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The simultaneous Pell equations y2 − Dz2
= 1

and x2 − 2Dz2
= 1

by
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C. I. Chu (Hong Kong) and Zhenfu Cao (Shanghai)

1. Introduction. Throughout this paper we let Z and N be the sets of
all integers and positive integers respectively, and let D ∈ N be square-free.
In 1983, Cao [3] studied the system of simultaneous Pell equations

(1.1)

{

y2 − Dz2 = 1,

x2 − 2Dz2 = 1.

Solutions of (1.1) lead to solutions of the Diophantine equation x4−Dy2 = 1.

We recall Cao’s result as

Theorem 1.1. Let D have at most four odd prime factors. Then the

only positive integer solutions of (1.1) are:

D = 2 · 3, (x, y, z) = (7, 5, 2),

D = 2 · 3 · 5 · 7, (x, y, z) = (41, 29, 2),

D = 3 · 5 · 7 · 17, (x, y, z) = (239, 169, 4),

D = 3 · 17 · 29 · 41, (x, y, z) = (1393, 985, 4),

D = 2 · 5 · 7 · 11 · 239, (x, y, z) = (47321, 33461, 78),

D = 2 · 3 · 17 · 239 · 577, (x, y, z) = (275807, 195025, 52).

As the solutions (x, y, z) to (1.1) imply the existence of rational points
of infinite order on the elliptic curve Y 2 = X(X + D)(X + 2D), that led
Ono [11] to study the solutions of (1.1). He proved

Theorem 1.2. If the number of representations of D in the form 2a2 +
b2 + 8c2 equals twice the number of representations of D in the form 2a2 +
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b2 + 32c2, where a, b, c ∈ Z, then the system of simultaneous Pell equations

(1.1) has no solutions in positive integers x, y, z.

Walsh [12] pointed out that heuristics shows that the condition in The-
orem 1.2 only applies to a set of integers which has asymptotic density less
than 1/2. So, he looked for other conditions. Walsh’s result is: If D is a

product of fewer than five primes, then (1.1) has only the following positive

integer solutions:

D = 2 · 3, (x, y, z) = (7, 5, 2); D = 2 · 3 · 5 · 7, (x, y, z) = (41, 29, 2);

D = 3 · 5 · 7 · 17, (x, y, z) = (239, 169, 4);

D = 3 · 17 · 29 · 41, (x, y, z) = (1393, 985, 4).

But this result is included in Theorem 1.1.

In this paper, we shall improve Theorem 1.1 to

Theorem 1.3. If D is a product of fewer than seven primes, then the

only positive integer solutions of (1.1) are:

D = 2 · 3, (x, y, z) = (7, 5, 2),

D = 2 · 3 · 5 · 7, (x, y, z) = (41, 29, 2),

D = 3 · 5 · 7 · 17, (x, y, z) = (239, 169, 4),

D = 3 · 17 · 29 · 41, (x, y, z) = (1393, 985, 4),

D = 2 · 5 · 7 · 11 · 239, (x, y, z) = (47321, 33461, 78),

D = 2 · 3 · 17 · 239 · 577, (x, y, z) = (275807, 195025, 52),

D = 2 · 5 · 7 · 11 · 29 · 41, (x, y, z) = (8119, 5741, 6).

By Cohn’s work [7] on the Diophantine equation x4 −Dy2 = 1 we know
that (1.1) has at most one positive integer solution (see also [5, pp. 50–53]
or [12]). Bennett [1] proved that the general system of Pell equations

(1.2)

{

y2 − az2 = 1,

x2 − bz2 = 1,

where a and b are distinct positive integers, has at most three positive integer
solutions. In 2002, Yuan [13] proved that if max{a, b} > 1.4 ·1057, then (1.2)
has at most two positive integer solutions. Recently, Bennett et al. [2] based
on Yuan’s work proved that (1.2) has at most two positive integer solutions
for any distinct positive integers a and b.

2. Lemmas. We shall need the following lemmas to prove Theorem 1.3.

Lemma 2.1. The only integer solutions of the equation x4 − 2y2 = 1 are

(x, y) = (±1, 0).
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Proof. See [4, p. 19 or p. 27]. In fact, x4 − 2y2 = 1 is equivalent to
x4 + y4 = (y2 + 1)2, which from Fermat’s famous result [10, p. 16] yields
y = 0.

Lemma 2.2. The only integer solutions of the equation x4 − 2y2 = −1
are (x, y) = (±1,±1).

Proof. This is a special case of the equation x4 + z4 = 2y2. For its proof
we refer to [10, p. 18] or [4, p. 28].

Lemma 2.3. The only integer solutions of the equation x2 − 2y4 = 1 are

(x, y) = (±1, 0).

Proof. See [4, p. 26] or [10, p. 269].

Lemma 2.4. The only integer solutions of the equation x2 − 2y4 = −1
are (x, y) = (±1,±1) and (±239,±13).

Proof. See [8].

Lemma 2.5. The only integer solutions of the equation x2 − 8y4 = 1 are

(x, y) = (±1, 0) and (±3,±1).

Proof. See [4, p. 25]. Indeed, from x2 − 8y4 = 1 one has x ± 1 = 2y4
1,

x ∓ 1 = 4y4
2, y = y1y2 and hence y4

1 − 2y4
2 = ±1. Thus the lemma follows

from Lemmas 2.1 and 2.2.

Lemma 2.6. The only positive integer solution of the system

(2.1)

{

z = x2 + (x + 1)2,

z2 = y2 + (y + 1)2,

is (x, y, z) = (1, 3, 5).

Proof. See [9].

Lemma 2.7. The only positive integer solutions of the equation

(2.2) y2 − 2

(

x2 + 1

2

)2

= −1

are (x, y) = (1, 1) and (3, 7).

Proof. Clearly (x, y) = (1, 1) is a positive integer solution of (2.2). Sup-
pose (x, y) is another positive integer solution. Then x and y must be odd.
Let x = 2x1 + 1, y = 2y1 + 1, x1, y1 ∈ N. Put z1 = (x2 + 1)/2. Then

z1 =
1

2
((2x1 + 1)2 + 1) = x2

1 + (x1 + 1)2.

Since x, y satisfy (2.2),

z2
1 =

(

x2 + 1

2

)2

=
y2 + 1

2
= y2

1 + (y1 + 1)2.
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Hence the positive integers x1, y1 and z1 satisfy the system (2.1). By Lemma
2.6 we have x1 = 1, y1 = 3, z1 = 5. This implies that (x, y) = (3, 7).

Remark 2.1. In [6], Cao et al. used an elementary method to prove that

the only positive integer solutions of y2 − 2
(

x2
−1

4

)2
= 1 are (x, y) = (1, 1),

(3, 3) and (7, 17). Since Ljunggren’s proof of Lemma 2.6 is not elementary,
we wonder if an elementary proof of Lemma 2.7 can be provided.

3. Proof of the main theorem. Eliminating Dz2 from (1.1) we get

(3.1) x2 − 2y2 = −1.

It is well known [4, 5, 10] that all positive integer solutions of the Pell
equation (3.1) are given by

(3.2) x + y
√

2 = (1 +
√

2)2n−1, n ∈ N.

Let ̺ = 1 +
√

2 and ̺ = 1 −
√

2. Then (3.2) yields

x =
1

2
(̺2n−1 + ̺2n−1), y =

1

2
√

2
(̺2n−1 − ̺2n−1), n ∈ N.

Let sequences {ξn} and {ηn} be such that ξn + ηn

√
2 = ̺n, n ∈ Z. Then

ξ2
n − 2η2

n = (−1)n,(3.3)

ξ2n = ξ2
n + 2η2

n = 2ξ2
n − (−1)n = 4η2

n + (−1)n,(3.4)

η2n = 2ξnηn.(3.5)

One can easily check that {ξn} and {ηn} satisfy

ξn+2 = 2ξn+1 + ξn, ξ0 = ξ1 = 1,

ηn+2 = 2ηn+1 + ηn, η0 = 0, η1 = 1.

Thus we have the following table:

Table 1

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·

ξn 1 1 3 7 17 41 99 239 577 1393 3363 8119 19601 47321 · · ·

ηn 0 1 2 5 12 29 70 169 408 985 2378 5741 13860 33461 · · ·

Direct verification leads to

(3.6) ξ2
2n−1 − 1 = 8ξn−1ξnηn−1ηn.

Also for any n ∈ Z, ξn−1, ξn, ηn−1, ηn are pairwise coprime (see [3, 12]). By
(3.2) we have x = ξ2n−1, n ∈ N. Therefore, from (1.1) and (3.6) we have

(3.7) Dz2 =
1

2
(x2 − 1) =

1

2
(ξ2

2n−1 − 1) = 4ξn−1ξnηn−1ηn, 1 < n ∈ N.

Now consider the following four cases.
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Case 1: n ≡ 0 (mod 4). Let n = 4m for some m ∈ N. By (3.7) and
(3.5) we have

(3.8) Dz2 = 4ξ4m−1ξ4mη4m−1η4m = 42ξ4m−1ξ4mη4m−1ξ2mξmηm,

where ξ4m−1, ξ4m, η4m−1, ξ2m, ξm, ηm are pairwise coprime.

(a) If ξk ∈ {ξ4m−1, ξ4m, ξ2m, ξm} is such that ξk = u2 is a perfect square
for some u ∈ N, then by (3.3) we have

(3.9) u4 − 2η2
k = (−1)k, k ∈ {4m − 1, 4m, 2m, m}.

By Lemmas 2.1 and 2.2 we have ξk = u2 = 1. Thus k = 0 or 1 and hence
m = 1. Using Table 1 and (3.8) we find that D = 3 · 5 · 7 · 17. The correspond-
ing positive integer solution is (x, y, z) = (239, 169, 4).

(b) Suppose ηk ∈ {η4m−1, ηm}. If ηk = v2 is a perfect square for some
v ∈ N, then by (3.3) we get

(3.10) ξ2
k − 2v4 = (−1)k, k ∈ {4m − 1, m}.

If k is even, then from Lemma 2.3 we see that (3.10) is impossible since
v ∈ N. If k is odd, then Lemma 2.4 shows that positive integer solutions to
(3.10) are ξk = 1 and 239. This implies that k = 1, 7. But as k ∈ {4m−1, m}
for m ∈ N, we have m = 1, 2 or 7. For m = 1, D = 3 · 5 · 7 · 17; this solution
has already been computed in (a). For m = 2, D = 2 · 3 · 17 · 239 · 577. The
corresponding positive integer solution is (x, y, z) = (275807, 195025, 52).

Similarly, putting m = 7 into (3.8) we have

(3.11) Dz2 = (4 · 13)2 · 239ξ27ξ28η27ξ14.

From (3.4) we have ξ14 = 4η2
7−1 = (2η7−1)(2η7+1) = 337·339 = 3·113·337.

Since ξ27, ξ28, η27 are not perfect squares, by (3.11), D has at least seven
prime factors, contrary to assumption.

(c) If none of the ξ4m−1, ξ4m, η4m−1, ξ2m, ξm, ηm is a perfect square, then
D in (3.8) has at least six prime factors. Hence D has exactly six prime
factors since D is a product of fewer than seven primes. This implies that
each of ξ4m−1, ξ4m, η4m−1, ξ2m, ξm, ηm is a product of a prime and a square.

Suppose m is even. Then from (3.5) we have ηm = 2ξm/2ηm/2. Since ηm

is a product of a prime and a square, either ξm/2 is a square or ηm/2 is
twice a square. If ξm/2 is a square, then from (a), m = 2. This is already

computed in (b). Suppose ηm/2 = 2t2 for some t ∈ N. Then from (3.3),

ξ2
m/2

− 8t4 = 1. By Lemma 2.5, we have ξm/2 = 3. Hence m = 4. Thus (3.8)

becomes Dz2 = 43 · 3 · 17 · 577ξ15ξ16η15. One can check that ξ15 = 7 · 41 · 312

and none of ξ16 and η15 is a square. Hence D has at least seven prime factors,
which is not the case.

Suppose m is odd. From (3.4) we have ξ2m =4η2
m−1=(2ηm−1)(2ηm+1).

Since ξ2m is a product of a prime and a square, we have 2ηm − 1 = s2 or
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2ηm+1 = s2 for some s ∈ N. Since m is odd, ηm is odd. Taking residues mod-
ulo 4 implies that we can only have 2ηm − 1 = s2, that is, ηm = (s2 + 1)/2.
By (3.3),

ξ2
m − 2

(

s2 + 1

2

)2

= −1.

By Lemma 2.7, ξm = 1, 7. Thus m = 1, 3. We only have to compute the case
m = 3. Substituting m = 3 into (3.8) and then using Table 1, we obtain

Dz2 = 42ξ11ξ12η11ξ6ξ3η3 = 42 · 8119 · 19601 · 5741 · 99 · 7 · 5
= 122 · 5 · 7 · 11 · 17 · 23 · 353 · 1153 · 5741.

Hence D has eight prime factors, contrary to assumption.

Case 2: n ≡ 1 (mod 4). Let n = 4m + 1 for some m ∈ N. By (3.5) and
(3.7) we have

(3.12) Dz2 = 42ξ4mξ4m+1η4m+1ξ2mξmηm,

where ξ4m, ξ4m+1, η4m+1, ξ2m, ξm, ηm are pairwise coprime. The same ar-
guments as in Case 1 lead to the following results.

If ξk ∈ {ξ4m, ξ4m+1, ξ2m, ξm} is a square, then m = 1.

If ηk ∈ {η4m+1, ηm} is a square, then m = 1, 7.

If no member of {ξ4m, ξ4m+1, η4m+1, ξ2m, ξm, ηm} is a square, then D in
(3.12) has at least six prime factors. Hence D has exactly six prime factors.
Therefore m = 1, 2, 3, 4.

For m = 1, by Table 1, (3.12) yields Dz2 = 42ξ4ξ5η5ξ2ξ1η1 = 42 · 3 ·
17 · 29 · 41. Thus D = 3 · 17 · 29 · 41. Hence the positive integer solution is
(x, y, z) = (1393, 985, 4).

When m = 2, we have Dz2 = 42ξ8ξ9η9ξ4ξ2η2 = 42·2·3·5·7·17·197·199·577.
Thus D has eight prime factors, which cannot happen.

For m = 3, we have Dz2 = 42ξ12ξ13η13ξ6ξ3η3 = 42ξ13η13 ·19601·99·7·5 =
122ξ13η13 · 5 · 7 · 11 · 17 · 1153. Therefore D has at least seven prime factors.

If m = 4, then

Dz2 = 42ξ16ξ17η17ξ8ξ4η4 = 43ξ16ξ17η17 · 3 · 17 · 577

= 43 · 3 · 17 · 103 · 577 · 15607 · 665857η17.

This implies that D has at least seven prime factors.

Finally, for m = 7, we have

Dz2 = (4 · 13)2 · 239ξ28ξ29η29ξ14 = (4 · 13)2 · 3 · 113 · 239 · 337ξ28ξ29η29.

Since ξ28, ξ29 and η29 are not squares this implies that D has at least seven
prime factors. Again this contradicts the hypothesis.



Simultaneous Pell equations 121

Case 3: n ≡ 2 (mod 4). Let n = 4m − 2 for m ∈ N. Again from (3.5)
and (3.7) we have

Dz2 = 4ξ4m−3ξ4m−2η4m−3η4m−2(3.13)

= 23ξ4m−3ξ4m−2η4m−3ξ2m−1η2m−1,

where any two of ξ4m−3, ξ4m−2, η4m−3, ξ2m−1 and η2m−1 are coprime. Ex-
actly the same argument as above shows that if ξk ∈ {ξ4m−3, ξ4m−2, ξ2m−1}
is a square, then m = 1; if ηk ∈ {η4m−3, η2m−1} is a square, then m = 1
or 4; if neither ξ4m−3, ξ4m−2, η4m−3, ξ2m−1 nor η2m−1 is a square, then since
ξ4m−3, ξ4m−2, η4m−3, ξ2m−1 and η2m−1 are all odd, D in (3.13) has at least
six, hence exactly six prime factors. Since ξ4m−2 = 4η2

2m−1−1, we get m = 1
or 2.

For m = 1, from Table 1 and (3.13) we have Dz2 = 23ξ1ξ2η1ξ1η1 = 23 ·3.
Hence D = 2 ·3 and the corresponding positive integer solution is (x, y, z) =
(7, 5, 2).

For m = 2, we have Dz2 = 23ξ5ξ6η5ξ3η3 = 62 · 2 · 5 · 7 · 11 · 29 · 41. So,
D = 2 · 5 · 7 · 11 · 29 · 41 and the corresponding positive integer solution is
(x, y, z) = (8119, 5741, 6).

Substituting m = 4 into (3.2) we have Dz2 = 23ξ13ξ14η13ξ7η7 = 262 · 2 ·
3 ·79 ·113 ·239 ·337 ·599 ·33461. This implies that D has eight prime factors.

Case 4: n ≡ 3 (mod 4). Put n = 4m − 1 for m ∈ N. In this case we
infer from (3.5) and (3.7) that

Dz2 = 22ξ4m−2ξ4m−1η4m−2η4m−1(3.14)

= 23ξ4m−2ξ4m−1η4m−1ξ2m−1η2m−1,

where ξ4m−2, ξ4m−1, η4m−1, ξ2m−1, η2m−1 are pairwise coprime.

Again, arguing as before we deduce that: if ξk ∈ {ξ4m−2, ξ4m−1, ξ2m−1}
is a square, then m = 1; if ηk ∈ {η4m−1, η2m−1} is a square, then m = 1, 2, 4;
if none of ξ4m−2, ξ4m−1, η4m−1, ξ2m−1, η2m−1 is a square, then since ξ4m−2,
ξ4m−1, η4m−1, ξ2m−1 and η2m−1 are all odd, D in (3.14) must have at least
six, has exactly six, prime factors. Hence from ξ4m−2 = 4η2

2m−1 − 1 we get
m = 1, 2.

When m = 1, D satisfies Dz2 = 23ξ2ξ3η3ξ1η1 = 23 · 3 · 5 · 7. Thus
D = 2 ·3 ·5 ·7 and hence the positive integer solution is (x, y, z) = (41, 29, 2).

When m = 2, we see from (3.14) that Dz2 = 23ξ6ξ7η7ξ3η3 = 782 · 2 · 5 ·
7 · 11 · 239. This forces D = 2 · 5 · 7 · 11 · 239. The corresponding positive
integer solution is (x, y, z) = (47321, 33461, 78).

For m = 4, we get Dz2 = 23ξ14ξ15η15ξ7η7 = 262 ·2 ·3 ·113 ·239 ·237ξ15η15.
This implies that D has at least seven prime factors. Hence (1.1) has no
solution in this case.
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Having exhausted all the possible cases, we have thus completed the
proof of the theorem.

4. Further discussion. Let ω(D) denote the number of distinct prime
factors of D. Theorem 1.3 provides all positive integer solutions of (1.1)
for all D with ω(D) ≤ 6. The question arises whether all positive integer
solutions can be found for all D with ω(D) = 7. But this seems difficult to
decide by using the proof of Theorem 1.3 without additional conditions. In
particular, we do not know whether there are finitely many D with ω(D) = 7
such that (1.1) has a positive integer solution. If some suitable conditions
are imposed, then all positive integer solutions of (1.1) with ω(D) = 7 may
be easily obtained. For example, we may assume that D does not contain a
prime factor of the form 8k + 3, nor of the form 8k + 1.

We would like to pose the following conjecture:

There are finitely many D with ω(D) = 7 such that (1.1) has a posi-

tive integer solution.

A natural question is:

For any constant k ≥ 7, are there finitely many D with ω(D) ≤ k
such that (1.1) has a positive integer solution?
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