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On the number of rational squares

at fixed distance from a fifth power

by

Michael Stoll (Bremen)

1. Introduction. Let A 6= 0 be a rational number. We are interested
in the number of rational solutions (x, y) to the equation y2 = x5 + A. In
more geometric terms, this amounts to counting the (affine) rational points
on the curve CA given by the (affine) equation

CA : y2 = x5 + A.

In this note, we take up ideas from [St2] and apply them to this family of
genus 2 curves. In the following, CA will denote a smooth projective model
of the curve in question. With respect to rational points, this means that
there is one additional rational point “at infinity”, which we will denote ∞
in what follows.

Let JA be the Jacobian of CA, and denote by rA the Mordell–Weil rank
of JA(Q). Since CA and CB are isomorphic when the quotient A/B is a
tenth power, we can (and will) assume that A is an integer, not divisible by
the tenth power of any prime. Let nA be half the number of “nontrivial”
points in CA(Q), i.e., finite points with nonvanishing x and y coordinates.
Then #CA(Q) = 2nA + dA, where dA = 1, 2, 3, or 4 if A is neither a square
nor a fifth power, a fifth power but A 6= 1, a square but A 6= 1, or A = 1,
respectively. Since r1 = 0, we have dA ≤ 3 if rA ≥ 1.

The numbers we are interested in are nA and #CA(Q) = dA + 2nA. The
result we will prove is as follows.

Theorem 1.1. Let A be a tenth power free integer , and assume that

rA = 1. Then nA ≤ 2 and therefore #CA(Q)≤ 7. Furthermore, #CA(Q) = 7
only when A = 182.
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Let S be the set of tenth power free integers. If we define

N(r) = max{nA : A ∈ S, rA = r},
B(r) = max{#CA(Q) : A ∈ S, rA = r},

then the theorem says that N(1) = 2, B(1) = 7.

For r = 0, we obtain N(0) = 1, B(0) = 4. This is because the torsion
points on CA are known to be (see for example [Poo])

∞, (−ζk 5
√

A, 0), (0,±
√

A), (ζk 5
√

4A,±
√

5A),

where ζ is a primitive fifth root of unity. The only nontrivial points in this
list are of the form given last. But there is only one value of A, namely
A = 28 ·55, such that this leads to a pair of rational points on CA. We have
rA = 0 and nA = 1 in this case (but dA = 1, so #CA(Q) = 3). For all
other A such that rA = 0, we must have nA = 0, hence #CA(Q) = dA ≤ 4.
The maximum is attained for the unique A with dA = 4, namely A = 1.

Since the method of proof can be applied only when rA < g(CA) = 2,
we cannot obtain exact values for higher ranks. However, we have found the
following examples, thus obtaining lower bounds:

r N(r) B(r) A with max. N(r) A with max. B(r)

0 1 4 28
·55 1

1 2 7 22
·34 22

·34

2 ≥ 3 ≥ 9 22
·34

·74 22
·34

·74

3 ≥ 4 ≥ 11 22
·32

·54
·74 22

·32
·54

·74

4 ≥ 6 ≥ 15 34
·74

·194 34
·74

·194

For these examples, the rank rA was determined by first computing an upper
bound using 2-descent as described in [St1] and then exhibiting sufficiently
many independent points in the Mordell–Weil group (which are here pro-
vided by the rational points on CA).

2. The method. We will apply Chabauty’s method with a twist, as
explained in [St2]. In that paper, we were only considering sufficiently large
primes. In our situation, we obtain the following result in this way. Here and
subsequently, vp denotes the normalized p-adic valuation.

Proposition 2.1. Suppose that rA = 1. Then nA ≤ 1 in the following

cases:

(1) vp(A) = 5 for some prime p ≥ 7.
(2) vp(A) ∈ {2, 4, 6, 8} for some prime p ≥ 11.
(3) vp(A) ∈ {1, 3, 7, 9} for some prime p ≥ 17.
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Proof. We use the main result of [St2], applied to CA with Γ taken to
be (1) µ2 acting on y, (2) µ5 acting on x, and (3) µ2 × µ5 acting on (y, x),
respectively. Note that in each case, CA is a Γ -twist of CA/pvp(A) , which has

good reduction at p.

In principle, this reduces the cases we have to check to a finite number.
However, the number of cases is large (a priori, there are 103·9·52 = 225 000
curves; we can expect close to half of them to have rA = 1), and dealing
with them one by one would require a very large amount of computation.

We therefore want to use the method at the small primes as well. This
will reduce the cases we have to look at to a manageable number.

The basic setup is as follows. If rA = 1, then there is a differential

ω =
(α + βx)dx

2y
∈ Ω(CA/Qp)

(with (α : β) ∈ P1(Qp)) killing the Mordell–Weil group in the sense that

λω(P ) =

P\
0

ω = 0 for all P ∈ JA(Q).

Note that the integral is linear both in P ∈ JA(Qp) and in ω, and vanishes
when P is a torsion point in JA(Qp). We embed CA into JA using the point
at infinity as a base point and from now on consider CA as a subvariety of JA.
Then CA(Q) is contained in the set of zeros of λω on CA(Qp). Therefore the
number of nontrivial rational points is bounded by the number of nontrivial
zeros of λω (note that λω vanishes at the trivial points, since they are mapped
to torsion points of JA).

Before we use the twisting trick of [St2], let us prove a result that will help
reduce the number of cases later, using the standard Chabauty technique.

Lemma 2.2. Assume that rA = 1. If A ≡ 1 mod 3, then we have

nA ≤ 1. If A ≡ −1 mod 3, then we have nA ≤ 2.

Proof. If A ≡ 1 mod 3, then CA(F3) = {∞, (0, 1), (0,−1), (−1, 0)}. If
A ≡ −1 mod 3, then CA(F3) = {∞, (−1, 1), (−1,−1), (1, 0)}.

Let ω be the reduction of (a suitable multiple of) ω mod 3. We find
that v(3, 0) = 0, v(3, 1) = 1, v(3, 2) = 0 in the notation of [St2, § 6]. By
Proposition 6.3 in [St2], the number of zeros of λω in the residue class
of P ∈ CA(F3) is at most 1+n+v(3, n), where n = vP (ω). This implies that
we can only get nontrivial points in residue classes on which ω vanishes, or
in nontrivial residue classes. Furthermore, the number of zeros of λω in the
residue class of P can be at most 3, since vP (ω) ≤ 2. The two nontrivial
classes (−1,±1) that occur for A ≡ −1 mod 3 contain the torsion point
( 5
√

4A,±
√

5A) ∈ CA(Q3). Since this point is rational only when A = 28 ·55,
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and rA = 0 in this case, it is still true that we can get nontrivial rational
points in these classes only when ω vanishes there.

Let us consider the various classes in turn. If P = ∞ or P = (±1, 0)
and ω vanishes at P (then of second order), there can only be one pair of
nontrivial rational points in this residue class, and hence nA ≤ 1, since no
other class contributes to nA.

In the other cases, ω can only vanish to first order. One of the a priori up
to three zeros on the residue class will be a torsion point, which is trivial or
not rational. Therefore there can be at most two pairs of nontrivial rational
points, and nA ≤ 2. It remains to show that in fact, nA ≤ 1 if A ≡ 1 mod 3.
In this case, we have P = (0,±1) with vP (ω) = 1, so ω = x dx/2y.

We write A = a2 with a ∈ Z×

3 such that (0, a) reduces to the point we are
considering. As t = x is a uniformizer, we have, taking ω = (3α + x)dx/2y,

y

a
= 1 +

t5

2A
+ O(t10),

a dx

y
=

(

1 − t5

2A
+ O(t10)

)

dt,

2aω =

(

3α + t − 3α

2A
t5 + O(t7)

)

dt, 2aλω = 3αt +
t2

2
− α

4A
t6 + O(t8).

We see that there is only one nontrivial root in 3Z3 (with t ≡ 3α mod 9);
therefore nA ≤ 1.

3. Looking at the small primes. Our first goal is to show that nA ≤ 2
for all A such that rA = 1, by a detailed study of the 3-adic situation. We
have covered the case v3(A) = 0 in Lemma 2.2 already, so here we will
consider the cases 1 ≤ v3(A) ≤ 9.

We keep the notations introduced above. However, we now suppose that
A is divisible by p (we will mostly take p = 3 below), so that A = pνa with
some 1 ≤ ν ≤ 9 and a ∈ Z×

p . Let π = p1/10 and set x = π2νX, y = π5νY ;
then over Qp(π), CA is isomorphic to

Ca : Y 2 = X5 + a,

and on Ca,

ω = (π−να + πνβX)
dX

2Y
.

Since Qp(π)/Qp is totally ramified, the residue class field of Qp(π) is Fp.
The points in CA(Qp) are mapped to one of the following types of points
in Ca(Fp) (here b ∈ Fp denotes the image of b ∈ Zp):

1. ∞,

2. (−b, 0) if ν = 5 and a = b5 for some b ∈ Zp,

3. (0, b) if ν is even and a = b2 for some b ∈ Zp.

This holds when p 6= 2, 5. It still holds when p = 2 or 5 and p ∤ ν.
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We want to bound the number of nontrivial points in CA(Q) mapping to
each of these points mod π. If p is large enough, this bound is given by the
order of vanishing of the differential ω at the point in question (assuming ω
is scaled such that it is integral and reduces to something nonzero mod π).
This is how the results in Proposition 2.1 are obtained. In order to get
bounds when p is small, we need to take a closer look at the logarithm

λω(T ) := λω(P (T )) =

P (T )\
0

ω =

P (T )\
P (0)

ω

(recall that the logarithm vanishes on torsion points), where T is a uni-
formizer at the trivial point P (0) in the residue class under consideration,
and P (T ) is the point corresponding to the value T ∈ πOπ of the uni-
formizer. This logarithm λω can be expanded into a power series in T , and
the number of its zeros in πOπ can be bounded above by considering the
valuations of the coefficients (and, in some cases, the factoring of polynomi-
als over Fp). In fact, we are only interested in zeros that arise from points
in CA(Qp), which restricts the possibilities further.

We discuss the various possible image points in turn.

The residue class of ∞. The corresponding points on CA have t =
x2/y ∈ Zp, and therefore have T = X2/Y = πνt ∈ πνZp. Note that T
is a uniformizer at ∞ on Ca. We have the equations

X−1 = T 2 (1 + aX−5), Y −1 = TX−2,

so

X = T−2(1 − aT 10 + O(T 20)),

−dX

2Y
= T 2(1 + 6aT 10 + O(T 20))dT,

−ω = (βπν + απ−νT 2 + 5aβπνT 10 + 6aαπ−νT 12 + O(T 20))dT,

−λω = βπνT +
α

3
π−νT 3 +

5aβ

11
πνT 11 +

6aα

13
π−νT 13 + O(T 21)

= π2ν

(

βt +
α

3
t3 +

5aβ

11
pνt11 +

6aα

13
pνt13 + · · ·

)

.

Since 3, 11 and 13 are the only primes occurring in the denominators of
relevant coefficients (the later terms do not matter, as is easily seen), we see
that for all other primes p, the following holds.

If (α : β) = (0 : 1) ∈ P1(Fp), then there is only one rational point

(namely ∞) in this residue class. Otherwise, if (α : β) = (1 : 0), there may
be three, and if (α : β) = (1 : ξ) with ξ 6= 0, there is one point if −3αβ is a
nonsquare mod p, and at most three points if −3αβ is a square mod p.
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We will not discuss p = 11 and p = 13 here. If p = 3, there always are
at most three points, but the condition is shifted. We write

ω = (3α′ + βx)dx/2y with α′, β ∈ Z3;

then there can be three points if α′ 6= 0 and −α′β is a square. We obtain
the following result, strengthening Proposition 2.1(3).

Lemma 3.1. Suppose rA = 1. If vp(A) ∈ {1, 3, 7, 9} for some p 6= 11, 13,
then nA ≤ 1.

Proof. Note that if vp(A) ∈ {1, 3, 7, 9}, then ∞ is the only point in Ca(Fp)
that is hit by CA(Q). By the preceding discussion, there is at most one pair
of nontrivial rational points in this residue class.

The residue class of (−b, 0). We now assume ν = 5 (and p 6= 5) and
a = b5, so we have y2 = x5 + p5b5. The points in the residue class we are
considering have x ≡ −bp mod p2 and y ≡ 0 mod p3. We choose T = Y as
the uniformizer on Ca; then T =

√
p t with t ∈ Zp. Expanding everything in

terms of T , we get

X = −b(1 − a−1 T 2)1/5

= −b

(

1 − 1

5a
T 2 − 2

(5a)2
T 4 − 6

(5a)3
T 6 + O(T 8)

)

,

5a

b

dX

2Y
=

(

1 +
4

5a
T 2 +

18

(5a)2
T 4 + O(T 8)

)

dT,

5a

b

X dX

2Y
= −b

(

1 +
3

5a
T 2 +

12

(5a)2
T 4 + O(T 8)

)

dT,

5a

b
ω =

1√
p

(

(α − bβp) +
4α − 3bβp

5a
T 2 + · · ·

)

dT,

5a

b
λω =

1√
p

(α − bβp)T +
4α − 3bβp

3·5a
T 3 + · · ·

= (α − bβp)t +
(4α − 3bβp)p

3·5a
t3 + · · · .

The interesting case for us here is p = 3. We again write α = 3α′ and assume
that α′, β ∈ Z3, not both in 3Z3; then up to scaling, mod 3 we have

λω ∼ t((α′ − b β) − a−1 α′ t2).

If α′ = 0, there will be only one solution. If α′ = 1, we will have three solu-
tions if a(1−bβ) is a square, and one solution if it is a nonsquare. In any case,
there is at most one pair of nontrivial rational points in this residue class.
For all other primes p 6= 5, we get at most one pair of nontrivial rational
points in this class as well, but only if vp(α) > vp(β). We therefore obtain,
taking into account the discussion of ∞ above, the following strengthening
of Proposition 2.1(1).
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Lemma 3.2. Suppose rA = 1. If v3(A) = 5, then nA ≤ 2. If vp(A) = 5
for a prime p /∈ {3, 5}, then nA ≤ 1.

The residue class of (0, b). Let ν = 2n and set µ = min{m ∈ Z : 5m > n}.
We must exclude p = 2 here. We have ̺ = 5µ−ν = 3, 1, 4, 2 for n = 1, 2, 3, 4,
respectively. The points in the residue class have x = pµt with t ∈ Zp and
y ≡ bpn mod pn+1. We choose T = X = π2̺t as a uniformizer on Ca. This
gives

Y −1 = b−1(1 + a−1T 5)−1/2 = b−1

(

1 − 1

2a
T 5 +

3

8a2
T 10 + O(T 15)

)

,

b
dX

Y
=

(

1 − 1

2a
T 5 +

3

8a2
T 10 + O(T 15)

)

dT,

2bω =

(

απ−2n + βπ2nT − α

2a
π−2nT 5 − β

2a
π2nT 6 + O(T 10)

)

dT,

2bλω = απ−2nT +
β

2
π2nT 2 − α

3·4a
π−2nT 6 − β

7·2a
π2nT 7 + · · ·

= π2(̺−n)

(

αt +
β

2
pµt2 − α

3·4a
p̺t6 − β

7·2a
p̺+µt7 + · · ·

)

.

If p /∈ {2, 3, 7}, then there is at most one nontrivial solution, and we
obtain at most one pair of nontrivial rational points mapping to (0,±b).
Together with the discussion of ∞, this proves the following. The only new
case is p = 5, since p ≥ 11 is already taken care of by Proposition 2.1(2).

Lemma 3.3. Assume rA = 1 and vp(A) ∈ {2, 4, 6, 8} for some p /∈
{2, 3, 7}. Then nA ≤ 1.

Proof. We have a contribution of at most 1 to nA from ∞ and a contri-
bution of at most 1 from (0,±b). However, we get a contribution from ∞
only when vp(β) ≥ vp(α), but then there is no contribution from (0,±b), as
can be seen from the expansion of λω above.

We have to consider the cases p = 3 and p = 7 separately. When p = 3,
we have, with ω = (3α′ + βx)dx/2y as before,

λω ∼ α′t +
β

2
3µ−1t2 − α′

4a
3̺−1t6 + · · · .

If ̺ > 1, only the first two terms matter. We get extra solutions only if
v3(α

′) ≥ v3(β) + µ − 1. If ̺ = 1 (and therefore µ = 1, ν = 4), we have to
look at solutions in F3 of

t(α′ − βt − α′t5).

(Recall that a is a square, so a = 1.) If α′ = 0, there is one extra solution.
Otherwise, we can take α′ = 1, and then we have no extra solutions if
β = −1, we have one extra solution if β = 0, and we have potentially two
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extra solutions if β = 1. Considering this together with the result at infinity,
we get the following.

Lemma 3.4. Suppose rA = 1. If v3(A) ∈ {6, 8}, then nA ≤ 1. If v3(A) ∈
{2, 4}, then nA ≤ 2.

Proof. The following table summarizes the possible contributions to nA

from the residue classes of ∞ and of (0,±b), depending on the reduction
mod 3 of (α′ : β) ∈ P1(Q3):

(0,±b)
(α′ : β) ∞

ν = 2 ν = 4 ν = 6, 8

(0 : 1) 0 ≤ 1 ≤ 1 ≤ 1

(1 : 0) ≤ 1 0 ≤ 1 0

(1 : 1) 0 ≤ 1 ≤ 2 0

(1 : −1) ≤ 1 ≤ 1 0 0

We see that nA ≤ 1 for ν = 6 or 8, whereas nA ≤ 2 for ν = 2 or 4.

Now we consider p = 7. This leads to

λω ∼ t

(

α +
β

2
7µt − α

12a
7̺t5 − β

2a
7̺+µ−1t6 + · · ·

)

.

The t5 term is irrelevant. If α 6= 0, then there are no extra solutions. In
general, we need v7(α) ≥ v7(β) + µ for there to be extra solutions. In this
case, if ̺ > 1, then there is just one extra solution. If ̺ = 1, i.e., ν = 4 and
α = 7α′, then (taking β = 1 without loss of generality), we must consider
the roots in F7 of

α′t − 3t2 + 3a−1t7.

There can be more than one extra solution; in this case there are up to four
extra solutions. In any case, together with the result at infinity, we get the
following.

Lemma 3.5. Suppose rA = 1. If v7(A) ∈ {2, 6, 8}, then nA ≤ 1.

Putting it together. Collecting the information obtained so far, we see
that Lemmas 2.2, 3.1, 3.2 and 3.4 cover all cases. This proves the first part
of Theorem 1.1.

Now, if A is such that rA = 1 and #CA(Q) = 7, we need to have dA = 3
and nA = 2. So A has to be a square. Furthermore, by Lemma 3.3, the
prime factors of A are contained in {2, 3, 7}, by Lemma 3.5, v7(A) ∈ {0, 4},
and by Lemmas 2.2 and 3.4, v3(A) ∈ {2, 4}. This leaves 5·2·2 = 20 values
of A to check. We can reduce the number of cases further by noting that if
A ≡ 1, 3, 9 mod 11, all points in CA(F11) lift to torsion points in CA(Q11),
and therefore by standard Chabauty, nA ≤ 1. This reduces the list to the
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following eight values:

A ∈ {32 ·74, 34, 22 ·34, 22 ·34 ·74, 24 ·34 ·74, 26 ·32, 28 ·32, 28 ·32 ·74}.
The table below summarizes the data for these curves:

A rA nA A rA nA

32
·74 2 ≥ 1 34 2 ≥ 2

22
·34 1 2 22

·34
·74 2 ≥ 3

24
·34

·74 3 ≥ 2 26
·32 1 1

28
·32 1 0 28

·32
·74 0 0

The ranks rA have been found by computing an upper bound as described
in [St1] and exhibiting sufficiently many independent points in JA(Q) (which
are mostly provided by points in CA(Q)). The values for nA in the cases
when rA = 1 have been verified by a standard Chabauty computation (at
p = 29 for A = 28 ·32, at p = 29 and p = 59 for A = 26 · 32: there are four
extra residue classes left after the computation with p = 29, which can then
be excluded by looking mod 59; see [PSS, § 12] for an explanation of the
method).

This shows that A = 182 = 22·34 is the only value such that rA = 1 and
CA has 7 rational points. The last statement of Theorem 1.1 is therefore
also verified.

It would be interesting to find out if there are more values of A such that
rA = 1 and nA = 2 (which then will be nonsquares). It is clear by the dis-
cussion in this paper that there can only be finitely many. The problem one
encounters in practice is that in many cases, generators of the Mordell–Weil
group appear to be too large to be found, and hence the Chabauty computa-
tion cannot be carried out. On the other hand, it is very unlikely that there
are nontrivial points on CA when JA(Q) has a very large generator. Since
none of the curves that are amenable to computation has nA = 2, A = 182

is likely to be the only value of A that has rA = 1 and nA = 2.

In any case, it is easy to see that there is no A such that rA = 1 and
#CA(Q) = 6. This would imply that nA = 2 and A is a fifth power, so
by Lemma 3.2, A is one of 1, 35, 55, 35 ·55. But all these values satisfy
A ≡ 1 mod 11, so nA ≤ 1 if rA = 1 (which is the case for A = 35 and 35·55).

On the other hand, there are likely to be infinitely many A such that rA

= 1 and #CA(Q) = 5: every A = a2 such that rA = 1 and such that CA has a
nontrivial rational point will provide an example (unless a = 18, of course).
Values of a satisfying the latter condition abound (writing (y+a)(y−a) = x5,
they are easily parametrized), and we can expect infinitely many of them to
satisfy ra2 = 1. However, it appears to be very hard to prove that, or even
give a reasonable characterization of these values.
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