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1. Introduction. Let N = {0, 1, 2, . . .} and Z
+ = {1, 2, . . .}. The well

known Bernoulli numbers Bn (n ∈ N) are rational numbers defined by

B0 = 1,
n
∑

k=0

(

n+ 1

k

)

Bk = 0 (n ∈ Z
+).

Similarly, the Euler numbers En (n ∈ N) are integers given by

E0 = 1,
n
∑

k=0
2|n−k

(

n

k

)

Ek = 0 (n ∈ Z
+).

For n ∈ N the Bernoulli polynomial Bn(x) and the Euler polynomial
En(x) are defined as follows:

Bn(x) =

n
∑

k=0

(

n

k

)

Bkx
n−k, En(x) =

n
∑

k=0

(

n

k

)

Ek
2k

(

x−
1

2

)n−k

.

Clearly Bn(0) = Bn and En(1/2) = En/2
n. Here are some basic properties

of the Bernoulli and Euler polynomials we will need later:

Bn(1− x) = (−1)
nBn(x), ∆(Bn(x)) = nx

n−1,

En(1− x) = (−1)
nEn(x), ∆

∗(En(x)) = 2x
n.

Here, the operators ∆ and ∆∗ are defined by ∆(f(x)) = f(x+1)−f(x) and
∆∗(f(x)) = f(x+ 1) + f(x). It is also known that B′n+1(x) = (n+ 1)Bn(x)
and E′n+1(x) = (n+ 1)En(x).
For a sequence {an}n∈N of complex numbers, its dual sequence {a

∗
n}n∈N

is given by a∗n =
∑n

k=0

(

n
k

)

(−1)kak (n ∈ N). It is well known that a∗∗n = an.
In 2003 Z. W. Sun [S2] deduced some combinatorial identities in dual se-
quences. The sequences {(−1)nBn}n∈N and {(−1)

nEn(0)}n∈N are both self-
dual sequences (cf. [S2]); later we will make use of this fact.
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In 1978 H. Miki [Mi] discovered the following curious identity:

n−2
∑

k=2

BkBn−k
k(n− k)

−
n−2
∑

k=2

(

n

k

)

BkBn−k
k(n− k)

= 2Hn
Bn
n

for every n = 4, 5, . . . , where Hn = 1 + 1/2 + · · ·+ 1/n. In 1997 Y. Matiya-
sevich [Ma] found another identity of this type:

(n+ 2)

n−2
∑

k=2

BkBn−k − 2

n−2
∑

k=2

(

n+ 2

k

)

BkBn−k = n(n+ 1)Bn

for any n = 4, 5, . . . . These two identities are of a deep nature. In fact,
all known proofs of these identities given by other authors are complicated
(cf. [Mi], [G] and [DS]); for example, the approach of G. V. Dunne and
C. Schubert [DS] was even motivated by quantum field theory and string
theory.
Recently the authors [PS] presented a new method to handle such iden-

tities. Though their approach only involves differences and derivatives of
polynomials, they were able to use the powerful method to extend Miki’s
and Matiyasevich’s identities to identities concerning

∑n

k=0Bk(x)Bn−k(y)
and
n−1
∑

k=1

Bk(x)

k
·
Bn−k(y)

n− k
=
1

n

n−1
∑

k=1

Bk(x)

k
Bn−k(y) +

1

n

n−1
∑

l=1

Bl(y)

l
Bn−l(x)

(where n is a positive integer). They also handled similar sums related to
Euler polynomials.
Let n be any positive integer. As usual,

(

z
n

)

= z(z − 1) · · · (z − n+ 1)/n!

(and
(

z
0

)

= 1) even if z 6∈ N. Observe that

n
∑

k=0

Bk(x)Bn−k(y) =
n
∑

k=0

(−1)k
(

−1

k

)

Bk(x)Bn−k(y),

−
n
∑

k=1

Bk(x)

k
Bn−k(y) =

n
∑

k=1

(−1)k
(

−1

k − 1

)

Bk(x)

k
Bn−k(y)

= lim
t→0

1

t

n
∑

k=1

(−1)k
(

t

k

)

Bk(x)Bn−k(y).

Inspired by this observation, we investigate here relations among the sums
n
∑

k=0

(−1)k
(

s

k

)(

t

n− k

)

Pk(x)Qn−k(y)

with P,Q ∈ {B,E}.
Our central result is the following theorem.
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Theorem 1.1. Let n ∈ Z
+ and x+ y + z = 1.

(i) If r + s+ t = n− 1, then

(1.1)
n
∑

k=0

(−1)k
(

r

k

)(

s

n− k

)

Bk(x)En−k(z)

− (−1)n
n
∑

k=0

(−1)k
(

r

k

)(

t

n− k

)

Bk(y)En−k(z)

=
r

2

n−1
∑

l=0

(−1)l
(

s

l

)(

t

n− 1− l

)

El(y)En−1−l(x).

(ii) If r + s+ t = n, then we have the symmetric relation

(1.2) r

[

s t
x y

]

n

+ s

[

t r
y z

]

n

+ t

[

r s
z x

]

n

= 0

where

(1.3)

[

s t
x y

]

n

:=
n
∑

k=0

(−1)k
(

s

k

)(

t

n− k

)

Bn−k(x)Bk(y).

Remark 1.1. It is interesting to compare (1.2) with the following prop-
erty of determinants:

0 =

∣

∣

∣

∣

∣

∣

r s t
r s t
z x y

∣

∣

∣

∣

∣

∣

= r

∣

∣

∣

∣

s t
x y

∣

∣

∣

∣

+ s

∣

∣

∣

∣

t r
y z

∣

∣

∣

∣

+ t

∣

∣

∣

∣

r s
z x

∣

∣

∣

∣

.

In view of K. Dilcher’s paper [D], the referee suggested that Theorem 1.1
might have a generalization involving sums of products of m Bernoulli or
Euler polynomials. But we are unable to obtain a compact extension of
Theorem 1.1 though we have made a serious attempt.

Corollary 1.1. Let n ∈ Z
+ and let α, x, y be parameters. Then

(1.4)
α+ n+ 1

2

n−1
∑

k=0

(

α+ k

k

)

Ek(x)En−1−k(y)

=
n
∑

k=0

(

α+ n+ 1

k

)(

(−1)n−kBk(x)−

(

α+ n− k

n− k

)

Bk(y)

)

En−k(x− y),

(1.5) (α+ n+ 2)
n
∑

k=0

(

α+ k

k

)

Bk(x)Bn−k(y)

= (α+ 1)
n
∑

k=0

(

α+ n+ 2

k

)

(−1)n−kBk(x)Bn−k(x− y)

+

n
∑

k=0

(

α+ n+ 2

k

)(

α+ n− k

n− k

)

Bk(y)Bn−k(x− y).
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Proof. Let x′ = 1 − x and z′ = x − y. Then x′ + y + z′ = 1. Applying
Theorem 1.1(i) with r = α + n + 1, s = −1 and t = −α − 1 we then get
(1.4). (Note that (−1)k

(

−z
k

)

=
(

z+k−1
k

)

.) By Theorem 1.1(ii),

(α+ n+ 2)

[

−1 −α− 1
1− x y

]

n

=

[

−α− 1 α+ n+ 2
y x− y

]

n

+ (α+ 1)

[

α+ n+ 2 −1
x− y 1− x

]

n

.

This is an equivalent version of (1.5).

Remark 1.2. Formula (1.5) in the case α = x = y = 0 yields Matiyase-
vich’s identity since B2l+1 = 0 for l = 1, 2, . . . .

Corollary 1.2. Let n > l ≥ 0 be integers. Then

(1.6)
n− l + 1

2

n
∑

k=δl,0

(

n

k

)(

n

k + l − 1

)

Ek+l−1(x)En−k(y)

=
n
∑

k=0

(

n

k

)(

k + n

k + l

)

((−1)n−kBk+l(x)−Bk+l(y))En−k(x− y)

(where δl,m equals 1 or 0 according as l = m or not), and

(1.7)
n− l

n

n−l
∑

k=0

(

n

k

)(

n

k + l

)

Bk+l(x)Bn−k(y)

=
n
∑

k=0

(

n

k

)(

k + n− 1

k + l

)

((−1)n−kBk+l(x) +Bk+l(y))Bn−k(x− y).

In particular ,

(1.8)
(n+ 1)(n+ 1− l)

8

n
∑

k=δl,0

(

n

k

)(

n

k + l − 1

)

Ek+l−1(x)En−k(x)

=
n−1
∑

k=0

(

n+ 1

k

)(

k + n

k + l

)

Bk+l(x)(2
n−k+1 − 1)Bn−k+1,

(1.9)
n−l
∑

k=0

(

n

k

)(

n

k + l

)

Bk+l(x)Bn−k(x)

=
2n

n− l

n
∑

k=0
k 6=n−1

(

n

k

)(

k + n− 1

k + l

)

Bk+l(x)Bn−k.

Proof. As (l−n− 1)+n+n = (n+ l)− 1 and (1− x)+ y+(x− y) = 1,
by Theorem 1.1(i) we have
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n+l
∑

k=0

(−1)k
(

l − n− 1

k

)(

n

n+ l − k

)

Bk(1− x)En+l−k(x− y)

− (−1)n+l
n+l
∑

k=0

(−1)k
(

l − n− 1

k

)(

n

n+ l − k

)

Bk(y)En+l−k(x− y)

=
l − n− 1

2

n−δl,0
∑

k=0

(−1)k
(

n

k

)(

n

n+ l − 1− k

)

Ek(y)En+l−1−k(1− x)

=
l − n− 1

2

n
∑

k=δl,0

(−1)n−k
(

n

k

)(

n

k + l − 1

)

En−k(y)Ek+l−1(1− x),

which can be reduced to (1.6). (1.8) follows from (1.6) in the case y = x
since ((−1)m − 1)Em(0) = 4(2

m+1 − 1)Bm+1/(m+ 1) for m = 1, 2, . . . . (It
is known that (m+1)Em(x) = 2(Bm+1(x)− 2

m+1Bm+1(x/2)); cf. [AS] and
[S1].)

In light of Theorem 1.1(ii),

(l − n)

[

n n
1− x y

]

n+l

+ n

[

n l − n
y x− y

]

n+l

+ n

[

l − n n
x− y 1− x

]

n+l

= 0.

This is equivalent to (1.7). In the case y = x, (1.7) gives (1.9) because
((−1)m + 1)Bm = 2Bm for m = 0, 2, 3, . . . .

Remark 1.3. Putting l = 0 and x = 1/2 in (1.8) and noting that
Bk(1/2) = (2

1−k − 1)Bk (see, e.g., [AS] and [S1]), we get the following
identity:

(n+ 1)2

8

n−1
∑

k=0

(

n

k

)(

n

k + 1

)

EkEn−1−k

= −
n−1
∑

k=0

(

n+ 1

k

)(

n+ k

n

)

2n−k(2k−1 − 1)(2n−k+1 − 1)BkBn−k+1

for any n ∈ Z
+. Similarly, (1.9) in the case l = x = 0 yields the following

new identity:

n−2
∑

k=2

(

n

k

)2

BkBn−k − 2

n−2
∑

k=2

(

n

k

)(

n+ k − 1

k

)

BkBn−k = 2

(

2n− 1

n− 1

)

Bn

for every n = 4, 5, . . . .

The following theorem can be deduced from Theorem 1.1.
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Theorem 1.2. Let l,m, n ∈ Z
+, l ≤ min{m,n} and x+y+z = 1. Then

(1.10) (−1)m
m
∑

k=0

(

m

k

)(

n+ k

l − 1

)

Bn−l+k+1(x)Em−k(z)

+ (−1)n−l
n
∑

k=0

(

n

k

)(

m+ k

l − 1

)

Bm−l+k+1(y)En−k(z)

= −
l

2

l
∑

k=0

(−1)k
(

m

k

)(

n

l − k

)

En−l+k(x)Em−k(y),

(1.11)
l
∑

k=0

(−1)k
(

m

k

)(

n

l − k

)

Bm−k(x)En−l+k(z)

− (−1)m
m
∑

k=0

(

m

k

)(

n+ k

l

)

Bm−k(y)En−l+k(z)

= (−1)n−l−1
m

2

n
∑

k=δl,m

(

n

k

)(

m+ k − 1

l

)

En−k(y)Em−l−1+k(x).

We also have

(1.12)
(−1)m

m

m
∑

k=0

(

m

k

)(

n+ k − 1

l − 1

)

Bn−l+k(x)Bm−k(z)

+ (−1)l
(−1)n

n

n
∑

k=0

(

n

k

)(

m+ k − 1

l − 1

)

Bm−l+k(y)Bn−k(z)

=
l

mn

l
∑

k=0

(−1)k
(

m

k

)(

n

l − k

)

Bn−l+k(x)Bm−k(y).

Corollary 1.3 (Woodcock [W]). Let m,n ∈ Z
+. Then

1

m

m
∑

k=1

(

m

k

)

(−1)kBm−kBn−1+k =
1

n

n
∑

k=1

(

n

k

)

(−1)kBn−kBm−1+k.

Proof. Simply set x = y = 0 and l = z = 1 in (1.12).

From Theorem 1.1 we can also deduce the following result.

Theorem 1.3. Let n ∈ Z
+, and let t, x, y, z be parameters with x+ y + z

= 1. Then

(1.13)
(−1)n

2

n−1
∑

k=0

(

t

k

)

Ek(x)En−1−k(y)

=
1

n− t

n
∑

k=0

(

n− t

k

)

Bk(x)En−k(z) +

(

t

n

) n
∑

k=0

(

n

k

)

Ek(z)

t− k
Bn−k(y),



Identities concerning Bernoulli and Euler polynomials 27

(1.14)
n

2

(

t

n

) n−1
∑

k=0

(

n− 1

k

)

Ek(x)

t− k
En−1−k(y)− (−1)

nEn(z)

(

t

n

) n−1
∑

k=0

1

t− k

= (−1)n
n
∑

k=1

(

t

n− k

)

Bk(y)

k
En−k(z)−

n
∑

k=1

(

n− 1− t

n− k

)

Bk(x)

k
En−k(z).

Also,

(1.15)
(−1)n−1

n

(

t− 1

n− 1

) n
∑

k=0

(

n

k

)

Bk(x)

t− k
Bn−k(y)−

Bn(z)

n

(

t− 1

n− 1

)n−1
∑

k=1

1

t− k

=
1

t

n
∑

k=1

(

t

n− k

)

Bk(y)

k
Bn−k(z) +

(−1)n

n− t

n
∑

k=1

(

n− t

n− k

)

Bk(x)

k
Bn−k(z).

Corollary 1.4. Let n ∈ Z
+ and x+ y + z = 1. Then

(1.16)
n
∑

k=0

(

n+ 1

k

)

((−1)nBk(x)−Bk(y))En−k(z)

=
n+ 1

2

n−1
∑

l=0

(−1)lEl(x)En−1−l(y),

(1.17)

n
∑

k=1

(

n

k

)

Bk(x)

k
En−k(z)−

n
∑

k=1

(−1)k
Bk(y)

k
En−k(z)

=
(−1)n

2

n−1
∑

l=0

(

n

l

)

El(y)En−1−l(x)−HnEn(z),

(1.18) (−1)n
n
∑

k=0

(

n+ 1

k

)

Bn−k(x)Bk(y) +
n−1
∑

k=0

(

n+ 1

k

)

Bn−k(x)

n− k
Bk(z)

= (n+ 1)
n
∑

k=1

(−1)k
Bk(y)

k
Bn−k(z) + (1−Hn)(n+ 1)Bn(z).

Proof. Setting t=−1 in Theorem 1.3 we immediately get (1.16)–(1.18).

Corollary 1.5. Let n ∈ Z
+ and x+ y + z = 1. Then

(1.19)
1

2

n−1
∑

k=1

(−1)k−1
Ek(x)

k
En−1−k(y) +

Hn−1En−1(y)

2

=
1

n

n
∑

k=1

(

n

k

)

Ek(z)

k
Bn−k(y) +

(−1)n

n

n
∑

k=1

(

n

k

)

HkEk(z)Bn−k(x),

(1.20)
(−1)n−1

2

n−1
∑

k=1

(

n− 1

k

)

Ek(x)

k
En−1−k(y)+Hn−1

En(z) + (−1)
nBn(y)

n

=

n−1
∑

k=1

(−1)k
Bk(y)

k
·
En−k(z)

n− k
+

n
∑

k=1

(

n− 1

k − 1

)

Hk−1
Bk(x)

k
En−k(z).
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We also have

(1.21)
n
∑

k=1

(

n− 1

k − 1

)

Bk(x)

k2
(Bn−k(y) + (−1)

nBn−k(z))

=
n−1
∑

k=1

(−1)n−k
Bk(y)

k
·
Bn−k(z)

n− k
−Hn−1

Bn(y) + (−1)
nBn(z)

n
.

Remark 1.4. In the case x = y = 0 and z = 1, (1.21) yields Miki’s
identity.

The next section is devoted to proofs of Theorems 1.1 and 1.2. Theorem
1.3 and Corollary 1.5 will be proved in Section 3.

2. Proofs of Theorems 1.1 and 1.2

Lemma 2.1. Let P (x), Q(x) ∈ C[x] where C is the field of complex num-

bers.

(i) We have

∆(P (x)Q(x)) = P (x+ 1)∆(Q(x)) +∆(P (x))Q(x),(2.1)

∆∗(P (x)Q(x)) = P (x+ 1)∆∗(Q(x))−∆(P (x))Q(x).(2.2)

(ii) If ∆(P (x)) = ∆(Q(x)), then P ′(x) = Q′(x). If in turn ∆∗(P (x)) =
∆∗(Q(x)), then P (x) = Q(x).

Proof. The first part can be verified easily. Part (ii) is Lemma 3.1 of
[PS].

The following lemma has the same flavor as Theorem 1.1 of Sun [S2].

Lemma 2.2. Let {al}
∞
l=0 be a sequence of complex numbers, and {a

∗
l }
∞
l=0

be its dual sequence. Set

(2.3) Ak(t) =
k
∑

l=0

(

k

l

)

(−1)lalt
k−l, A∗k(t) =

k
∑

l=0

(

k

l

)

(−1)la∗l t
k−l

for k = 0, 1, 2, . . . . Let n ∈ Z
+, r + s+ t = n− 1 and x+ y + z = 1. Then

(2.4)

n
∑

k=0

(−1)k
(

r

k

)

xn−k
((

s

n− k

)

Ak(y)− (−1)
n

(

t

n− k

)

A∗k(z)

)

= 0.

Proof. By Remark 1.1 of Sun [S2],

(−1)kA∗k(z) = Ak(x+ y) =

k
∑

l=0

(

k

l

)

xk−lAl(y).

Therefore
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n
∑

k=0

(−1)k
(

r

k

)(

t

n− k

)

xn−kA∗k(z)

=
n
∑

k=0

(

r

k

)(

t

n− k

)

xn−k
k
∑

l=0

(

k

l

)

xk−lAl(y)

=
n
∑

l=0

xn−lAl(y)
n
∑

k=l

(

r

l

)(

r − l

k − l

)(

t

n− k

)

=

n
∑

l=0

(

r

l

)

xn−lAl(y)cl

where

cl =
n
∑

k=l

(

r − l

k − l

)(

t

n− k

)

=

(

r + t− l

n− l

)

(by Vandermonde’s identity)

= (−1)n−l
(

l − r − t+ n− l − 1

n− l

)

= (−1)n−l
(

s

n− l

)

.

Thus (2.4) follows.

Remark 2.1. If we let al = (−1)
lBl for l = 0, 1, 2, . . . , then Ak(t) =

A∗k(t) = Bk(t). Also, Ak(t) = A
∗
k(t) = Ek(t) if al = (−1)

lEl(0) for l =
0, 1, 2, . . . .

Proof of Theorem 1.1. We fix y and view z = 1 − x − y as a function
in x.
(i) Set

P (x) =
n
∑

k=0

(−1)k
(

r

k

)(

s

n− k

)

Bk(x)En−k(z).

Then, by Lemma 2.1, ∆∗(P (x)) coincides with
n
∑

k=0

(−1)k
(

r

k

)(

s

n− k

)

∆∗(Bk(x)En−k(z))

=
n
∑

k=0

(−1)k
(

r

k

)(

s

n− k

)

(Bk(x+ 1)2(z − 1)
n−k − kxk−1En−k(z))

= 2
n
∑

k=0

(−1)k
(

r

k

)(

s

n− k

)

(z − 1)n−kBk(x+ 1) + rΣ

where

Σ =
n
∑

k=1

(−1)k−1
(

r − 1

k − 1

)(

s

n− k

)

xk−1En−k(z)

= (−1)n−1
n−1
∑

l=0

(−1)l
(

r − 1

n− 1− l

)(

s

l

)

xn−1−lEl(z).
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Applying Lemma 2.2 and Remark 2.1 we obtain

∆∗(P (x)) = 2(−1)n
n
∑

k=0

(−1)k
(

r

k

)(

t

n− k

)

(z − 1)n−kBk(y)

+ r
n−1
∑

l=0

(−1)l
(

s

l

)(

t

n− 1− l

)

xn−1−lEl(y).

It follows that ∆∗(P (x)) = ∆∗(Q(x)) where

Q(x) = (−1)n
n
∑

k=0

(−1)k
(

r

k

)(

t

n− k

)

Bk(y)En−k(z)

+
r

2

n−1
∑

l=0

(−1)l
(

s

l

)(

t

n− 1− l

)

El(y)En−1−l(x).

Thus P (x) = Q(x) by Lemma 2.1. This is equivalent to the desired equal-
ity (1.1).

(ii) Set

Pn(x) =

[

r s
z x

]

n

=
n
∑

k=0

(−1)k
(

r

k

)(

s

n− k

)

Bk(x)Bn−k(z).

By Lemma 2.1,

∆(Bk(x)Bn−k(z)) = ∆(Bk(x))Bn−k(z) +Bk(x+ 1)∆(Bn−k(z))

= kxk−1Bn−k(z)− (n− k)Bk(x+ 1)(z − 1)
n−k−1

for every k = 0, 1, . . . , n. Thus

∆(Pn(x)) = rR(x)− s
n−1
∑

k=0

(−1)k
(

r

k

)(

s− 1

n− k − 1

)

Bk(x+ 1)(z − 1)
n−k−1

where

R(x) =
n
∑

k=1

(−1)k
(

r − 1

k − 1

)(

s

n− k

)

xk−1Bn−k(z)

= (−1)n
n−1
∑

l=0

(−1)l
(

s

l

)(

r − 1

n− 1− l

)

xn−1−lBl(z).

Applying Lemma 2.2 and Remark 2.1 we obtain

∆(Pn(x)) = − r
n−1
∑

l=0

(−1)l
(

s

l

)(

t− 1

n− 1− l

)

xn−1−lBl(y)

− s(−1)n−1
n−1
∑

l=0

(−1)l
(

r

l

)(

t− 1

n− 1− l

)

(z − 1)n−1−lBl(y).
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It follows that ∆(Pn(x)) = ∆(Qn(x)) where

Qn(x) = −
r

t

n−1
∑

l=0

(−1)l
(

s

l

)(

t

n− l

)

Bn−l(x)Bl(y)

− (−1)n
s

t

n−1
∑

l=0

(−1)l
(

r

l

)(

t

n− l

)

Bn−l(z)Bl(y)

= −
r

t

n−1
∑

l=0

(−1)l
(

s

l

)(

t

n− l

)

Bn−l(x)Bl(y)

−
s

t

n
∑

k=1

(−1)k
(

t

k

)(

r

n− k

)

Bk(z)Bn−k(y).

Thus P ′n(x) = Q
′
n(x) by Lemma 2.1.

Observe that P ′n(x) coincides with

n
∑

k=1

(−1)k
(

r

k

)(

s

n− k

)

kBk−1(x)Bn−k(z)

−
n−1
∑

k=0

(−1)k
(

r

k

)(

s

n− k

)

(n− k)Bk(x)Bn−k−1(z)

=
n−1
∑

k=0

(−1)k+1
(

r

k + 1

)(

s

n− 1− k

)

(k + 1)Bk(x)Bn−1−k(z)

−
n−1
∑

k=0

(−1)k
(

r

k

)(

s

n− k

)

(n− k)Bk(x)Bn−1−k(z)

=

n−1
∑

k=0

(−1)k−1
(

r

k

)(

s

n− 1− k

)

(r − k + (s− n+ k + 1))Bk(x)Bn−1−k(z)

= (t− 1)

[

r s
z x

]

n−1

and

Q′n(x) = − r
n−1
∑

l=0

(−1)l
(

s

l

)(

t− 1

n− l − 1

)

Bn−l−1(x)Bl(y)

+ s
n
∑

k=1

(−1)k
(

t− 1

k − 1

)(

r

n− k

)

Bk−1(z)Bn−k(y)

= − r

[

s t− 1
x y

]

n−1

− s

[

t− 1 r
y z

]

n−1

.

Thus the equality P ′n(x) = Q
′
n(x) gives
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r

[

s t′

x y

]

n−1

+ s

[

t′ r
y z

]

n−1

+ t′
[

r s
z x

]

n−1

= 0

where t′ = t− 1 = n− 1− (r+ s). Replacing n− 1 by n we then obtain the
required identity (1.2). This concludes the proof.

Proof of Theorem 1.2. Clearly n = m+ n− l ∈ Z
+. By Theorem 1.1(i),

n+1
∑

k=0

(−1)k
(

−l

k

)(

m

n+ 1− k

)

Bk(x)En+1−k(z)

− (−1)n+1
n+1
∑

k=0

(−1)k
(

−l

k

)(

n

n+ 1− k

)

Bk(y)En+1−k(z)

=
−l

2

n
∑

k=0

(−1)k
(

m

k

)(

n

n− k

)

Ek(y)En−k(x).

That is,
m
∑

k=0

(−1)n+1−k
(

−l

n+ 1− k

)(

m

k

)

Bn+1−k(x)Ek(z)

−
n
∑

k=0

(−1)k
(

−l

n+ 1− k

)(

n

k

)

Bn+1−k(y)Ek(z)

=
−l

2

m
∑

k=0

(−1)m−k
(

m

k

)(

n

n− l + k

)

Em−k(y)En−l+k(x)

= (−1)m−1
l

2

l
∑

k=0

(−1)k
(

m

k

)(

n

l − k

)

Em−k(y)En−l+k(x).

Therefore (1.10) follows. By Theorem 1.1(i) we also have

n
∑

k=0

(−1)k
(

m

k

)(

n

n− k

)

Bk(x)En−k(z)

− (−1)n
n
∑

k=0

(−1)k
(

m

k

)(

−l − 1

n− k

)

Bk(y)En−k(z)

=
m

2

n−1
∑

k=0

(−1)k
(

n

k

)(

−l − 1

n− 1− k

)

Ek(y)En−1−k(x)

=
m

2

n−δl,m
∑

k=0

(−1)k
(

n

k

)(

−l − 1

m+ n− l − 1− k

)

Ek(y)Em+n−l−1−k(x)

=
m

2

n
∑

k=δl,m

(−1)n−k
(

n

k

)(

−l − 1

m− l − 1 + k

)

En−k(y)Em−l−1+k(x),

which gives (1.11) after a few trivial steps.
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In light of Theorem 1.1(ii),

l

[

m n
x y

]

n

= m

[

n −l
y z

]

n

+ n

[

−l m
z x

]

n

.

That is,

l
m
∑

k=0

(−1)m−k
(

m

k

)(

n

n− l + k

)

Bn−l+k(x)Bm−k(y)

= m
n
∑

k=0

(−1)n−k
(

n

k

)(

−l

m− l + k

)

Bm−l+k(y)Bn−k(z)

+ n
m
∑

k=0

(−1)n−k
(

−l

n− k

)(

m

k

)

Bk(z)Bn−k(x).

This is equivalent to (1.12). We are done.

3. Proofs of Theorem 1.3 and Corollary 1.5

Lemma 3.1. Let n be a nonnegative integer and s be a parameter. Then

(3.1) lim
t→0

1

t

((

s+ t

n

)

−

(

s

n

))

=

(

s

n

)

∑

0≤l<n

1

s− l
.

In particular ,

(3.2) lim
t→0

1

t

((

t− 1

n

)

− (−1)n
)

= (−1)n−1Hn.

Proof. Observe that
(

s+ t

n

)

=

(

s

n

)

∏

0≤l<n

s+ t− l

s− l
=

(

s

n

)

∏

0≤l<n

(

1 +
t

s− l

)

.

So (3.1) follows. In the case s = −1, (3.1) turns out to be (3.2).

Proof of Theorem 1.3. Formula (1.1) in the case s = −1 yields

(−1)n
n
∑

k=0

(

n− t

k

)

Bk(x)En−k(z)

− (−1)n
n
∑

k=0

(−1)k
(

n− t

k

)(

t

n− k

)

Bk(y)En−k(z)

=
n− t

2

n−1
∑

l=0

(

t

n− 1− l

)

En−1−l(x)El(y).
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For each k = 0, 1, . . . , n we clearly have
(

n− t

k

)(

t

n− k

)

=

(

n

k

)(

t

n

)

(n− t)(n− t− 1) · · · (n− t− k + 1)

(t− n+ k) · · · (t− n+ 1)

= (−1)k
(

n

k

)(

t

n

)

t− n

t− n+ k
.

Therefore

(−1)n

2

n−1
∑

k=0

(

t

k

)

Ek(x)En−1−k(y)−
1

n− t

n
∑

k=0

(

n− t

k

)

Bk(x)En−k(z)

=

(

t

n

) n
∑

k=0

(

n

k

)

Bk(y)

t+ k − n
En−k(z) =

(

t

n

) n
∑

l=0

(

n

l

)

El(z)

t− l
Bn−l(y).

This proves (1.13).

Now we come to prove (1.14) and view s = n − 1 − r − t as a function
in r. In light of (1.1),

1

2

n−1
∑

l=0

(−1)l
(

s

l

)(

t

n− 1− l

)

El(y)En−1−l(x)

=
1

r

n
∑

k=0

(−1)k
(

r

k

)

En−k(z)

((

s

n− k

)

Bk(x)− (−1)
n

(

t

n− k

)

Bk(y)

)

=

n
∑

k=1

(−1)k

k

(

r − 1

k − 1

)

En−k(z)

((

s

n− k

)

Bk(x)− (−1)
n

(

t

n− k

)

Bk(y)

)

+ (−1)nEn(z)
(−1)n

(

s
n

)

−
(

t
n

)

r
.

By Lemma 3.1,

lim
r→0

1

r

(

(−1)n
(

s

n

)

−

(

t

n

))

= lim
r→0

1

r

((

r + t

n

)

−

(

t

n

))

=

(

t

n

) n−1
∑

l=0

1

t− l
.

As in the proof of (1.13), we also have

(−1)l
(

n− 1− t

l

)(

t

n− 1− l

)

=

(

n− 1

l

)(

t

n− 1

)

t− (n− 1)

t− (n− 1) + l

=
n

t+ l − (n− 1)

(

t

n

)(

n− 1

l

)

for every l = 0, 1, . . . , n − 1. Thus, by letting r → 0 we deduce from the
above that
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n

2

(

t

n

) n−1
∑

l=0

(

n− 1

l

)

El(y)En−1−l(x)

t+ l − n+ 1
− (−1)nEn(z)

(

t

n

) n−1
∑

l=0

1

t− l

= −
n
∑

k=1

En−k(z)

((

n− 1− t

n− k

)

Bk(x)

k
− (−1)n

(

t

n− k

)

Bk(y)

k

)

,

which is equivalent to (1.14).

Now we turn to proving (1.15). Let us view s = n− r − t as a function
in r. Then

lim
r→0

[

s t
x y

]

n

=

[

n− t t
x y

]

n

=
n
∑

k=0

(

n

k

)(

t

n

)

t− n

t− n+ k
Bn−k(x)Bk(y)

= (t− n)

(

t

n

) n
∑

l=0

(

n

l

)

Bl(x)

t− l
Bn−l(y).

On the other hand,

lim
r→0

1

r

(

s

[

t r
y z

]

n

+ t

[

r s
z x

]

n

)

= (n− t)(−1)n−1
n−1
∑

k=0

(

t

k

)

Bn−k(y)

n− k
Bk(z)

− t
n
∑

k=1

(

n− t

n− k

)

Bk(x)

k
Bn−k(z) + (−1)

nBn(z)R

where

R = lim
r→0

1

r

(

(n− t− r)

(

t

n

)

+ (−1)nt

(

n− t− r

n

))

= lim
r→0

1

r

(

t

(

r + t− 1

n

)

− (t− n)

(

t

n

))

−

(

t

n

)

= lim
r→0

t

r

((

r + t− 1

n

)

−

(

t− 1

n

))

−

(

t

n

)

= t

(

t− 1

n

) n−1
∑

l=0

1

t− 1− l
−

(

t

n

)

= t

(

t− 1

n

) n−1
∑

k=1

1

t− k
.

Applying (1.2) we then get (1.15) from the above.

The proof of Theorem 1.3 is now complete.

Proof of Corollary 1.5. We can easily get (1.21) by calculating the limit
of the left-hand side of (1.15) minus the right-hand side of (1.15) as t tends
to 0. Thus it remains to show (1.19) and (1.20).
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Equation (1.13) can be rewritten in the form

(−1)n

2
t
n−1
∑

k=1

(

t− 1

k − 1

)

Ek(x)

k
En−1−k(y) +

(−1)n

2
En−1(y)

=

n
∑

k=0

(

(

n−t
k

)

n− t
−

(

n
k

)

n

)

Bk(x)En−k(z) +
1

n

n
∑

k=0

(

n

k

)

Bk(x)En−k(z)

+
t

n

(

t− 1

n− 1

)(

Bn(y)

t
+
n
∑

k=1

(

n

k

)

Ek(z)

t− k
Bn−k(y)

)

.

Letting t→ 0 we get

(3.3)
1

n

n
∑

k=0

(

n

k

)

Bk(x)En−k(z) + (−1)
n−1 Bn(y)

n
=
(−1)n

2
En−1(y).

Thus

(−1)n

2

n−1
∑

k=1

(

t− 1

k − 1

)

Ek(x)

k
En−1−k(y)

=

n
∑

k=0

1

t

(

(

n−t
k

)

n− t
−

(

n
k

)

n

)

Bk(x)En−k(z) +
Bn(y)

nt

((

t− 1

n− 1

)

− (−1)n−1
)

+
1

n

(

t− 1

n− 1

) n
∑

k=1

(

n

k

)

Ek(z)

t− k
Bn−k(y).

Letting t→ 0 we then have

(−1)n

2

n−1
∑

k=1

(−1)k−1

k
Ek(x)En−1−k(y)+

(−1)n−1

n

n
∑

k=1

(

n

k

)

Ek(z)

k
Bn−k(y)

=
n
∑

k=0

lim
t→0

n
(

n−t
k

)

− (n− t)
(

n
k

)

tn(n− t)
Bk(x)En−k(z) +

Bn(y)

n
(−1)nHn−1.

Observe that

lim
t→0

n
(

n−t
k

)

− (n− t)
(

n
k

)

t(n− t)
= lim
t→0

(

(

n
k

)

n− t
−
n

n− t
·

(

n−t
k

)

−
(

n
k

)

−t

)

=
1

n

(

n

k

)

−

(

n

k

) k−1
∑

l=0

1

n− l
= −

(

n

k

)

∑

0<l<k

1

n− l
=

(

n

k

)

(Hn−k −Hn−1).

Therefore

(−1)n−1

2

n−1
∑

k=1

(−1)k

k
Ek(x)En−1−k(y) +

(−1)n−1

n

n
∑

k=1

(

n

k

)

Ek(z)

k
Bn−k(y)

= (−1)nHn−1
Bn(y)

n
+
1

n

n
∑

k=0

(

n

k

)

(Hn−k −Hn−1)Bk(x)En−k(z)
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= (−1)nHn−1
Bn(y)

n
−
Hn−1
n

n
∑

k=0

(

n

k

)

Bk(x)En−k(z)

+
1

n

n
∑

l=0

(

n

l

)

HlEl(z)Bn−l(x)

= −Hn−1
(−1)n

2
En−1(y) +

1

n

n
∑

k=0

(

n

k

)

HkEk(z)Bn−k(x).

This proves (1.19).

We can reformulate (1.14) as follows:

t

2

(

t− 1

n− 1

) n−1
∑

k=1

(

n− 1

k

)

Ek(x)

t− k
En−1−k(y) +

1

2

(

t− 1

n− 1

)

En−1(y)

− (−1)nEn(z)
t

n

(

t− 1

n− 1

) n−1
∑

k=1

1

t− k
− (−1)n

En(z)

n

(

t− 1

n− 1

)

= (−1)nt
n−1
∑

k=1

(

t− 1

n− k − 1

)

Bk(y)

k
·
En−k(z)

n− k
+ (−1)n

Bn(y)

n

−

n
∑

k=1

((

n− 1− t

n− k

)

−

(

n− 1

n− k

))

Bk(x)

k
En−k(z)

−
n
∑

k=1

(

n− 1

n− k

)

Bk(x)

k
En−k(z).

In view of (3.3),
n
∑

k=1

(

n− 1

n− k

)

Bk(x)

k
En−k(z) =

n
∑

k=1

(

n− 1

k − 1

)

Bk(x)

k
En−k(z)

= (−1)n
(

Bn(y)

n
+
En−1(y)

2

)

−
En(z)

n
.

Therefore

1

2

(

t− 1

n− 1

) n−1
∑

k=1

(

n− 1

k

)

Ek(x)

t− k
En−1−k(y)− (−1)

n En(z)

n

(

t− 1

n− 1

) n−1
∑

k=1

1

t− k

= (−1)n
n−1
∑

k=1

(

t− 1

n− k − 1

)

Bk(y)

k
·
En−k(z)

n− k

+
n−1
∑

k=1

(

n−1−t
n−k

)

−
(

n−1
n−k

)

−t
·
Bk(x)

k
En−k(z)

−

(

En−1(y)

2
+ (−1)n−1

En(z)

n

)

(

t−1
n−1

)

− (−1)n−1

t
.
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Letting t→ 0 we obtain

(−1)n

2

n−1
∑

k=1

(

n− 1

k

)

Ek(x)

k
En−1−k(y)−

En(z)

n
Hn−1

=
n−1
∑

k=1

(−1)k−1
Bk(y)

k
·
En−k(z)

n− k

+
n−1
∑

k=1

(

n− 1

n− k

)( n−k−1
∑

l=0

1

n− 1− l

)

Bk(x)

k
En−k(z)

+Hn−1

(

(−1)n−1

2
En−1(y) +

En(z)

n

)

.

It follows that

(−1)n

2

n−1
∑

k=1

(

n− 1

k

)

Ek(x)

k
En−1−k(y) +

n−1
∑

k=1

(−1)k
Bk(y)

k
·
En−k(z)

n− k

=

n
∑

k=1

(

n− 1

n− k

)

(Hn−1 −Hk−1)
Bk(x)

k
En−k(z)

+Hn−1

(

(−1)n−1

2
En−1(y) + 2

En(z)

n

)

= −
n
∑

k=1

(

n− 1

k − 1

)

Hk−1
Bk(x)

k
En−k(z) +Hn−1R

where

R =

n
∑

k=1

(

n− 1

k − 1

)

Bk(x)

k
En−k(z) +

(−1)n−1

2
En−1(y) +

2

n
En(z)

=
1

n
(En(z) + (−1)

nBn(y)) (by (3.3)).

This proves (1.20). We are done.
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