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Four prime squares and powers of 2
by

HoNGzE L1 (Shanghai)

1. Introduction. Let
As={n:neN, n=3 (mod24), n Z0 (mod5)},
As={n:neN, n=5 (mod24)}.
In 1938 Hua [3] proved that almost all n € A3 are representable as sums of
three squares of primes, and all sufficiently large n € As are representable
as sums of five squares of primes. In view of these results and Lagrange’s

theorem of four squares, it is reasonable to conjecture that every large even
integer n = 4 (mod 24) is a sum of four squares of primes

(1.1) n = pi+ps+p3+pi

In [6], Liu, Liu and Zhan proved that every large even integer N can be
written as a sum of four squares of primes and powers of 2,

(1.2) N =pl+ps+ps+pi+27+- -+ 2%,

In [4], Liu and Liu showed that k& = 8330 is acceptable in (1.2). Recently,
Liu and Lii [7] improved this result and proved that k& = 165 suffices.
In this note, we will prove the following;:

THEOREM. FEwvery sufficiently large even integer can be written as a sum
of four squares of primes and 151 powers of 2.

Throughout this paper, € always denotes a sufficiently small positive
number, though it may be different at each appearance.

2. Outline and preliminary results. Suppose IV, our main parame-
ter, is “sufficiently large”. We write

(2.1) P=N'/5¢ " Q=NP'L" L =log,N.
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The circle method, in the form we require here, begins with the observation
that

@2 M= Y (ogm) - (osp)
N=pi+-+pi+2Y1 442"
plv"wp‘lSNl/Q
1

— | F{(@)gF(@)e(~aN) da,
0

where we write e(z) = exp(2miz) and

(23) fla)= Y (logple(ap®), gla)= D e(a2’):= e(a2").
p?<N 2v<N v<L

By Dirichlet’s lemma on rational approximation, each a € [1/Q,1 + 1/Q)]

can be written as

(2.4) a=§+ﬁ,|M§q*Q*,

for some integers a,q with 1 < a < ¢ < @, (a,q) = 1. We denote by I(a,q)
the set of « satisfying (2.4), and define the major arcs 9 and the minor
arcs m as follows:

25  m={J U IHeg, m=[1/Q1+1/Q\M
1<¢<P a=1
B (a,9)=1

It follows from 2P < @ that the major arcs I(a,q) are mutually disjoint.
By (2.2) we have

(26) R(N) = | f{a@)g"(@)e(—aN)da + | f(a)g"(a)e(—aN) da
M m
=: Rogn(N) + Run(N).

We will prove that R(N) > 0 for sufficiently large N; this proves the Theo-
rem.

For the integral on the major arcs, we need the following lemma.

LeEMMA 1 ([7, Lemma 2.1]). Let 9 be as in (2.5) with P,Q determined
by (2.1). Then for 2 <n < N, we have

w2 N
(2.7) E)Sﬁf‘l(cz)e(—om) do = 1—66(71)71—1—0(@),

where S(n) is defined in (4.4), and satisfies S(n) > 1 for n =4 (mod 24).

On the minor arcs, we need estimates for the measure of the set
(2.8) Ex={ae(0,1]: |g(a)] > AL}.
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The following lemma is due to Heath-Brown and Puchta [1] and calculated
by Liu and Li [7].

LEMMA 2. We have meas(Ey) < N~FXN | with £(0.887167) >3/4+10710.

3. Estimation of an integral. In this section we shall estimate the
integral Sé |f(a)g(a)* da. We have

LEMMA 3. Let f(a) and g(«) be as in (2.3). Then
1 2
JIf(@)g(a)[*do < e 25 NIV,
0

where

324.101-1.620767 8 -log??2
C1§< 3 + 7r2g )(1—1—5)9.

To show this we need

LEMMA 4. For odd q, let £(q) be the order of 2 in the multiplicative group
of integers modulo q. Then the series 220:1’2)@ 1%(q)/qe(q) is convergent,
and its value co satisfies co < 1.620767.

In Lemma 4.2 of [7], one has ¢ < 43/25.

Proof of Lemma 3. By Proposition 3 in [2], we know that the conclusion
of Lemma 3.1 of [7] holds for D = N'/16=2¢ By the argument in Section 3
of [7], in the proof of Lemma 2.2 of [7], we can fix z = N'/327¢ and then we
can get ¢; < (1+¢)%-101-32% in Lemma 2.2 of [7]. Following the argument of
the proof of Lemma 4.1 of [7], by Lemma 4 we get the assertion of Lemma 3.

Proof of Lemma 4. For the estimation of co, we follow [1]. We set

(3.1) m =[] -1),
(3.2) Z k(d), h(n)=> k(d)
e(d)<z dn

where k(d) is the multiplicative function defined by taking

> Ho%) = { (1)7/1?, f))tzeivx(r)irseo.é =
Hence
) < |Z k(d) =
dlm
(D)0 DI -T2

plm plm plm
p>2 p>2 p>2
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Moreover, we have

_m <eVlogr forax>9,

¢(m)
as shown in (3.9) of [5]. When = > 9 we have

1
H (1 — _> < 0.831951343,

p
plm
p>2

hence for x > 9, we have
s(z) < 1.4817719log x.
It then follows that

dx dx dx
C2 = S S(ff)ﬁzss(x)ﬁJr S () —
1 9
7 dx T dx
< | k(d) =5 + 14817719 | logz —
x x
e(d)<9e(d) 9
1 1 14 log9
< _— = 1.4817719 ——.
< k(d)<€<d) 9> + 1.4817719
e(d)<9
Let
> k(d
e(d)=e
Then
> rle) = kie)
eld e(e)|d

However, £(e) | d if and only if e|2¢ — 1, hence

D k(e)= > k(e)=h2'-1).

eld el2d—1
Therefore
= 3 ule/dph(2! ~ 1),
dle
and then

= o) (s )

e(d)<9 m<9

By using the information on the prime factorization of 2¢ — 1 for d < 9, we
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find that

1 1

— —— | =1.094371632...
> wtm( - 5 ,

m<9
and hence we have

1 1

1+ log9
(34) <Y w(m) (— - 5) +1.4817719 - %87

< 1.6207669. ...
m

This completes the proof of the lemma.

4. Proof of Theorem. For the proof, we need the following lemmas.

LEMMA 5. Let AN, k) ={n>2:n=N—2"—...—2%} with k > 100.
Then for N = 4 (mod38),

n>(1/3-2"9NL"
>

neA(N,k)
n=4 (mod 24)

In Lemma 6.1 of [4], one has 1/3 replaced by 1/4.
Proof. Following the argument of Lemma 6.1 in [4], we have
(4.1) Yo on=> (N=2"—..—2%)>(N-N/L) ) 1,
)

neA(N,k) (v) (@)
n=4 (mod 24)

where ((v)) means vy, ..., v satisfy
(4.2) 3<uv,...,v; <logy(N/kL), 2" +-.-42" =N —4 (mod3).
Let
H(d, N, K) :jj{(yl,...,uK) 1<y < e(d), d|N—Z2W}.
When d = 3, £(3) = 2, and it is an easy exercise to check that
H(3,N,K):{%(2i_(_l)?7 31N,
;2% +(=1)*), 3|N.

Thus if K > 100 we have

H(3, N, K)e(3) " > éu _ 98y,
And
STz 2 (- 2 HE, N E) (losa(N/KL)/=(3)] - 2)* > & (1 - 271
@)

From this and (4.1) we get Lemma 5.
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LEMMA 6. Let

43 Claa= 3 (?2) B(n,q) = Z Ca.a)e-2).

1 (a,q)=1

_ B(n,q) =N Aln
(44) A(nv q) - 904<Q) ’ 6( ) qz:IA( 7q)'
Then for n =4 (mod24), one has
S(n) > c3

with c3 = 4.99457, while for n # 4 (mod 24), one has &(n) = 0.
In Lemma 5.2 of [7], one has &(n) > 4.952.

Proof. This is Proposition 4.3 in [6] except for the value of c3. It has been
shown in [6] that

(45)  &(n)=(1+A(n,2) + A(n,4) + A(n,8)) [[(1 + A(n,p)),
p=3

where A(n,p) is defined in (4.4). By the proof of Lemma 4.2 in [6], for n = 4
(mod 24) we have

(4.6) 1+ A(n,2)+ A(n,4)+ A(n,8) =8, 1+ A(n,3)=3.
By the proof of Lemma 5.2 in [7] we have

—5p2 +2p—1 if ptn,p=3 (mod4),
(4.7) B(n,p) > { —5p?> —10p — 1 if ptn,p=1 (mod4),
(p—=1)(* —6p+1) ifp|n.
Hence
5p% 4+ 10p + 1
[[a+A4mp) > ] (1—]0(_—1]))4)
p>5 p=1(mod4) p
p>5,ptn
5p2—2p+1> p? —6p+1
p=3 (mod 4) (p—1) p>5 (p=1)
p>5,pin p|n
5p? + 10p + 1 5p° —2p + 1
O M 0 R e N
! ( b —1)7 ) 11 < -1
p=1(mod 4) p=3(mod4)
p=>5 p>5

We apply the elementary inequality

—1
(1+x)“<1+ax—%x2 ifa>2, —1<z<0.
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For p > 82 and p =1 (mod4), we have

5p2 + 10p + 1 1 525
1—%41—72) 7
(p—1) (p—1)

and for p > 35 and p = 3 (mod4), we have

2_2p+1 1 \*®
B )

(p—1)7* p—1
Thus
[T+ A, p)
p=5
2 2 _
> T (-7 I (- )
p=1(mod 4) p=3 (mod 4)
5<p<82 5<p<35
1 5.25 1 5.25
x 1—— 1——
I Cogen) I ()
p=1(mod4) p=3(mod4)
p>82 p>35
5p? 4+ 10p + 1 5p? —2p+1
- I () I ()
p=1(mod4) p=3 (mod4)
5<p<82 5<p<35
1 —5.25 1 —5.25
x 11— 11—
I Cogem) I gm)
p=1(mod4) p=3 (mod4)
5<p<82 3<p<35
H( 1 5.25
<T1(1- 7)
—_1)2
s (p—1)

> 1.8422 - (0.6601)°2° > 0.208107568,

where we have used the well known result [[ ~3(1-1/(p — 1)?) = 0.6601....
By (4.5) and (4.6) the lemma follows. B

Now we prove the Theorem. Following the argument of 7], suppose first
N =4 (mod8), let £, be defined in (2.8), and M and m as in (2.5) with
P, Q determined in (2.1). Then (2.2) becomes

1
48) RN =|fYa)g*(@e(~aN)da= |+ | + |
0 M mNEL m\Ex
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For the major arcs, by Lemma 1 we have

(4.9) Sf4(a)gk(a)e(—aN) da = Z Sf4(a)e(—an) do

m neA(N,k) M

2
_m k—1
=16 g S(n)n+O(NL" )
neA(N,k)

> 037r—{ Z n} +O(NLF Y

neA(N,k)
n=4 (mod 24)

2

>
- 16

where we have used Lemmas 5 and 6.
For the second integral in (4.8), by the estimation in [7], we have

max | f(a)] < NY/2-1/16+e
aem
Therefore
(410) S < N—E(D.887167)N2—1/4+5Lk < Nl—é"
mNEy

where we have used Lemma 2 for A = 0.887167.
For the last integral in (4.8), by the definition of £, and Lemma 3, we
have
1

2
(4.11) | <D 1f(@)g(e)|*da < ey A 7{—6 NLF.
m\S)\ 0
Combining this and (4.9) and (4.10), we get
2 4.994
(4.12) R(N) > T k(22980 k),
16 3
When k > 149, for A = 0.887167, by the above estimate we have
R(N) > 0.

This means that every large even integer N with N = 4 (mod24) can be
written in the form of (1.2) for k& > 149.

If N is a large even integer but N # 4 (mod 24), then by the argument
of [7], N can be written in the form (1.2) for £ > 151. This completes the
proof of the Theorem.
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