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1. Introduction. This paper is concerned with the average order of
certain arithmetic functions, as they range over the values taken by binary
forms. We shall say that a non-negative submultiplicative function h belongs
to the class M(A,B) if there exists a constant A such that h(pl) ≤ Al for
all primes p and all l ∈ N, and there is a function B = B(ε) such that for
any ε > 0 one has h(n) ≤ Bnε for all n ∈ N. Let F ∈ Z[x1, x2] be a non-zero
binary form of degree d, such that the discriminant disc(F ) is non-zero. Such
a form takes the shape

(1.1) F (x1, x2) = xd1

1 x
d2

2 G(x1, x2),

for integers d1, d2 ∈ {0, 1} and a non-zero binary formG ∈ Z[x1, x2] of degree
d−d1−d2. Moreover, we may assume that disc(G) 6= 0 andG(1, 0)G(0, 1) 6= 0.

Given a function h ∈ M(A,B) and a binary form F as above, the pri-
mary goal of this paper is to bound the size of the sum

S(X1, X2;h, F ) :=
∑

1≤n1≤X1

∑

1≤n2≤X2

h(|F (n1, n2)|)

for given X1, X2 > 0. For certain choices of h and F it is possible to prove
an asymptotic formula for this quantity. When h = τ is the usual divisor
function, for example, Greaves [2] has shown that there is a constant cF > 0
such that

S(X,X; τ, F ) = cFX
2 logX(1 + o(1))

as X → ∞, when F is irreducible of degree d = 3. This asymptotic formula
has been extended to irreducible quartic forms by Daniel [1]. When d ≥ 5
there are no binary forms F for which an asymptotic formula is known for
S(X,X; τ, F ). In order to illustrate the main results in this article, however,
we shall derive an upper bound for S(X,X; τ, F ) of the expected order of
magnitude. The primary aim of this work is to provide general upper bounds
for the sum S(X1, X2;h, F ), in which the dependence upon the coefficients of
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the form F is made completely explicit. We will henceforth allow the implied
constant in any estimate to depend upon the degree of the polynomial that
is under consideration. Any further dependences will be indicated by an
appropriate subscript.

Before introducing our main result, we first need to introduce some more
notation. We shall write ‖F‖ for the maximum modulus of the coefficients of
a binary integral form F , and we shall say that F is primitive if the greatest
common divisor of its coefficients is 1. These definitions extend in an obvious
way to all polynomials with integer coefficients. Given any m ∈ N, we set

(1.2) ̺∗F (m) :=
1

ϕ(m)
#

{

(n1, n2) ∈ (0,m]2 :
gcd(n1, n2,m) = 1

F (n1, n2) ≡ 0 (modm)

}

,

where ϕ is the usual Euler totient function. The arithmetic function ̺∗F
is multiplicative, and has already played an important role in the work of
Daniel [1]. Finally, we define

ψ(n) :=
∏

p|n

(

1 +
1

p

)

,(1.3)

∆F := ψ(disc(F )).(1.4)

We are now ready to reveal our main result.

Theorem 1. Let h ∈ M(A,B), let δ ∈ (0, 1) and let X1, X2 > 0.
Suppose that F ∈ Z[x1, x2] is a non-zero primitive binary form of the

shape (1.1). Then there exist constants c = c(A,B), C = C(A,B, d, δ) > 0
such that

S(X1, X2;h, F ) ≪A,B,δ ∆
c
FX1X2E

for min{X1, X2} ≥ Cmax{X1, X2}
δd‖F‖δ, where ∆F is given by (1.4) and

E :=
∏

d<p≤min{X1,X2}

(

1 +
̺∗G(p)(h(p) − 1)

p

)

(1.5)

×
∏

i=1,2

∏

p≤Xi

(

1 +
di(h(p) − 1)

p

)

.

We shall see shortly that the condition p > d ensures that ̺∗G(p) < p
in (1.5). Our initial motivation for establishing a result of the type in Theo-
rem 1 arose in a rather different context. It turns out that Theorem 1 plays
an important role in the authors’ forthcoming joint work with Emmanuel
Peyre, which resolves the Manin conjecture for the growth rate of rational
points of bounded height on a certain family of Iskovskikh surfaces. The
precise result that we make use of is the following, which will be established
in the subsequent section.
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Corollary 1. Let h ∈ M(A,B) and let X1, X2 > 0. Suppose that

F ∈ Z[x1, x2] is a non-zero binary form of the shape (1.1). Then
∑

|n1|≤X1

∑

|n2|≤X2

h(|F (n1, n2)|) ≪A,B,ε ‖F‖
ε(X1X2E + max{X1, X2}

1+ε)

for any ε > 0, where E is given by (1.5).

An inspection of the proof of Corollary 1 reveals that it is possible to
replace the term X1+ε by X(logX)Ad−1, where X = max{X1, X2}. More-
over, it would not be difficult to extend the estimates in Theorem 1 and
Corollary 1 to the more general class of arithmetic functions M1(A,B, ε)
considered by Nair and Tenenbaum [6].

It is now relatively straightforward to use Theorem 1 to deduce good
upper bounds for S(X,X;h, F ) for various well known multiplicative func-
tions h. For example, on taking h = τ in Theorem 1, and appealing to work
of Daniel [1, §7] on the behaviour of the Dirichlet series

∑∞
n=1 ̺

∗
F (n)n−s, it

is possible to deduce the following result, which is new for d ≥ 5.

Corollary 2. Let F ∈ Z[x1, x2] be an irreducible binary form of de-

gree d. Then S(X,X; τ, F ) ≪F X2 logX.

The primary ingredient in our work is a result due to Nair [5]. Given an
arithmetic function h ∈ M(A,B), and a suitable polynomial f ∈ Z[x], Nair
investigates the size of the sum

T (X;h, f) :=
∑

1≤n≤X

h(|f(n)|)

for given X > 0. Nair’s work has since been generalised in several directions
by Nair and Tenenbaum [6]. In order to present the version of Nair’s result
that we shall employ, we first need to introduce some more notation. Given
any polynomial f ∈ Z[x] and any m ∈ N, let

̺f (m) := #{n (modm) : f(n) ≡ 0 (modm)}.

It is well known that ̺f is a multiplicative function. On recalling the defini-
tion (1.2) of ̺∗G(p), for any binary form G ∈ Z[x1, x2] and any prime p, we
may therefore record the equalities

(1.6) ̺∗G(p) =

{

̺G(x,1)(p) if p ∤G(1, 0),

̺G(x,1)(p) + 1 if p |G(1, 0).

One may clearly swap the roles of the first and second variables in this
expression. It follows from these equalities that ̺∗G(p) < p for any prime
p > degG, as claimed above.

Given a positive integer d and a prime number p, we shall denote by
Fp(d) the class of polynomials f ∈ Z[x] of degree d which have no repeated
roots and do not have p as a fixed prime divisor. Note that a polynomial
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has no repeated roots if and only if its discriminant is non-zero. Moreover,
a polynomial f ∈ Z[x] is said to have fixed prime divisor p if p | f(n) for all
n ∈ Z. It will be convenient to abbreviate “fixed prime divisor” to “fpd”
throughout this paper. When f has degree d and is primitive, then any fpd

p of f satisfies p ≤ d. Indeed, there are at most d roots of f modulo p. We
shall write

F(d) :=
⋂

p

Fp(d).

We are now ready to reveal the version of Nair’s result that we shall employ.

Theorem 2. Let h ∈ M(A,B), let f ∈ F(d) and let δ ∈ (0, 1). Then

there exists a constant C = C(A,B, d, δ) such that

T (X;h, f) ≪A,B,δ X
∏

p≤X

(

1 −
̺f (p)

p

)

∑

1≤m≤X

h(m)̺f (m)

m

for X ≥ C‖f‖δ.

A few remarks are in order here. First and foremost, this is not quite the
main result in [5, §4]. In its present form, Theorem 2 essentially amounts
to a special case of a very general result due to Nair and Tenenbaum [6,
eqn. (2)]. Following our convention introduced above, the implied constant
in this estimate is completely independent of the coefficients of f , depending
only upon the choices of A, B, δ and d. This uniformity will prove crucial
in our deduction of Theorem 1. Theorem 2 is in fact already implicit in the
original work of Nair [5], and is a major step on the way towards his upper
bound

(1.7) T (X;h, f) ≪A,B,δ,disc(f) X
∏

p≤X

(

1 −
̺f (p)

p

)

exp

(

∑

p≤X

h(p)̺f (p)

p

)

for X ≥ C‖f‖δ. As indicated, there is now an implicit dependence upon
the discriminant of the polynomial f . This arises in passing from the term
∑

m h(m)̺f (m)/m to the term exp(
∑

p h(p)̺f (p)/p).

We take this opportunity to correct an apparent oversight in a recent
work of Heath-Brown [3]. In this work, a special case of Nair’s result is used
[3, Lemma 4.1], in which the dependence of the implied constant upon the
polynomial’s discriminant does not seem to have been accurately recorded.
This leads to problems in the proof of [3, Lemma 4.2], and in particular the
estimation of the sum S0(m), since the relevant discriminant will now vary
with the choice m. Similar remarks apply to the estimation of S(d, d′) in [3,
Lemma 6.1]. The proof of these two estimates can now be easily repaired:
the first by appealing to Theorem 2 instead of (1.7), and the second via a
straightforward application of Theorem 1.
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2. Preliminaries. We begin this section by establishing Corollary 1.
Now it is trivial to see that ∆F ≪ε ‖F‖ε in (1.4), since the discriminant
of a form can always be bounded in terms of the maximum modulus of its
coefficients, and we have

ψ(n) ≤ 2ω(n) ≪ε n
ε

for any ε > 0. Moreover, it will suffice to establish the result under the
assumption that F is primitive. Indeed, if k is a common factor of the
coefficients of F , then it may be extracted and absorbed into the factor ‖F‖ε,
since h(ab) ≪B,ε a

εh(b) for h ∈ M(A,B). Let us take δ = ε in the statement
of Theorem 1. Suppose first that min{X1, X2} ≤ Cmax{X1, X2}

dε‖F‖ε.
Then since E ≪ε (X1X2)

ε in (1.5), we easily deduce that

S(X1, X2;h, F ) ≪A,B,ε ‖F‖
ε max{X1, X2}

1+ε.

This is satisfactory for Corollary 1. In the alternative case, Theorem 1 gives a
satisfactory contribution from those n for which n1n2 6= 0. The contribution
from n1 = 0 is

≤
∑

|n2|≤X2

h(|F (0, n2)|) ≤ h(|F (0, 1)|)
∑

|n2|≤X2

h(nd
2) ≪B,ε ‖F‖

εX1+ε
2 ,

since h ∈ M(A,B), which is also satisfactory. On arguing similarly for the
contribution from n2 = 0, we therefore complete the proof of Corollary 1.

We now collect together the preliminary facts that we shall need in our
proof of Theorem 1. Let F ∈ Z[x] be a non-zero binary form of degree d.
Here, as throughout our work, any boldface lowercase letter x will mean an
ordered pair (x1, x2). If [α1, β1], . . . , [αd, βd] ∈ P1(C) are the d roots of F
in C, then the discriminant of F is defined to be

disc(F ) :=
∏

1≤i<j≤d

(αiβj − αjβi)
2.

It will be convenient to record the following well known result.

Lemma 1. Let M ∈ GL2(Z). Then

disc(F (Mx)) = det(M)d(d−1) disc(F ).

We shall also require good upper bounds for the quantity ̺f (pl), for any
primitive polynomial f ∈ Z[x] and any prime power pl. The following result
may be found in unpublished work of Stephan Daniel; we provide a proof
here for the sake of completeness.
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Lemma 2. Let d ∈ N, let p be a prime, and let f ∈ Z[x] be a polynomial

of degree d such that p does not divide all of the coefficients of f . Then

̺f (pl) ≤ min{dpl−1, 2d3p(1−1/d)l}

for any l ∈ N.

Proof. The upper bound ̺f (pl) ≤ dpl−1 is trivial. The second inequality
is easy when d = 1, or when p divides all of the coefficients of f apart from
the constant term, in which case ̺f (pl) = 0. Thus we may proceed under
the assumption that d ≥ 2 and p does not divide all of the coefficients in
the non-constant terms. We have

̺f (pl) =
1

pl

∑

a (mod pl)

∑

b (mod pl)

epl(af(b))

=
l

∑

j=0

1

pj

∑

a (mod pj)
p∤a

∑

b (mod pj)

epj (af(b)),

where eq(z) = e2πiz/q, as usual. But then the proof of [7, Theorem 7.1]
implies that each inner sum is bounded by d3p(1−1/d)j in modulus, when
j ≥ 1. Hence

̺f (pl) ≤ 1 + d3(1 − p−1)
l

∑

j=1

p(1−1/d)j ≤ d3p(1−1/d)l 1 − p−1

1 − p1/d−1
.

The result then follows, since d ≥ 2 by assumption.

The remainder of this section concerns the class of primitive polynomials
f ∈ Z[x] which have a fpd. The following result is self-evident.

Lemma 3. Let p be a prime and let f ∈ Z[x] be a primitive polynomial

which has p as a fpd. Then there exists an integer e ≥ 0 and polynomials

q, r ∈ Z[x] such that

(2.1) f(x) = (xp − x)q(x) + pr(x),

where q(x) =
∑e

j=0 ajx
j for integers 0 ≤ aj < p such that ae 6= 0.

Our next result examines the effect of making the change of variables
x 7→ px+ k for integers 0 ≤ k < p.

Lemma 4. Let p be a prime and let f ∈ Z[x] be a primitive polynomial

of the shape (2.1). Then for each 0 ≤ k < p, there exists νk ∈ Z such that :

(1) 0 ≤ νk ≤ e.
(2) fk(x) = p−νk−1f(px+ k) ∈ Z[x] is a primitive polynomial.

(3) Suppose that fk has p as a fpd , and is written in the form (2.1) for

suitable polynomials qk, rk. Then e ≥ p− 1 and deg(qk) ≤ e− p+ 1.
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Proof. Without loss of generality we may assume that k = 0. Consider
the identity

f(px)

p
= x(pp−1xp−1 − 1)q(px) + r(px),

and let bj be the jth coefficient of r(x). It is not hard to see that the
coefficient of xj+1 in f(px)/p is equal to

(2.2) (aj−p+1 − aj)p
j + bj+1p

j+1,

where we have introduced the convention that aj = 0 for each negative
index j. Let ν0 be the p-adic order of the greatest common divisor of the
coefficients of the polynomial f(px)/p, and write

f0(x) =
f(px)

pν0+1
.

It is clear that f0 is a primitive polynomial with integer coefficients. More-
over, if e0 denotes the smallest index j for which aj 6= 0 in q(x), then it is not
hard to deduce from (2.2) that ν0 ≤ e0. In particular we have 0 ≤ ν0 ≤ e.
This is enough to establish the first two parts of the lemma.

It remains to consider the possibility that f0 has p as a fpd. Suppose first
that ν0 < e0. Then f0(x) ≡ g0(x) (modp), with

g0(x) =

ν0
∑

l=0

blp
l−ν0xl.

If g0 has p as a fpd, then one may write it in the form (2.1) for suitable
q0, r0 ∈ Z[x]. But then

0 ≤ deg(q0) ≤ ν0 − p < e0 − p ≤ e− p,

which is satisfactory for the final part of the lemma. Suppose now that
ν0 = e0. Then f0(x) ≡ g0(x) (modp), with

g0(x) = −ae0
xe0+1 +

e0
∑

l=0

blp
l−ν0xl.

Arguing as above, if g0 has p as a fpd, then one may write it in the form
(2.1) for suitable q0, r0 ∈ Z[x] such that

0 ≤ deg(q0) = e0 + 1 − p ≤ e+ 1 − p.

This therefore completes the proof of Lemma 4.

Our final result combines Lemmas 3 and 4 in order to show that there is
always a linear change of variables that takes a polynomial with fpd p into
a polynomial which does not have p as a fpd.

Lemma 5. Suppose that f ∈ Z[x] is a primitive polynomial that takes the

shape (2.1) and has non-zero discriminant. Then there exists a non-negative
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integer δ ≤ e, and positive integers µ0, . . . , µδ with

(2.3) µ0 + · · · + µδ ≤ (e+ 1)2,

such that the polynomial

(2.4) gk0,...,kδ
(x) =

f(pδ+1x+ pδkδ + · · · + pk1 + k0)

pµ0+···+µδ

belongs to Fp(d) for any k0, . . . , kδ ∈ Z ∩ [0, p).

Proof. Our argument will be by induction on the degree e of q. We begin
by noting that the degree of f is preserved under any linear transformation of
the shape x 7→ ax+ b, provided that a 6= 0. Similarly, in view of Lemma 1,
the discriminant will not vanish under any such transformation. Thus it
suffices to show that there exists a non-negative integer δ ≤ e, and positive
integers µ0, . . . , µδ, such that (2.3) holds and the polynomial (2.4) has integer
coefficients but does not have p as a fpd.

Let k0 be any integer in the range 0 ≤ k0 < p. Then it follows from
Lemma 4 that there exists ν0 ∈ Z such that 0 ≤ ν0 ≤ e and

fk0
(x) = p−ν0−1f(px+ k0)

is a primitive polynomial with integer coefficients. If e < p − 1 then the
final part of this result implies that fk0

does not contain p as a fpd, and
so must belong to Fp(d). In this case, therefore, the statement of Lemma 5
holds with δ = 0, µ0 = ν0 + 1 and gk0

= fk0
. This clearly takes care of

the inductive base e = 0, since then δ = 0 and µ0 = 1. Suppose now that
e ≥ p− 1 and fk0

contains p as a fpd. Then fk0
can be written in the form

(2.1) for suitable polynomials q′, r′ such that deg(q′) = e′ ≤ e − p + 1. We
may therefore apply the inductive hypothesis to conclude that there exists
a non-negative integer δ′ ≤ e′, and positive integers µ′0, . . . , µ

′
δ′ with

(2.5) µ′0 + · · · + µ′δ′ ≤ (e′ + 1)2,

such that the polynomial

fk0
(pδ′+1x+ pδ′k′δ′ + · · · + pk′1 + k′0)

pµ′

0
+···+µ′

δ′
=
f(pδ′+2x+ · · · + pk′0 + k0)

pµ′

0
+···+µ′

δ′
+ν0+1

belongs to Fp(d) for any k0, k
′
0, . . . , k

′
δ′ ∈ Z∩[0, p). Let δ = δ′+1, let k′i = ki+1

for i ≥ 0, and write µ0 = ν0+1, and µi = µ′i−1 for i ≥ 1. Then it follows that
gk0,...,kδ

(x) ∈ Fp(d), in the notation of (2.4), for any k0, . . . , kδ ∈ Z ∩ [0, p).
Moreover, we clearly have δ ≤ e′ + 1 ≤ e− p+ 2 ≤ e, and (2.5) gives

µ0 + · · · + µδ ≤ (e− p+ 2)2 + (e+ 1) ≤ e2 + e+ 1 ≤ (e+ 1)2.

Thus (2.3) also holds, which therefore completes the proof of Lemma 5.

Suppose that f ∈ Z[x] is a primitive polynomial that takes the shape
(2.1) for some prime p, but which does not have q as a fpd for any prime
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q < p. Then for any a ∈ Z, the linear polynomial pδ+1x + a runs over a
complete set of residue classes modulo q as x does. Thus it follows from the
statement of Lemma 5 that

gk0,...,kδ
∈

⋂

q≤p

Fq(d)

for any k0, . . . , kδ ∈ Z∩ [0, p), where the intersection is over all primes q ≤ p.

3. Proof of Theorem 1. We are now ready to proceed with the proof
of Theorem 1. Suppose that X2 ≥ X1 ≥ 1, and let F ∈ Z[x] be a primitive
form of the shape (1.1). Let d′ = d − d2 and d′′ = d − d1 − d2. We may
therefore write

G(x) =
d′′
∑

j=0

ajx
d′′−j
1 xj

2

for aj ∈ Z such that gcd(a0, . . . , ad′′) = 1 and a0ad′′ 6= 0. We begin this
section by recording the following easy result.

Lemma 6. Let p be a prime. Then p | disc(F ) for any p | gcd(a0, a1).
Moreover , if d2 = 1, then p | disc(F ) for any p | a0.

Proof. The first fact follows on observing that the reduction of F mod-
ulo p has x2

2 as a factor if p | gcd(a0, a1). If d2 = 1, then the same conclusion
holds provided only that p | a0. The lemma is now obvious.

We intend to apply Theorem 2, for which we shall fix one of the variables
at the outset. Let qm := gcd(a0, a1m, . . . , ad′′m

d′′) for any m ∈ N, and define

fn2
(x) :=

xd1G(x, n2)

qn2

.

Then it is clear that fn2
is a primitive polynomial of degree d′ with integer

coefficients. Moreover, we have

(3.1) S(X1, X2;h, F ) ≤
∑

1≤n2≤X2

h(nd2

2 qn2
)
∣

∣

∣

∑

1≤n1≤X1

h(|fn2
(n1)|)

∣

∣

∣
.

We now want to apply Theorem 2 to estimate the inner sum. For this we
must deal with the possibility that fm contains a fpd. Since fm is primitive
of degree d′, the only possible fpds are the primes p ≤ d′.

Suppose that fm has p1 < · · · < pr as fpds. We shall combine a repeated
application of Lemma 5 with the observation made at the close of §2. This
leads us to the conclusion that there exist non-negative integers δ1, . . . , δr ≤
d− 2, together with positive integers m1, . . . ,mr ≤ d2, such that

gβ(x) :=
fn2

(pδ1+1
1 · · · pδr+1

r x+ β)

pm1

1 · · · pmr
r

∈ F(d′)
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for any β modulo pδ1+1
1 · · · pδr+1

r . It will be convenient to write

α := pδ1+1
1 · · · pδr+1

r , γ := pm1

1 · · · pmr
r .

Then it follows from Lemma 1 that

disc(gβ) = disc

(

(αx+β)d1G(αx+β, n2)

γqn2

)

= disc

(

F (αx+β, n2)

γqn2
nd2

2

)

(3.2)

=

(

αdnd−2d2

2

γ2q2n2

)d−1

disc(F ).

Note that α ≤ dr(d−1) ≤ dd2

and γ ≤ drd2

≤ dd3

. In particular there are just
O(1) choices for β modulo α, and h(γ) ≪B 1.

Our investigation so far has therefore led us to the inequality

(3.3)
∑

1≤n1≤X1

h(|fn2
(n1)|) ≪B

∑

α

∑

β (modα)

∑

1≤n1≤X1

h(|gβ(n1)|)

in (3.1), with gβ ∈ F(d′). It will now suffice to apply Theorem 2 to estimate
the inner sum, which we henceforth denote by U(X1). Note that

‖gβ‖ ≪ ‖fn2
‖ ≪ nd

2‖F‖ ≤ Xd
2‖F‖.

Hence it follows from Theorem 2 that for any δ ∈ (0, 1) we have

(3.4) U(X) ≪A,B,δ X
∏

p≤X

(

1 −
̺gβ

(p)

p

)

∑

1≤m≤X

̺gβ
(m)h(m)

m

for X ≫A,B,δ X
δd
2 ‖F‖δ. In estimating the right hand side of (3.4), we shall

find that the result is largely independent of the choice of β. To simplify our
exposition, therefore, it will be convenient to write g = gβ in what follows.

We begin by estimating the sum over m that appears in (3.4). On com-
bining the submultiplicativity of h with the multiplicativity of ̺g, we see
that

(3.5)
∑

1≤m≤X

̺g(m)h(m)

m
≤

∏

p≤X

(

1 +
̺g(p)h(p)

p
+

∑

l≥2

̺g(p
l)h(pl)

pl

)

.

We must therefore examine the behaviour of the function ̺g(p
l) at various

prime powers pl. This is a rather classic topic and the facts that we shall use
may all be found in the book of Nagell [4], for example. Now an application
of Lemma 2 reveals that

̺g(p
l) ≤ min{d′pl−1, 2d′

3
p(1−1/d′)l},

for any l ∈ N, since p does not divide all of the coefficients of g. Moreover,
it is well known that

̺g(p
l) ≤ d′



Sums of arithmetic functions 301

if p ∤ disc(g) or if l = 1. In view of the fact that h(pl) ≤ min{Al, Bplε} for
any ε > 0, we therefore deduce that

∑

l≥1

̺g(p
l)h(pl)

pl
≤ d′

∑

1≤l≤d

h(pl)pl−1

pl
+ 2d′

3
∑

l>d

h(pl)p(1−1/d′)l

pl
≪A,B

1

p

for any prime p | disc(g). When p ∤ disc(g) we obtain

∑

l≥2

̺g(p
l)h(pl)

pl
≤ d′

∑

l≥2

h(pl)

pl
≪B,ε p

−2(1−ε).

Now (3.2) implies that ψ(disc(g)) ≤ ψ(αn2 disc(F )) ≪ ∆Fψ(n2), where ψ
is given by (1.3) and ∆F is given by (1.4). Drawing our arguments together,
therefore, we have so far shown that there is a constant c1 = c1(A,B) such
that

∑

1≤m≤X

̺g(m)h(m)

m
≪A,B ∆c1

F ψ(n2)
c1

∏

d<p≤X
p∤disc(g)

(

1 +
̺g(p)h(p)

p

)

,

in (3.5).

Suppose now that p > d > d′. Then one has ̺g(p) = ̺fn2
(p). We claim

that p ∤ qn2
provided that p ∤n2 disc(F ). But this follows immediately from

the fact that gcd(a0, . . . , ad′′) = 1. Hence

(3.6) ̺g(p) = ̺xd1G(x,n2)
(p) = ̺xd1G(x,1)(p) = ̺G(x,1)(p) + d1,

provided that p > d and p ∤n2 disc(F ). We may therefore conclude that there
is a constant c2 = c2(A,B) > c1 such that

∑

1≤m≤X

̺g(m)h(m)

m

≪A,B ∆c2
F ψ(n2)

c2
∏

d<p≤X

(

1 +
̺G(x,1)(p)h(p)

p

)

∏

p≤X

(

1 +
d1h(p)

p

)

.

We now turn to the size of the product over p that appears in (3.4), for
which we shall use the relation (3.6) for any prime p such that p > d and
p ∤n2 disc(F ). Thus there is a constant c3 = c3(A,B) such that

∏

p≤X

(

1 −
̺g(p)

p

)

≪
∏

d<p≤X
p∤n2 disc(F )

(

1 −
̺G(x,1)(p)

p

)

∏

p≤X
p∤n2 disc(F )

(

1 −
d1

p

)

≪ ∆c3
F ψ(n2)

c3
∏

d<p≤X

(

1 −
̺G(x,1)(p)

p

)

∏

p≤X

(

1 −
d1

p

)

.
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Let

E1 :=
∏

d<p≤X1

(

1 −
̺G(x,1)(p)

p

)(

1 +
̺G(x,1)(p)h(p)

p

)

×
∏

p≤X1

(

1 −
d1

p

)(

1 +
d1h(p)

p

)

,

and set c4 = c2 + c3. Then we have shown that

U(X1) ≪A,B,δ ∆
c4
F ψ(n2)

c4X1E1

in (3.4), provided that X1 ≫A,B,δ X
δd
2 ‖F‖δ. This latter inequality holds by

the assumption made in the statement of Theorem 1.

Substituting the above estimate into (3.1) and (3.3), we may conclude
that

(3.7) S(X1, X2;h, F ) ≪A,B,δ ∆
c4
F X1E1Vd2

(X2),

where

Vd2
(X2) =

∑

1≤n2≤X2

ψ(n2)
c4h(nd2

2 qn2
).

We shall estimate V0(X2) and V1(X2) with a further application of Theo-
rem 2. To begin with we note that for any prime p we have

qp =

{

p if p | a0 and p ∤ a1,

1 if p ∤ a0.

When p2 | a0 and p | a1 it is clear that qp has p2 as a factor. Lemma 6 implies
that this can only happen when p | disc(F ).

Suppose first that d2 = 0. Then the arithmetic function n 7→ ψ(n)c4h(qn)
satisfies the conditions of Theorem 2. Applying this result with the polyno-
mial f(x) = x, as we clearly may, it therefore follows that there is a constant
c5 = c5(A) such that

V0(X2) ≪A X2

∏

p≤X2

(

1 −
1

p

)

∏

p≤X2

p∤a0

(

1 +
1

p

)

∏

p≤X2

p|a0

(

1 +
h(qp)

p

)

≪A ∆c5
F X2

∏

p≤X2

(

1 −
1

p

)

∏

p≤X2

p∤a0

(

1 +
1

p

)

∏

p≤X2

p|a0

(

1 +
h(p)

p

)

≪A ∆c5
F X2

∏

p≤X2

p|a0

(

1 −
1

p

)

∏

p≤X2

p|a0

(

1 +
h(p)

p

)

for X2 ≫A,B 1. Recall the identities (1.6). Then on inserting this bound
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into (3.7), we therefore obtain the expected bound in Theorem 1 since

∏

p≤X2

p|a0

(

1 −
1

p

)

∏

d<p≤X1

(

1 −
̺G(x,1)(p)

p

)

≪
∏

d<p≤X1

(

1 −
̺∗G(p)

p

)

,

and
∏

p≤X2

p|a0

(

1 +
h(p)

p

)

∏

d<p≤X1

(

1 +
̺G(x,1)(p)h(p)

p

)

≪δ

∏

d<p≤X1

(

1 +
̺∗G(p)h(p)

p

)

.

Here we have used the elementary fact that there are at most δ−1 primes p
such that p | a0 and p > aδ

0.

Let us now turn to the case d2 = 1. In particular it follows from Lemma 6
that p | disc(F ) when p | a0. Now the function n 7→ ψ(n)c4h(nqn) again satis-
fies the conditions of Theorem 2. Thus we deduce that there exists a constant
c6 = c6(A) such that

V1(X2) ≪A ∆c6
F X2

∏

p≤X2

(

1 −
d2

p

)

∏

p≤X2

p∤a0

(

1 +
d2h(p)

p

)

≤ ∆c6
F X2

∏

p≤X2

(

1 −
d2

p

)(

1 +
d2h(p)

p

)

.

On inserting this into (3.7), we easily derive the desired upper bound. This
completes the proof of Theorem 1 when X2 ≥ X1 ≥ 1. The case in which
X1 ≥ X2 ≥ 1 is handled in precisely the same way, by changing the order
of summation at the outset.
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Université Paris 7 Denis Diderot
F-75251 Paris Cedex 05, France
E-mail: breteche@math.jussieu.fr

School of Mathematics
University of Bristol

Bristol BS8 1TW, UK
E-mail: t.d.browning@bristol.ac.uk

Received on 20.4.2006

and in revised form on 23.8.2006 (5190)


