,(7) and the modular
invariant j, and give a numerical example (Theorem 5). Next we consider
the algebraic properties of A\,(7) in the case of complex multiplication (see
Theorem 6).

2. Proof of Theorem 1. We put

5’20_1 andell.
1 0 0 1

As is well known, [I": I'h(p)] = p + 1, and the following is a complete set of
left coset representatives for I'h(p) in I

a=1 and a;=ST"' (i=1,...,p)

(cf. [1], [7]). Of course {a; '}o<i<p represents all right cosets of I'/Ty(p).
The set of cusps of Ij(p) is {0,000}, because ap(co) = oo and a;(c0) = 0
(1 <i < p). Now we know that both A,(r) and A(pr)/A(7) are modular
functions for I'y(p) which are non-zero and holomorphic on $. We compare
their g-expansions at the cusps of I'h(p). Using the well known formula

(2.1) (2mi) "2 A(T) = ¢ H (1—-4") with ¢ = e?™7
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(cf. [9]), we have
A(pT)
A(T)
where Ry(X) is a power series in X with coefficients in Z. On the other
hand, by making use of Proposition A-1 in the Appendix, we can describe
the g-expansion of each factor on the right hand side of (1.2). Moreover, by
applying Lemma A-2, we can deduce that
Ay(r) = (~1)0 /20 DI (14 g PRy (7)),

where R;(X) is a power series in X with coefficients in Z[(,] and ¢, = e2mi/p,
Hence the g-expansion of

)\ (PH1)/2
(22) 20 (5

at oo starts with the constant term pb and this also means that (2.2) is
holomorphic at co. It is also clear that if p = 3 (mod4) the leading term of

the g-expansion of
Ap(T) - pl2 A(pr) D/
8 A(T)

at oo is equal to —p>. Next we consider the g-expansion at the cusp 0 =

S(o0). Since
2 ApS @) A<_Tp> A(E)

ATy P A<__1> T A

= ¢" (14 qRo(q))

T

using (2.1), we see that the leading term of the g-expansion of p'2 A(p7) /A(T)
at 0 is equal to ¢~ @~1/P_ On the other hand, we have

() (e
L))

Applying Lemma A-2, we can find the leading term of the g-expansion of
each factor of (2.3). Then by a tedious check, we see that the g-expansion of

1 p271

A,(871(7)) at oo starts with g»~ 7, and hence the g-expansion of (2.2) at
0 = S(o0) starts with the constant term. This means that (2.2) is also
holomorphic at 0. Hence (2.2) is holomorphic on the compact Riemann
surface I'h(p)\$ U {cusps} and so must be a constant. Moreover since

_ A(pr) (p+1)/2
2 12 _ .6
7'1—1>Iznoo Ap(T) . <p A(T) > b

p—1p

(2.3) Ap(87H(T)) =

1b

e
Il
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we have the first equality of Theorem 1. It is also clear that if p = 3 (mod 4),

then
A(pr) (p+1)/4 )
12 _ .3

3. Some arithmetic properties of A,(7). Let {a;} be as in Section 2.
We define

Ai(1) == Ap(ai(1))  (i=0,1,...,p).
Then by Theorem 1, we have

20 .12 A(pr) (/2 6
(3.1) Ao (2 520)

and for 1 <i <p,

s (AR w2
(32) 20 (S557)

As is well known,

50:<€ ?) and ﬁi=<(1) Z;1> (1<i<p)

constitute a complete system of representatives of the left cosets I'\M,,
where M, is the set of integral matrices of determinant p. We define

= pl2 A(Bo(7)) _ 12 A(pr)

B :
=R P A
and
T+i—1
ABi(7)) p :
= "am am o ertsrer
Then the equalities (3.1) and (3.2) can be restated as follows:
(3.3) A2(7) - By(r)PtD/2 = S fori=0,1,...,p.

From the classical theory of complex multiplication (cf. [2], [3], [6]), we know
that the polynomial
P

oM (X) = [[(X - B¥(r))

i=0
lies in Z[j, X], where j is the modular invariant defined by
_ 1728g3(7)
J(T) - A(T) :
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Hence by using equation (1.3) and Theorem 1, it is possible to give the
equation relating the functions A, and j. For example, by numerical com-
putations we obtain the following

PROPOSITION 2. Under the notations as above,
(1) Ay satisfies
1.
A§+ﬁ(]—768)/1§+3/12—1:0,

or equivalently Ay — 1)°

. _28
(ii) As satisfies
1 1
A5+ 3 (2 — 15125 + 177876) A3 + =7 (87 + 2214) A3 + 2843+ 1 = 0.

REMARK. The second equality in (i) of Proposition 2 is nothing but the
equality given in Lang [9, p. 256].

For any odd prime p, we know that

AlT +1—1
ﬁB (1) = p'2 A(pr) H p _ 12
i=0 Z A7) i=1 A7)
Hence by (3.3), we have
P

(3.4) [[4i(n) =1
i=0
In particular, if p = 3 (mod4), we have

(3.5) [T4in) =1
=0

Hereafter in this section, let 7 (€ $)) be in an imaginary quadratic num-

ber field £ (# Q(v—1),Q(v/—3)), and let 2, = [1,1] be an oj-ideal. The
following is a fundamental result in the classical theory of complex multi-

plication (cf. [2], [3], [6], [10]).
PROPOSITION 3. Under the above notations, B;(t) (0 < i < p) are
algebraic integers and the following hold:
(i) If p splits in k with poy = pp, then there exists a unique (B, (resp.
Bi,) such that B, (1) (resp. Biy(T)) is a basis quotient of p2; (resp.
p82;). In this case By, (1) and B;,(T) are contained in Hy, the Hilbert
class field of k, and
Bi, (1) ~p'? and By,(t) ~ p*2.

Moreover, for any i # i1,i2, Bi(T) is a unit.
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(ii) If p is ramified in k with po, = p?, then there exists a unique (3,
such that (i, (1) is a basis quotient of p§2.. In this case By, (T) is
contained in Hy and

Bi (1) ~pS,  Bi(r) ~p%P  for any i # i;.
(iii) If p remains prime in k, then B;(t) ~ p'¥/®+V) for any i.
Combining Theorem 1 and Proposition 3, we have the following

THEOREM 4. Let the notations be as above. Then A,(T) is an algebraic
number which is a unit outside the prime divisors of p. In particular, A,(T)
is a unit if p remains prime in k.

4. Some arithmetic properties of \,(7). As is well known, [I" :
T'(p)] = p(p* — 1) (cf. [1], [7]). Let {7} be a complete set of left coset
representatives for £17(p) in I". We consider the polynomial G, given by

m—1
Gp(X) = [T (X = Xp(i(m)))
=0
= X" 4+ Crpt (N X™ 4o+ C1(1) X + Co(7),

where m = 3p(p® — 1). It is easy to verify that all coefficients C;(7) of
Gp(X) are modular functions for I" and holomorphic on $). Moreover by
applying Proposition A-1 and Lemma A-2 of the Appendix, we can verify
that the g-expansions of C;(7) all lie in Z[1/p, (p]((¢)), the ring of formal
Laurent series in ¢ with coefficients in Z[1/p, (], where ¢, = e2mi/P Then
from the g-expansion principle (cf. [3, Ch. 7]), we can deduce that C;(7) are
all contained in Z[1/p, (,][j], the ring of polynomials in j with coefficients
in Z[1/p, Gpl.

To get an explicit expression of C;(7) as a polynomial in j, for example,
we only have to interpolate the g-expansion of C;(7) by

1
= = (1 + 744q + 196884¢° + 21493760¢° + - - -),
q
1
72 = =5 (1 + 1488¢ + 947304¢° + 335950912¢° + - - ),
q

In particular, by (3.4) and (3.5), we always have
(4.1) C3(r) = +1.

The following theorem is due to a numerical computation.
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THEOREM 5. A3 satisfies the monic equation
A2 — 4G+ 2N F22(G+ DAY + % (2¢3 +1)(j — 6588)A3
— 3—13g3(j — 2133)\§ + ;—4 (C3—1)(j — 1242)\5 + 3% (j — 1044))§
o (G -1 - 12420 - 55 GG - 21390

1 .
+ 35 (2¢2 +1)(j — 6588)A3 +22(¢3 + 1)A3 —4(¢Z +2)X 3 +1=0.

Until the end of this section, let 7 (€ $) be again in an imaginary

quadratic number field & (# Q(v/—1),Q(v/—3)), and let £2; = [r,1] be an
ox-ideal. Then from the above considerations, we see that the value A, (7) is

a unit outside the prime divisors of p. We conjecture that \,(7) is a unit if
and only if p remains prime in k.

Here we consider the case where 3 remains prime in k. From Theorem 4,
A3(7) is a unit. Hence the equation in (ii) of Proposition 2 shows that

§2 — 15125 + 177876 = 0 (mod 3%) and 8j + 2214 = 0 (mod 3*).

This means that j = 3% + 3%0 with an integer @ in M}, the Hilbert class
field of k, such that 62 = 0 (mod 3). Hence the coefficients of the equation
in Theorem 5 are all in Z[(3, j]. Thus we have the following

THEOREM 6. Under the above notations, A3(T) is a unit if and only if
3 remains prime in k.

Appendix. In the proof of Theorem 1 and in the computation for the
numerical example (Theorem 5), we used the following expansion formula
for the Weierstrass p-function.

PROPOSITION A-1 (cf. [9, Ch. 4]). Let 2 = [1,1] with T in . Then for
z € C we have

Lronl =+ S it ey
- z) = — - - 0z
(2mi)2 ¥ 12 11— q7q.)? 1—qv

meZ n=1

where ¢ = €2™7 and q, = e>™%.

Let p be an odd prime number. We apply Proposition A-1 for z which rep-
resents a non-zero p-division point of C/[r, 1]. We may write z = (a7 4+ b)/p
where 0 < a,b < p—1 and (a,b) # (0,0). From Proposition A-1, it is easy

to deduce that
1 at + b 1 i 1/p
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where ¢'/P = ?™7/P and R(X ) is a power series in X whose coefficients
belong to Z[(,] with (, = e2™/P_Tn order to determine the leading term of
the g-expansion of A,(7) at oo, we used the following

LEMMA A-2 (cf. [3, Ch. 8]). Under the above notations,

RS () B
(27i) P D 12

has q-expansion at oo in Z[Cp)[[q*/P]] with leading term

nga/p if 0<a<p/2,
Cp_bq(p_a)/p if p/2<a<p.
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