
ACTA ARITHMETICA

126.2 (2007)

Sharp bounds for the number of solutions to

simultaneous Pellian equations

by

P. G. Walsh (Ottawa)

1. Introduction. In [1], Bennett proved that the system of Pell equa-
tions

x2 − ay2 = z2 − by2 = 1

has at most three solutions in positive integers x, y, z. Since then, the result
has been improved by Bennett, Cipu, Mignotte and Okazaki in [2], wherein
it was shown that this system has at most two solutions in positive integers,
which is best possible. The situation is somewhat different for the system of
Pell equations

x2 − ay2 = y2 − bz2 = 1,

which conjecturally has at most one positive integer solution. The best
known general bound for the number of positive integer solutions to this sys-
tem of equations is 2, proved recently by Cipu and Mignotte in [4]. Progress
has recently been made by Yuan in [14], in which it was proved that for
a = 4t(t + 1), the system has at most one solution.

The purpose of this paper is to consider the more general system of
Pellian equations

(1.1) x2 − (M2 − c)y2 = c, y2 − bz2 = 1, c ∈ {±1,±2,±4},
where M and b > 1 are positive integers with b squarefree, and M2 − c
is a positive nonsquare integer. This is motivated not only by the work of
Yuan in [14], but also by a recent paper of Katayama and Levesque [7].
In particular, they considered the case c = −4, and proved that under the
assumption that the number of distinct prime factors of b is at most 4,
the system (1.1) has at most one solution in positive integers. They also
proved that a substantially stronger result follows from the abc conjecture.
We prove here the following.
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Theorem 1.1. If M, b, c are fixed integers as described above, then the

system of Pell equations (1.1) has at most one solution in positive integers

x, y, z.

There are many examples of equations of the form (1.1) which have a
solution in positive integers. For instance, if c = 4 and b = M2 − 1, then
the system has the solution (x, y, z) = (M2 − 2, M, 1). Also, if c = 1 and
b = 4M2 − 1, then (X, Y, Z) = (2M2 − 1, 2M, 1) is a solution to (1.1).
Consequently, the upper bound of one solution given in Theorem 1.1 is in
fact best possible.

2. Preliminary results. Throughout the paper, c ∈ {±1,±2,±4}. Let
M ≥ 1 denote a positive integer, which is odd if c is even, and for which
M2 − c is a positive nonsquare integer. Let

(2.1) α =
M +

√
M2 − c

√

|c|
,

and for i ≥ 1, define sequences {Vi} and {Wi} by

(2.2) αi =
Vi + Wi

√
M2 − c

√

|c|
.

Also, for b > 1 and squarefree, let β = T + U
√

b denote the smallest unit
greater than 1 in Z[

√
b] which is of norm 1, and for j ≥ 1, let

βj = Tj + Uj

√
b.

The following is similar to Lemma 2.1 of [14]. The proof of these state-
ments follows from the binomial theorem.

Lemma 2.1.

(i) If |c| = 4, then Vi and Wi are both even if 3 divides i, and both odd

otherwise.

(ii) Wi divides Wj if and only if i divides j.
(iii) Vi divides Vj if and only if i/j is an odd integer.

(iv) If d = gcd(i, j), then gcd(Wi, Wj) = Wd.

(v) If d = gcd(i, j), then gcd(Vi, Vj) = Vd if i/d and j/d are odd inte-

gers, and 1 otherwise.

(vi) W2i = ViWi if c is even, and W2i = 2ViWi if c is odd.

The following is similar to Lemmas 2.2 and 2.3 from [14]. The proof
follows from direct computation, and taking into consideration the facts in
the previous lemma.

Lemma 2.2. Let k0, k1, k2 and q be positive integers with k2 = 2qk1±k0

and 0 ≤ k0 ≤ k1. Then
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(i) If |c| 6= 4, or if |c| = 4 and Vk1
is odd , then Vk2

≡ ±Vk0
(modVk1

).
(ii) If |c| = 4 and Vk1

is even, then Vk2
≡ ±Vk0

(modVk1
/2).

(iii) If |c| 6= 4, or if |c| = 4 and Wk1
is odd , then Wk2

≡ ±Wk0

(modWk1
).

(iv) If |c| = 4 and Wk1
is even, then Wk2

≡ ±Wk0
(modWk1

/2).

The following is similar to Lemma 2.4 of [14], and is the vital observation
underlying the method of this paper. We will provide the details of the proof
for c = −4, as this is the case that presents the most difficulty.

Assume that (1.1) has a solution in positive integers. Let (x0, y0, z0)
denote the solution to (1.1) with z0 minimal. Let k0, l0 denote the positive
integers for which y0 = Wk0

and z0 = Ul0 . Also, (x, y, z) will denote a
different solution to (1.1), and k and l will denote positive integers for which
y = Wk, and z = Ul.

Lemma 2.3. Assume that (M, b) is not one of {(1, 2), (1, 3), (1, 15)}.
Then y0 | y, z0 | z, and k/k0 and l/l0 are odd integers.

Proof. Assume that k/k0 and l/l0 are not odd integers. Then there are
integers s, q, t, q1 for which 0 ≤ s < k0, k = 2qk0 ± s, 0 ≤ t < l0, q1, and
l = 2q1l0 ± t. We find from Lemma 2.2 that

y = Wk ≡ ±Ws (modWk0
/2δ) ≡ ±Ws (mod y0/2δ),

where δ = 0 if y0 is even, and δ = 1 if y is odd. Similarly, by Lemma 2.3
in [14],

y = Tl ≡ ±Tt (modTl0) ≡ ±Tt (mod y0).

Therefore,

(2.3) Ws ≡ ±Tt (mod y0/2δ).

Since k is odd, s is odd. Since k0 is odd and larger than s, it follows that
k0 ≥ s + 2. Therefore, by the assumption that M > 1 is odd, and a basic
estimate for the growth rate of the sequence {Wi}, it follows that

Ws < (1/4)Ws+2 ≤ (1/4)Wk0
= (1/4)y0.

Also, because b is not one of 2, 3 or 15, the growth rate of the sequence {Ti}
implies that

Tt < (1/4)Tt+1 ≤ (1/4)Tl0 = (1/4)y0.

Because of these estimates, we see that the minus sign in (2.3) is not possible.
Therefore, Ws ≡ Tt (mod y0/2δ) must hold. But in this case, the estimates
imply that Ws = Tt, which contradicts the fact that (x0, y0, z0) is the small-
est solution to (1.1). It follows that at least one of k/k0 or l/l0 is an odd
integer. By the lemma above, k/k0 is an odd integer if and only if y0 divides
y, and this occurs if and only if l/l0 is an odd integer. The lemma follows.
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The method also uses, in a fundamental way, the results of Voutier [12]
and Bilu, Hanrot and Voutier [3] on the existence of primitive divisors in
Lucas sequences. Combining the results of those papers yields the following
result. We first remind the reader of the notion of a primitive prime factor.

Definition. Let {Wi} be the sequence of integers in (2.2). We say that
Wi has a primitive prime factor if there is a prime factor of Wi which does
not divide Wj for all 1 ≤ j ≤ i − 1.

The rank of apparition r(m) of a positive integer m > 1 in the sequence
{Wi} is the smallest positive integer i for which m divides Wi. Thus we see
that if m is prime, then it is a primitive prime factor of Wr(m). The main
point of these definitions is the well known result that m > 1 divides Wk if
and only if r(m) divides k.

Lemma 2.4. Let α be as in (2.1). Then for i > 1, Wi has a primitive

prime factor except only if α = (1 +
√

5)/2 and i ∈ {2, 6, 12}.
We finish off this series of lemmata by a result which combines results of

Ljunggren [8], Cohn [6], and the author [13]. It essentially solves the problem
of determining all instances when the product of two distinct elements in
any sequence {Wi} is a square.

Lemma 2.5. Let C = 1 if |c| = 1 or |c| = 2, and C = 4 if |c| = 4. For

any positive integer A, there is at most one positive integer solution X, Y to

(2.4) X2 − (M2 − c)Y 2 = C

with Y = A · u2, for some integer u, except only in the following cases.

(i) c = 1, A = 1, M = 2m2, in which case Y ∈ {1, (2m)2}.
(ii) c = 1, A = 1, M = 169, in which case Y ∈ {1, (6214)2}.
(iii) c = 2, A = m1 with M = m1u

2, and M2 − 1 = 2m2, in which case

Y ∈ {M, (2m)2M}.
(iv) c = −2, A = m1 with M = m1u

2, and M2 + 1 = 2m2, in which

case Y ∈ {1, (2m)2M}.
(v) c = 4, M = 1, A = 1, in which case Y ∈ {1, 144}, M = 1, A = 2,

in which case Y ∈ {2, 8}, or M = m2 > 1, A = 1, in which case

Y ∈ {1, m2}.
Proof. We prove this by considering each value of c separately. We retain

the notation from (2.4).

Case 1: c = 1. Assume that there are two positive indices k < l for which
Wk = Au2 and Wl = Av2 for some positive integers u and v. By a recent
improvement to Ljunggren’s theorem on the equation X2−DY 2 = 1 in [11],

either A2(M2−1) = 1785, A2(M2−1) = 16 ·1785, or else Vk +Au2
√

M2 − 1

is the smallest unit greater than 1 in Z[
√

M2 − 1] which is of norm 1, and
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Vl + Av2
√

M2 − 1 is its square. The equation A2(M2 − 1) = 1785 is not
solvable, while the equation A2(M2 − 1) = 16 · 1785 leads to case (ii) in
the statement of the lemma. Finally, if the third possibility occurs, then

Vk + Au2
√

M2 − 1 = M +
√

M2 − 1 and Vl + Av2
√

M2 − 1 = 2M2 − 1 +
2M

√
M2 − 1. Therefore, A = 1, u = 1, and v2 = 2M , which implies that

M = 2m2 for some integer m, resulting in (i) in the statement of the lemma.

Case 2: c = −1. By the same argument as in the previous case, but
appealing directly to Ljunggren’s theorem in [8] (or see Theorem 9 on

p. 270 in [9]), it follows that Vk + Wk

√
M2 + 1 is the fundamental unit

in Z[
√

M2 + 1]. This is not possible since the fundamental unit in that ring
has norm −1.

Case 3: c = ±2. The minimal unit in Z[
√

M2±2] is M2±1+M
√

M2±2,
and so the argument given to prove Case 2 shows Au2 = M and Av2 =
2(M2 ± 1)M . This forces M2 ± 1 = 2m2 for some positive integer m.

Case 4: c = 4. Assume that M2 − 4 > 5, since the case M = 1 is not
possible and M = 3 was dealt with by Ribenboim in [10]. Assume first that
the equation X2 − A2(M2 − 4)Y 2 = 4 is solvable in odd integers X, Y and
let

αA =
v1 + w1

√

A2(M2 − 4)

2
denote its minimal solution. For i ≥ 1, we let

αi
A =

vi + wi

√

A2(M2 − 4)

2
.

Thus there are integers k1 and l1 for which wk1
= u2 and wl1 = v2. By

Theorem 3 of [6] applied to d = A2(M2−4), we find that k1 = 1, l1 = 2 and
furthermore that v1 is a square. But v1 = Vk, and so applying Theorem 1
of [6], we see that k = 1. Therefore, M = m2 for some integer m, A = 1,
and Wk = 1, Wl = m2.

Assume now that the equation X2 − A2(M2 − 4)Y 2 = 4 is not solvable
in odd integers X, Y . Let vk = V3k/2 and wk = W3k/2, so that (X, Y ) =
(vk, wk) constitute all solutions to X2 − (M2 − 4)Y 2 = 1. By assumption,
there are indices k and l for which wk = (Au2)/2 and wl = (Av2)/2, and
it follows from Theorem 1 in [13], with D = A2(M2 − 4), that k = 1 and
l = 2. This in turn implies that vk = 2V3k is a square, which is not possible
by Theorem 2 of [6].

Case 5: c = −4. Again we may assume that M2 + 4 > 5 by the result
of Ribenboim [10]. Assume first that the equation X2 −A2(M2 + 4)Y 2 = 4
is solvable in odd integers X, Y and let

αA =
v1 + w1

√

A2(M2 + 4)

2
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denote its minimal solution. For i ≥ 1, we let

αi
A =

vi + wi

√

A2(M2 + 4)

2
.

Thus there are integers k1 and l1 for which wk1
= u2 and wl1 = v2. By

Theorem 3 of [5], this forces k1 = 1 and v1 to be a square. But v1 = Vk, and
so by Theorem 1 of [5], either k = 1, or k = 3 and A2(M2 + 4) = 13. The
latter is not possible since k is evidently even.

Assume now that the equation X2 − A2(M2 + 4)Y 2 = 4 is not solvable
in odd integers X, Y . Let vk = V3k/2 and wk = W3k/2, so that (X, Y ) =
(vk, wk) constitute all solutions to X2 − (M2 + 4)Y 2 = 1. By assumption,
there are indices k and l for which wk = (Au2)/2 and wl = (Av2)/2, and
it follows from Theorem 1 in [13], with D = A2(M2 + 4), that k = 1 and
l = 2. This in turn implies that vk = 2V3k is a square, which is not possible
by Theorem 2 of [6].

3. Proof of Theorem 1.1. Assume that (1.1) is solvable in positive
integers, and let (x0, y0, z0) denote the smallest positive integer solution
to (1.1). Let (x1, y1, z1) denote a larger solution (specifically meaning that
z0 < z1). Let k0, l0, k1, l1 be the corresponding powers of α and β, as defined
at the start of Section 2.

We will first consider the case c = 1 in detail. The proof for the other
cases will be given with less detail in order to keep the presentation at a
reasonable length.

There are two distinct cases to consider depending on the parity of y0.
Assume first that y0 is odd. It follows from Lemma 2.3 that y1 is also odd.

Since y0 is odd, x0 + y0

√
M2 − 1 is an odd power of M +

√
M2 − 1, and

so M divides x0. Subtracting the second equation in (1.1) from the first
yields

(3.1) M2y2
0 − x2

0 = bz2
0 .

Since M divides x0 and b is squarefree, it follows that M also divides z0.
Put X0 = x0/M and Z0 = z0/M , then (3.1) becomes

y2
0 − X2

0 = bZ2
0 .

We note that V2i+1/V1 is an odd integer for all i ≥ 0, which shows that X0

is odd, and hence also that Z0 is even. Therefore, there are positive integers
A0, B0, u0, v0, with b = A0B0 and Z0 = 2u0v0, for which

(3.2) y0 + X0 = 2A0u
2
0, y0 − X0 = 2B0v

2
0 .

Since b is squarefree, we note that gcd(A0, B0)=1. Also, since gcd(x0, y0)=1,
it follows that gcd(y0 +X0, y0 −X0) = 2, which yields gcd(A0u

2
0, B0v

2
0) = 1.
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From (3.2) we see that y0 = A0u
2
0 + B0v

2
0 , and so substituting y0 and

z0 = 2Mu0v0 into the second equation in (1.1), and then simplifying, gives

(3.3) (A0u
2
0 + (1 − 2M2)B0v

2
0)

2 − (M2 − 1)(2MB0v
2
0)

2 = 1.

The symmetry of this equation shows that it can also be written as

(B0v
2
0 + (1 − 2M2)A0u

2
0)

2 − (M2 − 1)(2MA0u
2
0)

2 = 1.

Therefore, there is a positive integer i0 for which Wi0 = 2MB0v
2
0 . Since

M divides Wi0 , it follows that i0 is even. Similarly, there is also an even
positive integer j0 for which Wj0 = MA0u

2
0. Similarly, the second solu-

tion to (1.1), namely (x1, y1, z1), shows the existence of positive integers
A1, B1, u1, v1, i1, j1, with i1 and j1 even, for which b = A1B1, z1 = 2Mu1v1,
Wi1 = 2MB1v

2
1, and Wj1 = 2MA1u

2
1. We remark that, as with the previous

solution, gcd(A1, B1) = 1 and gcd(A1u
2
1, B1v

2
1) = 1. These remarks con-

cerning greatest common divisors imply by Lemma 2.1 that gcd(i0, j0) =
gcd(i1, j1) = 2, and that gcd(Wi0 , Wj0) = gcd(Wi1 , Wj1) = W2 = 2M .

By Lemma 2.4, since i0 > 1 and j0 > 1, Wi0 and Wj0 each have a
primitive prime factor, which will be denoted as p and q respectively. By
Lemma 2.3, z0 divides z1, and since A0B0 = A1B1, it follows that p must
divide one of Wi1 or Wj1 . Therefore, by the remarks concerning the rank of
apparition in Section 2, i0 divides one of i1 or j1. Similarly, j0 divides one
of i1 or j1.

Assume first that both i0 and j0 divide i1. It follows that Wi0 and Wj0

divide Wi1 , and hence that Wi0/M and Wj0/M divide Wi1/M . We claim
that this implies that A1 = 1. If p1 is a prime dividing A1, then p1 divides
one of A0 or B0, and hence it divides at least one of Wi0/M or Wj0/M .
Therefore, p1 divides Wi1/M . But since A1 divides Wj1/M , it follows that
p1 divides gcd(Wi1/M, Wj1/M), which is equal to 2 by the remarks above.
Thus, A1 = 1 or A1 = 2. If A1 = 2, then the equation Wi = 4MX2

would be solvable, and since W2 = 2M · 12, Theorem 1 of [13] applied to
D = M2(M2 − 1) implies that M = 1, which is not possible. Therefore,
A1 = 1 as claimed. Since Wj1 = 2MA1u

2
1, it follows that Wj1 = 2Mu2

1, and
Lemma 2.5 implies that j1 = 2 and u1 = 1. Therefore, from the construction
of the integers A1, u1 from y1, X1, it follows that y1 ± X1 = 2, and since
y1 ≥ 2, it follows that y1 −X1 = 2. This implies that My1 −x1 = 2M , from
which it follows that x1 = M(y1 − 2). Substituting this for x in the first
equation in (1.1) and simplifying gives y1 = 4M2 − 1 = W3. Since y0 > 1
and odd, it follows that y0 = Wk0

≥ W3 = y1, contradicting the fact that
y0 < y1.

We can now assume, without loss of generality, that i0 divides i1 and
j0 divides j1. Then Wi0 divides Wi1 and Wj0 divides Wj1 , which implies
that B0u

2
0 divides B1u

2
1 and A0v

2
0 divides A1v

2
1 . Now suppose that p is a
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prime dividing gcd(B0, A1); then p divides gcd(Wi1/(2M), Wj1/(2M)) = 1,
a contradiction. Therefore, B0 divides B1, and a similar argument shows
that A0 divides A1. Since A0B0 = A1B1, the only way this can occur is if
A0 = A1 and B0 = B1. By Lemma 2.5, this forces A0 = B0 = 1, and so
b = 1, which is not possible.

Now assume that y0 is even. Then y1 is also even, and all of x0, x1, z0, z1

are odd. In this case, the factors of the left side in (3.1) are coprime, and so
there are odd positive integers A0, B0, A1, B1, u0, v0, u1, v1, with b = A0B0 =
A1B1, z0 = u0v0, z1 = u1v1, for which

(3.4) Myi − xi = Aiu
2
i , Myi + xi = Biv

2
i (i = 0, 1),

and for i = 0, 1, gcd(Ai, Bi) = gcd(ui, vi) = 1. This gives

yi = (Aiu
2
i + Biv

2
i )/(2M) (i = 0, 1),

and substituting this and zi = uivi into the second equation in (1.1) and
simplifying results in the equation

(

Aiu
2
i + (1 − 2M2)Biv

2
i

2M

)2

− (M2 − 1)B2
i v4

i = 1 (i = 0, 1).

By symmetry, one also obtains an identical equation, but with the Ai

(resp. ui) and Bi (resp. vi) interchanged.
Therefore, there are odd positive indices i0, j0, i1, j1 for which

Wi0 = B0v
2
0 , Wj0 = A0u

2
0, Wi1 = B1v

2
1, Wj1 = A1u

2
1.

As argued in the previous case, Lemmas 2.3 and 2.4 imply that both Wi0

and Wj0 divide one of Wi1 and Wj1 . If they both divide say Wi1 , it follows,
as argued in the previous case, that A1 = 1. Therefore, Wj1 = u2

1 is a
square, and by Lemma 2.5, it follows that Wj1 = 1, which in turn implies
by (3.4) that My1−x1 = 1. Substituting this quantity into the first equation
in (1.1) and simplifying shows that y1 = 2M = W2. Since y0 is even, we
already knew that y0 ≥ 2M , and so this contradicts the fact that y0 < y1.

We now consider the case c = −1. In this case, y0 and y1 must be odd,
and X0 = x0/M and X1 = x1/M are odd integers. Adding the two equations
in (1.1) and dividing by M gives

X2
i − y2

i = bZ2
i (i = 0, 1),

where Z0 = z0/M, Z1 = z1/M are even integers. It follows that there exist
positive integers A0, B0, A1, B1 and u0, u1, v0, v1 for which b = A0B0 =
A1B1, Z0 = 2u0v0, Z1 = 2u1v1, and

Xi − yi = 2Aiu
2
i , Xi + yi = 2Biv

2
i (i = 0, 1).

Solving for yi, substituting yi and zi in the second equation in (1.1), and
then simplifying gives

(Aiu
2
i + (1 + 2M2)Biv

2
i )

2 − (M2 + 1)(2MBiv
2
i )

2 = 1 (i = 0, 1)
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and

(Biv
2
i + (1 + 2M2)Aiu

2
i )

2 − (M2 + 1)(2MAiu
2
i )

2 = 1 (i = 0, 1).

The rest of the proof follows exactly as in the case c = 1 with y0 odd, and
so we forego the details.

Now assume that c = 2, in which case M is assumed to be odd. It follows
that y0 and y1 are odd, z0 and z1 are even, and both X0 = x0/M, X1 = x1/M
are odd integers. Subtracting twice the second equation from the first in (1.1)
and dividing by M , gives

y2
i − X2

i = 2bZ2
i (i = 0, 1),

where Z0 = z0/M, Z1 = z1/M . It follows that there exist positive integers
A0, B0, A1, B1, u0, u1, v0, v1 for which 2b = A0B0 = A1B1, Z0 = 2u0v0, Z1 =
2u1v1, and

yi − Xi = 2Aiu
2
i , yi + Xi = 2Biv

2
i (i = 0, 1).

Solving for yi, substituting yi and zi in the second equation in (1.1), and
then simplifying gives

(Aiu
2
i + (1 − M2)Biv

2
i )

2 − (M2 − 2)(2MBiv
2
i )

2 = 1 (i = 0, 1),

and by symmetry

(Biv
2
i + (1 − M2)Aiu

2
i )

2 − (M2 − 2)(2MAiu
2
i )

2 = 1 (i = 0, 1).

The rest of the proof follows exactly as in the case c = 1 with y0 odd, and
so we forego the details.

Now assume that c = −2, in which case M is assumed to be odd. It fol-
lows that y0 and y1 are odd, z0 and z1 are even, and both X0 = x0/M, X1 =
x1/M are odd integers. Adding twice the second equation to the first in (1.1)
and dividing by M gives

X2
i − y2

i = 2bZ2
i (i = 0, 1).

It follows that there exist positive integers A0, B0, A1, B1, u0, u1, v0, v1 for
which 2b = A0B0 = A1B1, Z0 = 2u0v0, Z1 = 2u1v1, and

Xi − yi = 2Aiu
2
i , Xi + yi = 2Biv

2
i (i = 0, 1).

Solving for yi, substituting yi and zi in the second equation in (1.1), and
then simplifying gives

(Aiu
2
i − (1 + M2)Biv

2
i )

2 − (M2 + 2)(2MBiv
2
i )

2 = 1 (i = 0, 1),

and by symmetry

(Biv
2
i − (1 + M2)Aiu

2
i )

2 − (M2 + 2)(2MAiu
2
i )

2 = 1 (i = 0, 1).

The rest of the proof follows exactly as in the case c = 1 with y0 odd.
Now we consider the case c = 4. Let k0 and k1 be indices for which

y0 = Wk0
and y1 = Wk1

. By Lemma 2.3, k0 and k1 have the same parity.
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Assume first that they are both odd. In this case M divides x0 and x1.
Multiplying the second equation in (1.1) by 4, subtracting it from the first
equation, and dividing the result by M gives

y2
i − Xi = 4bZi (i = 0, 1),

where as before, X0 = x0/M , X1 = x1/M and Z0 = z0/M , Z1 = z1/M .
Therefore,

yi ± Xi = 2Aiu
2
i , yi ∓ Xi = 2Biv

2
i (i = 0, 1),

where for i = 0, 1, b = AiBi, zi = Muivi. Solving for each yi, substituting
yi and zi into the second equation in (1.1), and simplifying gives

(2Aiu
2
i + (2 − M2)Biv

2
i )

2 − (M2 − 4)(MBiv
2
i )

2 = 4 (i = 0, 1),

and by symmetry,

(2Biv
2
i + (2 − M2)Aiu

2
i )

2 − (M2 − 4)(MAiu
2
i )

2 = 4 (i = 0, 1).

Therefore, there are even indices i0, i1, j0, j1 for which

Wi0 = MB0v
2
0 , Wj0 = MA0u

2
0,

Wi1 = MB1v
2
1 , Wj1 = MA1u

2
1.

Suppose that one of Wi0 , Wj0 , say Wi0 , does not have a primitive prime
factor. By Lemma 2.4, it follows that M = 3 and either i0 = 1 or i0 = 6.
Since i0 is even, we have Wi0 = 144, from which it follows that B0v

2
0 = 48.

Since B0 is squarefree, B0 = 3 and v0 = 4. Therefore, from the definition
of the values B0 and v0, we deduce that 3y0 ± x0 = 288. If 3y0 + x0 = 288,
then it is readily verified that y0 = 55 and x0 = 123. In this case, 3y0−x0 =
42 = 2MA0u

2
0, showing that A0 = 7, and hence b = 21. The case c = 4,

M = 3, b = 21 was checked using SIMATH, and exactly one positive integer
solution exists to (1.1). If 3y0 − x0 = 288, then it is readily verified that
y0 = 377 and x0 = 843. In this case, 3y0 + x0 = 1974 = 2MA0u

2
0, showing

that A0 = 329, and hence b = 987. The case c = 4, M = 3, b = 987 was also
checked using SIMATH, and in this case there is exactly one solution.

We can therefore assume that Wi0 and Wj0 each have a primitive prime
factor, say p and q respectively. Then by Lemma 2.3, each of p and q divide
one of Wi1 or Wj1 , from which it follows that each of i0 and j0 divide one
of i1 or j1. Suppose that i0 and j0 both divide i1. Then by the argument
given in the proof of the case c = 1, it follows that A1 = 1, and hence that
Wj1 = Mu2

1. By Lemma 2.5, it follows that j1 = 2 and u1 = 1. This implies
that My1 ± x1 = 2M , which upon solving for x1 and substituting into the
first equation in (1.1) gives y1 = M2 − 1 = W3. But y0 6= 1 = W1, and so
y1 > y0 ≥ W3, which is a contradiction.

We may therefore assume that i0 divides i1 and j0 divides j1. As argued
in the proof of the case c = 1, it follows that A0 = A1 and B0 = B1, and
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by Lemma 2.5, this implies that A0 = B0 = 1, hence b = 1, which is not
possible.

Assume now that k0 and k1 are both even. As in the previous case we
obtain

M2y2
i − x2

2 = 4bz2
i (i = 0, 1).

Since k0 and k1 are even, it follows that M does not divide xi, and so
gcd(Myi − xi, Myi + xi) = 2. Therefore, there are integers A0, B0, A1, B1,
u0, u1, v0, v1, with zi = uivi and b = AiBi, for which

Myi ± xi = 2Aiu
2
i , Myi ∓ xi = 2Biv

2
i (i = 0, 1).

Notice that M does not divide either side of these two equations. Solving
for yi, substituting yi and zi into the second equation in (1.1), and then
simplifying gives

((2Ai + (2 − M2)Biv
2
i )/M)2 − (M2 − 4)B2

i v4
i = 4 (i = 0, 1).

By symmetry, this equation can be rewritten as

((2Bi + (2 − M2)Aiu
2
i )/M)2 − (M2 − 4)A2

i u
4
i = 4 (i = 0, 1).

Since M does not divide Biv
2
i and Aiu

2
i , there are odd indices i0, j0, i1, j1

for which

Wi0 = B0v
2
0 , Wj0 = A0u

2
0, Wi1 = B1v

2
1, Wj1 = A1u

2
1.

Assume that, say Wi0 , has no primitive prime factor. By Lemma 2.4,
the only possibility is i0 = 1. It follows that B0 = v0 = 1, and furthermore
that My0 − x0 = 2. Solving this for x0 and substituting it into (1.1) gives
that x0 = M2 − 2 = V2 and y0 = M = W2. Substituting this into My0 + x0

= 2A0u
2
0 shows that A0u

2
0 = M2 − 1, which means precisely that j0 = 3.

Since A0 > 1, there is a primitive prime factor, say p, of W3 which divides
A0. Since p divides one of A1 or B1, and gcd(Wi1 , Wj1) = 1, it follows that
3 divides only one of i1 or j1, say j1. Therefore, gcd(A0, Wi1) = 1, and
consequently, A0 = A1. Therefore, i1 = 1, B0 = B1 = v1 = 1, and it is
deduced as above that j1 = 3, leading to y1 = y0, a contradiction.

We may therefore assume that both Wi0 and Wj0 have primitive prime
factors. As above it follows that both i0 and j0 divide one of i1 and j1.
Assume first that they both divide i1. As argued before, it follows that
A1 = 1, forcing u1 = 1 and j1 = 1. As in the previous paragraph, this
implies that y1 = M . But since y1 > y0 ≥ W + 2 = M , we obtain a
contradiction.

We now deal with the case c = −4. In this case, xi divides M , and so we
obtain

X2
i − y2

i = 4bZ2
i (i = 0, 1),
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where as before Xi = xi/M, Zi = zi/M. Therefore, there are integers, as
before, such that

Xi ± yi = 2Aiu
2
i , Xi ∓ yi = 2Biv

2
i (i = 0, 1).

Solving for yi, substituting in the second equation in (1.1), and simplifying
yields

(2Aiu
2
i − (2 + M2)Biv

2
i )

2 − (M2 + 4)(MBiv
2
i )

2 = 4 (i = 0, 1),

and by symmetry,

(2Biv
2
i − (2 + M2)Aiu

2
i )

2 − (M2 + 4)(MAiu
2
i )

2 = 4 (i = 0, 1).

Therefore, there are even indices i0, i1, j0, j1 for which

Wi0 = MB0v
2
0 , Wj0 = MA0u

2
0,

Wi1 = MB1v
2
1 , Wj1 = MA1u

2
1.

We will assume for the moment that M > 1, as this case will be proved at
the end. By Lemma 2.4, Wi0 and Wj0 each have a primitive prime factor,
say p and q respectively. Then by Lemma 2.3, each of p and q divide one
of Wi1 or Wj1 , from which it follows that each of i0 and j0 divide one of i1
or j1. Suppose that i0 and j0 both divide i1. Then by the argument given
in the proof of the case c = 1, it follows that A1 = 1, and hence that
Wj1 = Mu2

1. By Lemma 2.5, it follows that j1 = 2 and u1 = 1. This implies
that My1 ± x1 = 2M , which upon solving for x1 and substituting into the
first equation in (1.1) gives y1 = M2 + 1 = W3. But y0 6= 1 = W1, and so
y1 > y0 ≥ W3, which is a contradiction.

Thus, we deduce that, say, i0 divides i1, and j0 divides j1. It follows
that gcd(A0, B1) = 1 and gcd(B0, A1) = 1. Therefore, A0 divides A1, and
B0 divides B1, from which it follows that A0 = A1 and B0 = B1. By
Lemma 2.5, it follows that i0 = i1 and j0 = j1, and hence that z0 = z1.

In the case that M = 1, the above argument goes through except if,
say, Wi0 does not have a primitive prime factor. By Lemma 2.4, this implies
that i0 is one of 2, 6, 12, in which case B0v

2
0 is one of 1, 8, 144. By recalling

that 2B0v
2
0 = x0 ± y0, where in this case, x2

0 − 5y2
0 = −4, we see that there

are six possible pairs of (x0, y0) to deal with; namely, those pairs of integers
(x0, y0) which satisfy x2

0 − 5y2
0 = −4, and for which x0 ± y0 ∈ {2, 16, 288}.

In particular,

(x0, y0) ∈ {(1, 1), (3, 1), (11, 5), (29, 13), (199, 89), (521, 233)}.
If y0 = 1, then b = 0, which is not possible. If x0 + y0 = 16, then (x0, y0) =
(11, 5), in which case B0 = 2, while x0 − y0 = 6, forcing A0 = 3, and hence
b = 6. As there is exactly one solution to (1.1) with c = −4, M = 1, b = 6
(checked with SIMATH), this case is settled. In a similar manner it is shown
that the other possible values for (x0, y0) lead to b ∈ {42, 55, 377}, and in
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each case, (1.1) with c = −4 and M = 1 has precisely one solution. This
completes the proof of the theorem.
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