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1. Introduction. Let Fq be a finite field with q elements, Fq[X] the
set of polynomials with Fq-coefficients, Fq(X) the set of rational functions
with Fq-coefficients, and Fq((X

−1)) the set of formal Laurent series with
Fq-coefficients. For an element f = anX

n + an−1X
n−1 + · · · ∈ Fq((X

−1))
with ai ∈ Fq, an 6= 0, we define

deg f = n and |f | = qdeg f .

In particular, we put deg 0 = −∞ and |0| = 0 for 0 ∈ Fq. Moreover define

L = {f ∈ Fq((X
−1)) : deg f < 0}.

We consider the topology on L induced by the metric d(f, g) = |f − g| for
f, g ∈ L, and denote by µ the Haar probability measure on L. K. Inoue and
H. Nakada [2] showed that for any sequence (ln : n ≥ 1) of non-negative
integers the inequality∣∣∣∣f −

P

Q

∣∣∣∣ <
1

q2n+ln
, P,Q ∈ Fq[X], degQ = n, and P,Q co-prime,(1)

has infinitely many solutions P/Q ∈ Fq(X) for µ-a.e. f if and only if
∞∑

n=1

1

qln
= ∞.

Moreover, the proof implied that the law of large numbers holds in the
following sense:

♯

{
P

Q
: (1) holds and 1 ≤ n ≤ N

}
=
q − 1

q
Φ(N)+O(Φ(N)1/2 log3/2+ε Φ(N))

for µ-a.e. f , where

Φ(N) =

N∑

n=1

1

qln
.
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Indeed, this is a consequence of the quantitative Borel–Cantelli lemma by
W. Philipp [5]. In the following, we write (P,Q) = 1 if P and Q are co-prime.

In this paper, we consider the same inequality without the co-primality
condition. Then there are two different types of inequalities, which are equiv-
alent but involve different ideas:

(I)

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln
, degQ = n,

(II) |Qf − P | <
1

qn+ln
, degQ = n.

For (I), “solutions” are rational functions, while for (II), there are pairs
of polynomials Q and P . When we consider the problem of approximation
of Laurent power series by rational functions, we should look at the first
inequality. However, it would be rather natural to consider (II) when we
discuss properties of generalized Kronecker sequences (see [3] and [4]). In-
deed, the Kronecker sequence of f is the sequence consisting of the negative
degree part of Qf for Q ∈ Fq[X] and it is of the form Qf − P . In §2 we
will show the strong law of large numbers for solutions of the inequality (I).
We cannot apply the quantitative Borel–Cantelli lemma for this result since
some events associated to (I) have strong dependence. However, we can
show that the probability of such events is small enough and we can ap-
ply the Basic Lemma stated below. This lemma is an abstract version of
the quantitative Borel–Cantelli lemma and has been used in the metric the-
ory of the classical Diophantine approximations, the real numbers case (see
Sprindžuk [6]). In §3, we also consider the strong law of large numbers for
solutions of (II). We use the non-Archimedean continued fractions to prove
this, since we cannot make use of the Basic Lemma. For this reason, it is not
possible to estimate the remainder term in this case. Actually, in §2 and §3,
we show the following. For n ≥ 0 we put

Wn =

{
P

Q
: P,Q ∈ Fq[X], degQ = n, degP < n, (P,Q) = 1

}
,

W ∗
n =

{
P

Q
: P,Q ∈ Fq[X], degQ = n, degP < n

}
,

W ∗∗
n = {(P,Q) : P,Q ∈ Fq[X], degQ = n, degP < n}.

Main Results.

(i) (Theorem 1) For any sequence (ln : n ≥ 1) of non-negative integers,
we have

♯

{
P

Q
∈W ∗

n : 1 ≤ n ≤ N,

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln

}

=
q

q + 1
Φ(N) +O(Φ(N)1/2 log3/2+ε Φ(N)) for µ-a.e. f.
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(ii) (Theorem 3) If (ln : n ≥ 1) satisfies

(A1) (ln : n ≥ 1) is non-decreasing and
∑∞

n=1 1/qln = ∞,
(A2) there exists a constant D > 1 such that jk+1 ≥ Djk for k ≥ 1,

where

j1 := min{n ≥ 2 : ln − ln−1 > 0},

jk := min{n > jk−1 : ln − ln−1 > 0} for k ≥ 2,

then

lim
N→∞

♯{(P,Q) ∈W ∗∗
n : 1 ≤ n ≤ N, |f − P/Q| < 1/q2n+ln}

Φ(N)
= q − 1

for µ-a.e. f.

As mentioned before, the following is essential in §2.

Basic Lemma (Sprindžuk [6, p. 45]). Let (ξn(ω) : n ≥ 1) be a sequence

of random variables defined on a probability space (Ω,B, P ). Moreover let

(ηn : n ≥ 1) and (η̂n : n ≥ 1) be sequences of real numbers such that

0 ≤ ηn ≤ η̂n ≤ 1 for n ≥ 1.

If \
Ω

( N2∑

n=N1

ξn(ω) − ηn

)2
dP ≪

N2∑

n=N1

η̂n

for any positive integers N1 < N2, then

N∑

n=1

ξn(ω) =
N∑

n=1

ηn +O(Ψ(N)1/2 log3/2+ε Ψ(N)) for P -a.e. ω,

where ε > 0 is arbitrary and Ψ(N) =
∑N

n=1 η̂n.

Throughout this paper, A(n) ∼ B(n) means limn→∞B(n)/A(n) = 1,
and A(n) ≪ B(n) means there exists a constant c > 0 such that A(n) <
cB(n) for any n ≥ 1.

2. The number of solutions as rational functions. Let (ln :n≥ 1)
be a sequence of non-negative integers. In this section, we consider the fol-
lowing inequality:

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln
,

P

Q
∈W ∗

n ,(2)

for f ∈ L. We define

F ∗
n =

{
f ∈ L : there exists

P

Q
∈W ∗

n such that

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln

}
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and

F ∗
n,k =

{
f ∈ L : there exists

P

Q
∈Wn−k such that

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln

}

for 0 ≤ k ≤ n, where we note that W0 = {0}.

Lemma 1.

F ∗
n =

n⋃

k=0

F ∗
n,k (disjoint union).

Proof. It is clear that f ∈ F ∗
n when f ∈ F ∗

n,k for some 0 ≤ k ≤ n.
Suppose that f ∈ F ∗

n and there are P1/Q1, P2/Q2 ∈W ∗
n such that

∣∣∣∣f −
Pi

Qi

∣∣∣∣ <
1

q2n+ln
, i = 1, 2.

Then ∣∣∣∣
P1

Q1
−
P2

Q2

∣∣∣∣ <
1

q2n+ln
.

Since degQ1 = degQ2 = n, we have |P1/Q1 − P2/Q2| ≥ 1/q2n unless
P1/Q1 = P2/Q2. Since every P/Q ∈ F ∗

n belongs to only one F ∗
n,k for 1 ≤

k ≤ n, we have the assertion of this lemma.

Lemma 2.

♯W ∗
n =

q

q + 1
q2n +

1

q + 1
.

Proof. It is obvious that ♯W ∗
n =

∑n
k=0 ♯Wk. Since ♯Wk = q2k − q2k−1 for

k ≥ 1 (see [2]), and ♯W0 = 1, we have the assertion.

Theorem 1. We have

♯

{
P

Q
∈W ∗

n : 1 ≤ n ≤ N,

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln

}

=
q

q + 1
Φ(N) +O(Φ(N)1/2 log3/2+ε Φ(N)) for µ-a.e. f .

Proof. It is sufficient to show that

♯{1 ≤ n ≤ N : f ∈ F ∗
n} =

q

q + 1
Φ(N) +O(Φ(N)1/2 log3/2+ε Φ(N))

for µ-a.e. f .

For this, we first show that

♯{1 ≤ n ≤ N : f ∈ F ∗
n} = Φ̃(N) +O(Φ̃(N)1/2 log3/2+ε Φ̃(N)) for µ-a.e. f

with Φ̃(N) =
∑N

n=1 µ(F ∗
n). We put

ξn(·) = χF ∗

n
(f) and ηn = η̂n = µ(F ∗

n)
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and apply the Basic Lemma. To do this, it is enough to show that

N2∑

n=N1

N2∑

n′=N1

(µ(F ∗
n ∩ F ∗

n′) − µ(F ∗
n)µ(F ∗

n′)) ≪

N2∑

n=N1

µ(F ∗
n).(3)

From Lemma 1, we see that

(4) µ(F ∗
n ∩ F ∗

n′) − µ(F ∗
n)µ(F ∗

n′)

=
n∑

k=0

n′∑

k′=0

(µ(F ∗
n,k ∩ F

∗
n′,k′) − µ(F ∗

n,k)µ(F ∗
n′,k′)).

From [2] we infer that

µ(F ∗
n,k ∩ F ∗

n′,k′) = 0 or µ(F ∗
n,k)µ(F ∗

n′,k′)

whenever n− k 6= n′ − k′. Thus we have

RHS (4) ≤

n∑

k=n−n′

(µ(F ∗
n,k ∩ F

∗
n′,n′+k−n) − µ(F ∗

n,k)µ(F ∗
n′,n′+k−n))(5)

≤
n∑

k=n−n′

µ(F ∗
n,k ∩ F ∗

n′,n′+k−n) for n < n′.

Now

(6)

N2∑

n=N1

N2∑

n′=N1

(µ(F ∗
n ∩ F ∗

n′) − µ(F ∗
n)µ(F ∗

n′))

≤

N2∑

n=N1

µ(F ∗
n) + 2

{ N2∑

n=N1

n−1∑

n′=N1

µ(F ∗
n ∩ F ∗

n′) − µ(F ∗
n)µ(F ∗

n′)
}
.

From (5), we find that

N2∑

n=N1

n−1∑

n′=N1

(µ(F ∗
n ∩ F ∗

n′) − µ(F ∗
n)µ(F ∗

n′))

≤

N2∑

n=N1

n−1∑

n′=N1

( n∑

k=n−n′

µ(F ∗
n,k ∩ F ∗

n′,n′+k−n)
)
≤

N2∑

n=N1

n−1∑

n′=N1

( n∑

k=n−n′

µ(F ∗
n,k)

)
.

Since µ(F ∗
n,k) = q−1

q · 1
qln+2k , we have

N2∑

n=N1

n−1∑

n′=N1

(µ(F ∗
n ∩ F ∗

n′) − µ(F ∗
n)µ(F ∗

n′)) ≪

N2∑

n=N1

n−1∑

n′=N1

1

qln
·

1

qn−n′
(7)

≪

N2∑

n=N1

1

qln
≪

N2∑

n=N1

µ(F ∗
n).
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Thus from (6) and (7) we have (3). Now we estimate
∣∣Φ̃(N) − q

q+1Φ(N)
∣∣.

From Lemma 2, we have

µ(F ∗
n) = ♯W ∗

n ·
1

qln+2n
=

q

q + 1
·

1

qln
+

1

q + 1
·

1

q2n+ln
.

Thus we see that
∣∣∣∣Φ̃(N) −

q

q + 1
Φ(N)

∣∣∣∣

=

∣∣∣∣
N∑

n=1

(
q

q + 1
·

1

qln
+

1

q + 1
·

1

q2n+ln

)
−

q

q + 1

N∑

n=1

1

qln

∣∣∣∣

=
1

q + 1

N∑

n=1

1

q2n+ln
< 1.

This implies the assertion of the theorem.

3. The number of solutions as pairs of polynomials. We consider
solutions (P,Q) ∈W ∗∗

n of
∣∣∣∣f −

P

Q

∣∣∣∣ <
1

q2n+ln
(8)

for f ∈ L. As mentioned in the introduction, the number of solutions of
∣∣∣∣f −

P

Q

∣∣∣∣ <
1

q2n+ln
, degQ = n, (P,Q) = 1, 1 ≤ n ≤ N,

is q−1
q Φ(N) + O(Φ(N)1/2 log3/2+ε Φ(N)). Suppose that (P,Q) = (RP̂ ,RQ̂)

for R ∈ Fq[X] with degR = k and co-prime polynomials P̂ , Q̂. Then

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln
implies

∣∣∣∣f −
P̂

Q̂

∣∣∣∣ <
1

q2(n−k)+ln+2k
.

On the other hand, if we have such a P̂ /Q̂, then there are (q − 1)qk choices

of R with degR = k, i.e. (q−1)qk solutions (P,Q) arising from (P̂ , Q̂). Thus
we have the following.

Theorem 2. For µ-a.e. f , we have

lim inf
N→∞

♯{(P,Q) ∈W ∗∗
n : 1 ≤ n ≤ N, (8) holds}

Φ(N)
≥ q − 1.
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Proof. The number of solutions of (8) with 1 ≤ n ≤ N is equal to

(q − 1) ♯

{
P

Q
∈Wn :

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln

}

+ (q − 1)q ♯

{
P

Q
∈Wn−1 :

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2(n−1)+(ln+2)

}

+ (q − 1)q2 ♯

{
P

Q
∈Wn−2 :

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2(n−2)+(ln+4)

}
+ · · ·

+ (q − 1)qn−1♯

{
P

Q
∈W1 :

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2+(ln+2(n−1))

}

(
+(q − 1)qn if |f | <

1

q2n+ln

)
.

Obviously, |f | > 1/q2n+ln for sufficiently large n unless f ≡ 0. We fix a
positive integer K and suppose K < N . For any 0 ≤ k ≤ K we have

♯

{
P

Q
∈Wn : 1 ≤ n ≤ N − k,

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln+2k

}

=
q − 1

q

1

q2k
Φ(N) +O(Φ(N)1/2 log3/2+ε Φ(N)) for µ-a.e. f .

Now

♯{(P,Q) ∈W ∗∗
n : 1 ≤ n ≤ N, (8) holds}

≥
K∑

k=0

(q − 1) qk♯

{
P

Q
∈Wn−k :

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2(n−k)+ln+2k

}

and the right hand side is

∼
K∑

k=0

(q − 1)qk q − 1

q

1

q2k
Φ(N) = (q − 1)

(
1 −

1

qK+1

)
Φ(N) for µ-a.e. f .

This implies the assertion of the theorem.

To bound the limsup, we need some conditions on (ln : n ≥ 1). Before we
discuss that, we recall some facts on continued fractions of formal Laurent
power series.

For any f ∈ L there exists a unique continued fraction expansion of the
following form:

f =
1

A1 +
1

A2 + ...

, An ∈ Fq[X] \ {0}.
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This expansion is finite if and only if f ∈ Fq(X). As usual, we put
{
P0 = 0, P1 = 1,

Q0 = 1, Q1 = A1,
and

{
Pn+1 = An+1 Pn + Pn−1,

Qn+1 = An+1Qn +Qn−1,

and have the nth convergent Pn/Qn for n ≥ 0. The following are well known
(e.g. V. Berthé and H. Nakada [1]):

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

|Q|2
with Q 6= 0 if and only if

P

Q
=
Pn

Qn
for some n ≥ 0,(9)

∣∣∣∣f −
Pn

Qn

∣∣∣∣ =
1

|Qn| |Qn+1|
=

1

|Qn|2|An+1|
,(10)

where (An) is an independent and identically distributed sequence of Fq[X]-
valued random variables with respect to µ, and

lim
N→∞

1

N
degQN = lim

N→∞

1

N

N∑

n=1

degAn =
q

q − 1
for µ-a.e. f.(11)

Now we assume the conditions (A1) and (A2) stated in §1. Then we have
the following.

Theorem 3. Under the conditions (A1) and (A2), we have

lim
N→∞

♯{(P,Q) ∈W ∗∗
n : 1 ≤ n ≤ N, (8) holds}

Φ(N)
= q − 1 for µ-a.e. f.

Proof. If (ln : n ≥ 1) is constant for sufficiently large n, the statement of
the theorem follows immediately from (9)–(11). So we assume that ln → ∞.
To prove the assertion, we only need to show that for µ-a.e. f ,

♯{(P,Q) ∈W ∗∗
n : 1 ≤ n ≤ N, (8) holds} ≤ (q − 1)Φ(N)(1 + ε)(12)

where ε > 0 is arbitrary and N is sufficiently large.

For this purpose, we change (ln : n ≥ 1) to (l̃m : m ≥ 1) for counting the
number of solutions associated to continued fraction expansions. From (9),
for a given (P,Q) such that

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

|Q|2
,

there exists a unique m ≥ 0 such that

P

Q
=
Pm

Qm
.

In this case, there exist R ∈ Fq[X] and t ≥ 1 such that Q = RQm and
∣∣∣∣f −

P

Q

∣∣∣∣ =
1

|Q|2 qt
.
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This means ∣∣∣∣f −
Pm

Qm

∣∣∣∣ =
1

|Qm|2 qt+2deg R
.

From (10) we see that

t+ 2degR = degAm+1

and so
degQ < degQm+1.

Suppose that ln is constant for n ∈ [degQm, degQm+1). This implies the
following: if degQm = u and∣∣∣∣f −

Pm

Qm

∣∣∣∣ =
1

q2u+ln+2t+1
or

1

q2u+ln+2t+2
,

then there are

(q − 1) + (q − 1)q + (q − 1)q2 + · · · + (q − 1)qt(13)

solutions (P,Q) of (8) such that degQm ≤ degQ < degQm+1. Here we note
that degAm+1 = ln +2t+1 or ln +2t+2. Fix a sufficiently small ε > 0. We
put zk = ljk

− ljk−1
for k ≥ 2. By the assumption (A2), (1 + ε)jk < jk+1 for

k ≥ 1. So the following is well defined:

l̃m =

{
l[ q

q−1
m] − zk if jk ≤ q

q−1 m < (1 + ε)jk for some k ≥ 1,

l[ q
q−1

m] otherwise.

From (11), for µ-a.e. f there exists m0 such that

degQm ∈

[
q

q − 1
m

(
1 −

ε

2

)
,

q

q − 1
m

(
1 +

ε

2

))
for m ≥ m0.

We choose N0 so that

q

q − 1
m0

(
1 +

ε

2

)
≤ N0 <

q

q − 1
m0

(
1 +

ε

2

)
+ 1.

We consider a sufficiently large integer N (> N0) and choose an integer m1

so that

N ≤
q

q − 1
m1

(
1 −

ε

2

)
< N + 1.

We have the following.

Lemma 3.

♯

{
(P,Q) ∈W ∗∗

n :

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln+v
, (P,Q) = 1, N0 < n ≤ N

}

≤ ♯

{
m0 ≤ m < m1 :

∣∣∣∣f −
Pm

Qm

∣∣∣∣ <
1

|Qm|2 q l̃m+v

}

for any v ≥ 1.



212 H. Nakada and R. Natsui

Proof. Suppose ∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2n+ln+v

with N0 < degQ ≤ N and (P,Q) = 1. There exists m ≥ 1 such that
P/Q = Pm/Qm. Since

degQm0 <
q

q − 1
m0

(
1 +

ε

2

)
≤ N0 < N ≤

q

q − 1
m1

(
1 −

ε

2

)
≤ degQm1 ,

we see that m0 ≤ m ≤ m1. Moreover l̃m ≤ ln for such m and n. Thus we
have the assertion of the lemma.

Now we pick m ≥ 1 such that degAm+1 > l̃m. We put

τn(f) := min{m > τn−1(f) : l̃m < degAm+1}

with

τ1(f) := min{m ≥ 1 : l̃m < degAm+1}.

We also put

ψn(f) := q⌈(deg Aτn(f)+1−l̃τn(f))/2⌉ − 1,

where ⌈z⌉ denotes the smallest integer which is not less than z. Because
of (13), ψn(f) is the number of solutions of (8) with degQm ≤ degQ <
degQm+1 for some m ≥ 1. If we put

ñ := max{n : τn(f) ≤ m1},

then from Lemma 3 we have

♯

{
(P,Q) ∈W ∗∗

n :

∣∣∣∣f −
P

Q

∣∣∣∣ =
1

q2n+ln
, N0 < n ≤ N

}
≤

ñ∑

n=1

ψn(f).(14)

Lemma 4.
K∑

n=1

ψn(f) ∼ Kq for µ-a.e. f .

Proof. Since (degAm : m ≥ 1) is i.i.d., (11) holds, and the distribution

is
( q−1

q , q−1
q2 , . . .

)
, it follows that the selected sequence (degAτn(f)+1− l̃τn(f) :

n ≥ 1) is also i.i.d. with the same distribution. Thus it is easy to see that
E(ψn) = q and the strong law of large numbers implies the assertion.

Lemma 5. For each integer K and m̂ with τK(f) ≤ m̂ < τK+1(f), we

have

K ∼
m̂∑

m=1

1

q l̃m
for µ-a.e. f .



Non-Archimedean Diophantine approximations 213

Proof. From the definition of τn(f),

K = ♯{1 ≤ m ≤ m̂ : degAm+1 > l̃m}.

Here, ({f : degAm+1 > l̃m} : m ≥ 1) is a sequence of independent events
and we have

K ∼
m̂∑

m=1

µ({f : degAm+1 > l̃m})

from the Basic Lemma. Since µ({f : degAm+1 > l̃m}) = 1/q l̃m , we get the
assertion of the lemma.

From these lemmas, we have

ñ∑

n=1

ψn(f) ∼ q

m1∑

m=1

1

q l̃m
for µ-a.e. f .(15)

Lemma 6. We have

m1∑

m=1

1

q l̃m
≤
q − 1

q

Ñ∑

n=1

1

qln
(1 + ε),

where Ñ =
[

N+1
1−ε/2

]
for sufficiently large N with

N ≤
q

q − 1
m1

(
1 −

ε

2

)
< N + 1.

Proof. From the definition of (l̃m : m ≥ 1), we have
m1∑

m=1

1

q l̃m
∼
q − 1

q

{
j1

1

qlj1
+ j1ε

1

qlj1
+ (j2 − j1 − j1ε)

1

qlj2
+ j2ε

1

qlj2
+ · · ·

}
.

Thus

m1∑

m=1

1

q l̃m
−
q − 1

q

Ñ∑

n=1

1

qln

∼
q − 1

q

[
j1ε

(
1

qlj1
−

1

qlj2

)
+ j2ε

(
1

qlj2
−

1

qlj3

)
+ · · · + j

k̂
ε

(
1

q
lj

k̂

−
1

q
lj

k̂+1

)]
,

where k̂ is chosen so that j
k̂
≤ Ñ < j

k̂+1
. The right hand side is equal to

q − 1

q

[
j1ε

1

qlj1
+ (j2 − j1)ε

1

qlj2
+ · · · + (j

k̂
− j

k̂−1
)ε

1

q
lj

k̂

− j
k̂
ε

1

q
lj

k̂+1

]

≤
q − 1

q
ε

Ñ∑

n=1

1

qln
,

which completes the proof of the lemma.
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Since Ñ ≤ N(1 + ε) and (ln : n ≥ 1) is non-decreasing, we see that

Ñ∑

n=1

1

qln
=

N∑

n=1

1

qln
+

Ñ∑

n=N+1

1

qln
≤

N∑

n=1

1

qln
+

[N(1+ε)]∑

n=N+1

1

qln

≤

N∑

n=1

1

qln
(1 + ε) = Φ(N)(1 + ε).

Hence
m1∑

m=1

1

q l̃m
≤
q − 1

q

N∑

n=1

1

qln
(1 + ε)2 =

q − 1

q
Φ(N)(1 + ε)2.

Consequently from (14), (15), and Lemma 6, we have (12), which implies
the assertion of the theorem.
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