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On some equalities for the Weierstrass modular

units of level p

by

Heima Hayashi (Kumamoto)

1. Terminology and statement of results. Let C, R, Q and Z be
respectively the fields of complex, real and rational numbers and the ring of
rational integers. For each algebraic number field F , we denote the ring of
integers in F by oF . For two numbers (or ideals) A and B in some algebraic
number field, let the relation A ∼ B mean that AoF = BoF as an ideal in
a sufficiently large algebraic number field F . By a C-lattice we mean a free
Z-module in C of rank 2 which spans C over R. In any C-lattice a basis
{ω1, ω2} can be chosen so that Im(ω1/ω2) > 0. Hereafter we denote the
C-lattice Zω1 + Zω2 simply by [ω1, ω2].

Let Ω be a C-lattice. The Weierstrass ℘-function ℘Ω(z) attached to Ω
is defined by

℘Ω(z) =
1

z2
+

∑

ω∈Ω\{0}

[

1

(z − ω)2
− 1

ω2

]

.

As usual let g2(Ω), g3(Ω) and ∆(Ω) be the lattice functions respectively
defined by

g2(Ω) = 60
∑

ω∈Ω\{0}

1

ω4
, g3(Ω) = 140

∑

ω∈Ω\{0}

1

ω6

and

∆(Ω) = g3
2(Ω) − 27g2

3(Ω).

Let τ be in the complex upper half plane H, and let Ωτ = [τ, 1]. We
write g2(τ), g3(τ) and ∆(τ) respectively for g2(Ωτ ), g3(Ωτ ) and ∆(Ωτ ). Let
Γ = SL2(Z). For a prime number p, let Γ (p) and Γ0(p) be the subgroups
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of Γ given by

Γ (p) =

{(

a b

c d

)

∈ Γ

∣

∣

∣

∣

a ≡ d ≡ 1, b ≡ c ≡ 0 (mod p)

}

,

Γ0(p) =

{(

a b

c d

)

∈ Γ

∣

∣

∣

∣

c ≡ 0 (mod p)

}

.

As is well known, [Γ0(p) : Γ (p)] = p(p − 1) (cf. [1], [7]). More precisely the
map Γ0(p) → (Z/pZ)× × (Z/pZ) given by

(

a b

c d

)

7→ (a, b) (modp)

induces an injective map from the factor group Γ (p)\Γ0(p) onto (Z/pZ)××
(Z/pZ).

We define a function λp on H by

(1.1) λp(τ) :=

℘Ωτ

(

1

p

)

− ℘Ωτ

(

τ + 1

p

)

℘Ωτ

(

τ

p

)

− ℘Ωτ

(

τ + 1

p

) .

It is called a Weierstrass modular unit (cf. Kubert–Lang [8]). Especially
λ2 is well known as a function which appears in the Legendre model of
elliptic curves (cf. [4], [5]). By the properties of the ℘-function, we see that
λp is a modular function for Γ (p) which is holomorphic and non-zero on H.
Hereafter, when the subscript Ωτ is clear from the context, we often write
℘(z) in place of ℘Ωτ

(z), that is,

λp(τ) =

℘

(

1

p

)

− ℘

(

τ + 1

p

)

℘

(

τ

p

)

− ℘

(

τ + 1

p

) .

For σ =
(a b

c d

)

in Γ0(p), we have

λp(σ(τ)) =

℘

(

d

p

)

− ℘

(

aτ + b + d

p

)

℘

(

aτ + b

p

)

− ℘

(

aτ + b + d

p

) with σ(τ) =
aτ + b

cτ + d
.



Weierstrass modular units of level p 3

We consider the function on H defined by

Λp(τ) :=
∏

σ modΓ (p)
σ∈Γ0(p)

λp(σ(τ))(1.2)

=

p−1
∏

a=1

p−1
∏

b=0

℘

(

d

p

)

− ℘

(

aτ + b + d

p

)

℘

(

aτ + b

p

)

− ℘

(

aτ + b + d

p

) .

In each factor of the expression (1.2), d is determined modulo p so that
ad ≡ 1 (mod p). It is easy to see that Λp(τ) is a modular function for Γ0(p)
which is holomorphic and non-zero on H.

For example, for p = 2,

Λ2(τ) =

℘

(

1

2

)

− ℘

(

τ + 1

2

)

℘

(

τ

2

)

− ℘

(

τ + 1

2

) ·
℘

(

1

2

)

− ℘

(

τ

2

)

℘

(

τ + 1

2

)

− ℘

(

τ

2

)

= λ2(τ)(1 − λ2(τ)).

Cougnard gave the following equality:

(1.3) Λ2(τ) ·
(

212 ∆(2τ)

∆(τ)

)

= −24

([4, Theorem 7]). Also if p is an odd prime number, an equality analogous
to (1.3) should be expected. Our first aim is to prove the following

Theorem 1. For any odd prime number p,

Λ2
p(τ) ·

(

p12 ∆(pτ)

∆(τ)

)(p+1)/2

= p6.

In particular , if p ≡ 3 (mod4), then

Λp(τ) ·
(

p12 ∆(pτ)

∆(τ)

)(p+1)/4

= −p3.

Section 2 is devoted to proving Theorem 1. In Section 3 we consider a
few applications of Theorem 1. First we compute the equation relating the
function Λp and the modular invariant j (see Proposition 2). Next we apply
Theorem 1 to the complex multiplication case. In the expressions (1.1) and
(1.2), we can replace ℘(∗) = ℘Ωτ

(∗) by the Weber function

h(∗) := hΩτ
(∗) :=

−27 · 35 · g2(τ) · g3(τ)

∆(τ)
℘Ωτ

(∗).
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Namely we may write

λp(τ) :=

h

(

1

p

)

− h

(

τ + 1

p

)

h

(

τ

p

)

− h

(

τ + 1

p

) ,

Λp(τ) =

p−1
∏

a=1

p−1
∏

b=0

h

(

d

p

)

− h

(

aτ + b + d

p

)

h

(

aτ + b

p

)

− h

(

aτ + b + d

p

) .

Let k = Q(
√
−d) with a square free positive integer d. For simplicity we

assume that d 6= 1, 3. Let τ (∈ H) be in k and assume that Ωτ = [τ, 1] is
an ok-ideal. For (a, b) ∈ Z × Z such that (a, b) 6≡ (0, 0) (mod p), (aτ + b)/p
represents a non-zero p-division point of C/[τ, 1], and hence by the classical
theory of complex multiplication (cf. Cassou-Noguès and Taylor [3], Deuring
[6]), h((aτ + b)/p) is an integer belonging to the ray class field k(pok) over k
with conductor pok. Therefore λp(τ) and Λp(τ) also belong to k(pok). Using
the equality in Theorem 1, we shall show some arithmetic properties of Λp(τ)
(see Theorem 4). In Section 4, we shall treat the arithmetic of λp(τ). Therein
we first show how to compute the equation relating λp(τ) and the modular
invariant j, and give a numerical example (Theorem 5). Next we consider
the algebraic properties of λp(τ) in the case of complex multiplication (see
Theorem 6).

2. Proof of Theorem 1. We put

S =

(

0 −1

1 0

)

and T =

(

1 1

0 1

)

.

As is well known, [Γ : Γ0(p)] = p + 1, and the following is a complete set of
left coset representatives for Γ0(p) in Γ :

α0 = I and αi = ST i−1 (i = 1, . . . , p)

(cf. [1], [7]). Of course {α−1
i }0≤i≤p represents all right cosets of Γ/Γ0(p).

The set of cusps of Γ0(p) is {0,∞}, because α0(∞) = ∞ and αi(∞) = 0
(1 ≤ i ≤ p). Now we know that both Λp(τ) and ∆(pτ)/∆(τ) are modular
functions for Γ0(p) which are non-zero and holomorphic on H. We compare
their q-expansions at the cusps of Γ0(p). Using the well known formula

(2.1) (2πi)−12∆(τ) = q

∞
∏

n=1

(1 − qn)24 with q = e2πiτ
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(cf. [9]), we have
∆(pτ)

∆(τ)
= qp−1(1 + qR0(q))

where R0(X) is a power series in X with coefficients in Z. On the other
hand, by making use of Proposition A-1 in the Appendix, we can describe
the q-expansion of each factor on the right hand side of (1.2). Moreover, by
applying Lemma A-2, we can deduce that

Λp(τ) = (−1)(p−1)/2p−3pq−(p2−1)/4 · (1 + q1/pR1(q
1/p)),

where R1(X) is a power series in X with coefficients in Z[ζp] and ζp = e2πi/p.
Hence the q-expansion of

(2.2) Λ2
p(τ) ·

(

p12 ∆(pτ)

∆(τ)

)(p+1)/2

at ∞ starts with the constant term p6, and this also means that (2.2) is
holomorphic at ∞. It is also clear that if p ≡ 3 (mod4) the leading term of
the q-expansion of

Λp(τ) ·
(

p12 ∆(pτ)

∆(τ)

)(p+1)/4

at ∞ is equal to −p3. Next we consider the q-expansion at the cusp 0 =
S(∞). Since

p12 ∆(pS−1(τ))

∆(S−1(τ))
= p12

∆

(−p

τ

)

∆

(−1

τ

) =

∆

(

τ

p

)

∆(τ)
,

using (2.1), we see that the leading term of the q-expansion of p12∆(pτ)/∆(τ)
at 0 is equal to q−(p−1)/p. On the other hand, we have

(2.3) Λp(S
−1(τ)) =

p−1
∏

a=1

p−1
∏

b=0

℘

(

dτ

p

)

− ℘

(

(b + d)τ − a

p

)

℘

(

bτ − a

p

)

− ℘

(

(b + d)τ − a

p

) .

Applying Lemma A-2, we can find the leading term of the q-expansion of
each factor of (2.3). Then by a tedious check, we see that the q-expansion of

Λp(S
−1(τ)) at ∞ starts with q

1

p
· p

2
−1

4 , and hence the q-expansion of (2.2) at
0 = S(∞) starts with the constant term. This means that (2.2) is also
holomorphic at 0. Hence (2.2) is holomorphic on the compact Riemann
surface Γ0(p)\H ∪ {cusps} and so must be a constant. Moreover since

lim
τ→i∞

Λ2
p(τ) ·

(

p12 ∆(pτ)

∆(τ)

)(p+1)/2

= p6,



6 H. Hayashi

we have the first equality of Theorem 1. It is also clear that if p ≡ 3 (mod4),
then

Λp(τ) ·
(

p12 ∆(pτ)

∆(τ)

)(p+1)/4

= −p3.

3. Some arithmetic properties of Λp(τ). Let {αi} be as in Section 2.
We define

Ai(τ) := Λp(αi(τ)) (i = 0, 1, . . . , p).

Then by Theorem 1, we have

(3.1) A2
0(τ) ·

(

p12 ∆(pτ)

∆(τ)

)(p+1)/2

= p6

and for 1 ≤ i ≤ p,

(3.2) A2
i (τ) ·

(

∆
(

τ+i−1
p

)

∆(τ)

)(p+1)/2

= p6.

As is well known,

β0 =

(

p 0

0 1

)

and βi =

(

1 i − 1

0 p

)

(1 ≤ i ≤ p)

constitute a complete system of representatives of the left cosets Γ\Mp,
where Mp is the set of integral matrices of determinant p. We define

B0(τ) := p12 ∆(β0(τ))

∆(τ)
= p12 ∆(pτ)

∆(τ)

and

Bi(τ) :=
∆(βi(τ))

∆(τ)
=

∆

(

τ + i − 1

p

)

∆(τ)
for 1 ≤ i ≤ p.

Then the equalities (3.1) and (3.2) can be restated as follows:

(3.3) A2
i (τ) · Bi(τ)(p+1)/2 = p6 for i = 0, 1, . . . , p.

From the classical theory of complex multiplication (cf. [2], [3], [6]), we know
that the polynomial

Φ(k)
p (X) :=

p
∏

i=0

(X − Bk
i (τ))

lies in Z[j, X], where j is the modular invariant defined by

j(τ) =
1728g3

2(τ)

∆(τ)
.
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Hence by using equation (1.3) and Theorem 1, it is possible to give the
equation relating the functions Λp and j. For example, by numerical com-
putations we obtain the following

Proposition 2. Under the notations as above,
(i) Λ2 satisfies

Λ3
2 +

1

28
(j − 768)Λ2

2 + 3Λ2 − 1 = 0,

or equivalently

j = −28 (Λ2 − 1)3

Λ2
2

.

(ii) Λ3 satisfies

Λ4
3 +

1

39
(j2 − 1512j + 177876)Λ3

3 +
1

34
(8j + 2214)Λ2

3 + 28Λ3 + 1 = 0.

Remark. The second equality in (i) of Proposition 2 is nothing but the
equality given in Lang [9, p. 256].

For any odd prime p, we know that

p
∏

i=0

Bi(τ) = p12 ∆(pτ)

∆(τ)

p
∏

i=1

∆

(

τ + i − 1

p

)

∆(τ)
= p12.

Hence by (3.3), we have

(3.4)

p
∏

i=0

A2
i (τ) = 1.

In particular, if p ≡ 3 (mod4), we have

(3.5)

p
∏

i=0

Ai(τ) = 1.

Hereafter in this section, let τ (∈ H) be in an imaginary quadratic num-
ber field k ( 6= Q(

√
−1), Q(

√
−3)), and let Ωτ = [τ, 1] be an ok-ideal. The

following is a fundamental result in the classical theory of complex multi-
plication (cf. [2], [3], [6], [10]).

Proposition 3. Under the above notations, Bi(τ) (0 ≤ i ≤ p) are

algebraic integers and the following hold :

(i) If p splits in k with pok = pp̄, then there exists a unique βi1 (resp.
βi2) such that βi1(τ) (resp. βi2(τ)) is a basis quotient of p̄Ωτ (resp.
pΩτ ). In this case Bi1(τ) and Bi2(τ) are contained in Hk, the Hilbert

class field of k, and

Bi1(τ) ∼ p12 and Bi2(τ) ∼ p̄12.

Moreover , for any i 6= i1, i2, Bi(τ) is a unit.
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(ii) If p is ramified in k with pok = p2, then there exists a unique βi1

such that βi1(τ) is a basis quotient of pΩτ . In this case Bi1(τ) is

contained in Hk and

Bi1(τ) ∼ p6, Bi(τ) ∼ p6/p for any i 6= i1.

(iii) If p remains prime in k, then Bi(τ) ∼ p12/(p+1) for any i.

Combining Theorem 1 and Proposition 3, we have the following

Theorem 4. Let the notations be as above. Then Λp(τ) is an algebraic

number which is a unit outside the prime divisors of p. In particular , Λp(τ)
is a unit if p remains prime in k.

4. Some arithmetic properties of λp(τ). As is well known, [Γ :
Γ (p)] = p(p2 − 1) (cf. [1], [7]). Let {γi} be a complete set of left coset
representatives for ±Γ (p) in Γ . We consider the polynomial Gp given by

Gp(X) :=
m−1
∏

i=0

(X − λp(γi(τ)))

= Xm + Cm−1(τ)Xm−1 + · · · + C1(τ)X + C0(τ),

where m = 1
2p(p2 − 1). It is easy to verify that all coefficients Ci(τ) of

Gp(X) are modular functions for Γ and holomorphic on H. Moreover by
applying Proposition A-1 and Lemma A-2 of the Appendix, we can verify
that the q-expansions of Ci(τ) all lie in Z[1/p, ζp]((q)), the ring of formal
Laurent series in q with coefficients in Z[1/p, ζp], where ζp = e2πi/p. Then
from the q-expansion principle (cf. [3, Ch. 7]), we can deduce that Ci(τ) are
all contained in Z[1/p, ζp][j], the ring of polynomials in j with coefficients
in Z[1/p, ζp].

To get an explicit expression of Ci(τ) as a polynomial in j, for example,
we only have to interpolate the q-expansion of Ci(τ) by

j =
1

q
(1 + 744q + 196884q2 + 21493760q3 + · · · ),

j2 =
1

q2
(1 + 1488q + 947304q2 + 335950912q3 + · · · ), . . . .

In particular, by (3.4) and (3.5), we always have

(4.1) C2
0(τ) = ±1.

The following theorem is due to a numerical computation.



Weierstrass modular units of level p 9

Theorem 5. λ3 satisfies the monic equation

λ12
3 − 4(ζ3 + 2)λ11

3 + 22(ζ3 + 1)λ10
3 +

1

35
(2ζ3 + 1)(j − 6588)λ9

3

− 1

33
ζ3(j − 2133)λ8

3 +
4

34
(ζ3 − 1)(j − 1242)λ7

3 +
1

32
(j − 1044)λ6

3

+
4

34
(ζ2

3 − 1)(j − 1242)λ5
3 −

1

33
ζ2
3 (j − 2133)λ4

3

+
1

35
(2ζ2

3 + 1)(j − 6588)λ3
3 + 22(ζ2

3 + 1)λ2
3 − 4(ζ2

3 + 2)λ3 + 1 = 0.

Until the end of this section, let τ (∈ H) be again in an imaginary
quadratic number field k ( 6= Q(

√
−1), Q(

√
−3)), and let Ωτ = [τ, 1] be an

ok-ideal. Then from the above considerations, we see that the value λp(τ) is
a unit outside the prime divisors of p. We conjecture that λp(τ) is a unit if
and only if p remains prime in k.

Here we consider the case where 3 remains prime in k. From Theorem 4,
Λ3(τ) is a unit. Hence the equation in (ii) of Proposition 2 shows that

j2 − 1512j + 177876 ≡ 0 (mod39) and 8j + 2214 ≡ 0 (mod34).

This means that j = 33 + 34θ with an integer θ in Hk, the Hilbert class
field of k, such that θ2 ≡ 0 (mod3). Hence the coefficients of the equation
in Theorem 5 are all in Z[ζ3, j]. Thus we have the following

Theorem 6. Under the above notations, λ3(τ) is a unit if and only if

3 remains prime in k.

Appendix. In the proof of Theorem 1 and in the computation for the
numerical example (Theorem 5), we used the following expansion formula
for the Weierstrass ℘-function.

Proposition A-1 (cf. [9, Ch. 4]). Let Ω = [τ, 1] with τ in H. Then for

z ∈ C we have

1

(2πi)2
℘Ω(z) =

1

12
+
∑

m∈Z

qmqz

(1 − qmqz)2
− 2

∞
∑

n=1

nqn

1 − qn
,

where q = e2πiτ and qz = e2πiz.

Let p be an odd prime number. We apply Proposition A-1 for z which rep-
resents a non-zero p-division point of C/[τ, 1]. We may write z = (aτ + b)/p
where 0 ≤ a, b ≤ p − 1 and (a, b) 6= (0, 0). From Proposition A-1, it is easy
to deduce that

1

(2πi)2
℘Ωτ

(

aτ + b

p

)

− 1

12
= R(q1/p),
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where q1/p = e2πτ/p and R(X) is a power series in X whose coefficients
belong to Z[ζp] with ζp = e2πi/p. In order to determine the leading term of
the q-expansion of Λp(τ) at ∞, we used the following

Lemma A-2 (cf. [3, Ch. 8]). Under the above notations,

1

(2πi)2
℘Ωτ

(

aτ + b

p

)

− 1

12

has q-expansion at ∞ in Z[ζp][[q
1/p]] with leading term











ζb
p/(1 − ζb

p)
2 if a = 0,

ζb
pq

a/p if 0 < a < p/2,

ζ−b
p q(p−a)/p if p/2 < a < p.
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plication complexe et monogénéité d’anneaux d’entiers II , ibid. 55 (1990), 75–81.
[6] M. Deuring, Die Klassenkörper der komplexen Multiplikation, Enzykl. d. Math.

Wiss., Bd. 1/2, Heft 10, Teil II, Stuttgart, 1958.
[7] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd ed., Grad.

Texts in Math. 97, Springer, 1993.
[8] D. Kubert and S. Lang, Modular Units, Grundlehren Math. Wiss. 244, Springer,

1973.
[9] S. Lang, Elliptic Functions, Addison-Wesley, 1973.

[10] R. Schertz, Zur Theorie der Ringklassenkörper über imaginär quadratischen Zahl-

körpern, J. Number Theory 10 (1978), 70–82.

Department of Mathematics
Kyushu-Tokai University
9-1-1 Toroku
Kumamoto 862-8652, Japan
E-mail: hhayashi@ktmail.ktokai-u.ac.jp

Received on 3.8.2005

and in revised form on 25.7.2006 (5044)


