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1. Introdution. In [7℄, it was asked whether for every �xed positiveinteger k there exists a positive integer n so that, in the prime power fator-ization of n!, the �rst k primes appear with even exponents. This questionwas answered in the a�rmative by D. Berend in [3℄. In fat, Berend provedmore in two aspets. First, he proved that, for arbitrary �xed k, d ∈ N, thereexist in�nitely many numbers n so that, in the prime fatorization of n!, the�rst k primes appear with exponents divisible by d. In partiular, all theseexponents may be divisible by 2m for an arbitrary m. Seondly, he provedthat, for �xed k ≥ 1 and d ≥ 2, there exists a omputable onstant C(k, d),depending only on k, d, suh that every interval of length C(k, d) of positivenumbers ontains a positive integer n with the above property. Some naturalextensions of Berend's results were obtained in [5℄, [6℄, [9℄, [13℄.In this paper we onsider fatorials whose fatorization
n! = 2e2(n)3e3(n) · · · pepk

(n)

kis speial from the point of view of one or more primes. It is easy to showthat e2(n) is a power of 2 in�nitely often. This raises the following questions.Question 1. Let p be any odd prime. Is ep(n) a power of 2 in�nitelyoften?It is plausible that the answer is a�rmative. However, we have not beenable to prove this. Most of this paper is devoted to the following questionand related issues.Question 2. Let p be any odd prime. Do there exist in�nitely manypositive integers n for whih both e2(n) and ep(n) are powers of 2?2000 Mathematis Subjet Classi�ation: Primary 11A51; Seondary 11B65, 11D61,11N05.Key words and phrases: fatorization of fatorials, square-free integers, diophantineequations, distribution of primes in short intervals.The artile is partly supported by a grant of the Gil'adi Foundation of the IsraeliMinistry of Absorption. [195℄



196 V. ShevelevOne of the main results of this paper is that the answer here is negative.We mention that this result is almost trivial for non-Fermat primes, but istrikier for Fermat primes.Our results may be reformulated using Fermi�Dira arithmeti ([14℄). Inthis arithmeti, the role of primes in lassial arithmeti is played by themultipliative basis of so-alled FD-primes,
Q = {p2k−1

: p ∈ P, k ∈ N} = {2, 3, 4, 5, 7, 9, 11, 13, 16, 17, . . .},where P denotes the set of all primes. Every positive integer n ≥ 2 maybe written uniquely in the form n = q1 · · · qk, where q1, . . . , qk are distintFD-primes, and we shall write Qn = {q1, . . . , qk} in this ase. We put Q1 = ∅.Definition 1. A positive integer n is ompat if all elements of Qn arerelatively prime.Denote the set of all ompat numbers by C. It is onvenient to supposethat 1 ∈ C. In Theorem 1 we �nd the density of the set C, along with anerror term for its ounting funtion.It is easy to see that the set
C ! = {n ∈ N : n! ∈ C}is �nite. In fat, if n is su�iently large, then the interval (n/4, n/3) ontainsa prime p, and it is easy to verify that p3 ‖ n!, i.e. ep(n) = 3. Below we obtainthe following result: C ! = {1, 2, 3, 6, 7, 10, 11}.Definition 2. Let p be a �xed prime. A positive integer n divisible by

p is p-ompat if the set Qn ontains a single power of p.Denote the set of p-ompat numbers by Cp and put
C !

p = {n ∈ N : n! ∈ Cp}.Our answer to Question 2 may be rephrased as the statement that, for eahprime p ≥ 3 the set C !
2∩C !

p is �nite. Moreover, we obtain an expliit formulafor |C !
2 ∩ C !

p|. In our approah, we are led to onsider various exponentialdiophantine equations. Our formula for the size of C !
2 ∩ C !

p also allows usto ompute the lower and upper densities of those sets of primes for whihthis size assumes any spei� value. Moreover, we obtain an estimate for theleast prime for whih this set is of some given size. Our estimates dependon the up-to-date results regarding the number of primes in short inter-vals.In Setion 2 we present the main results. Setions 3�8 are devoted to theproofs. In Setion 9 we provide some numerial results. Finally, in Setion 10we pose several questions for further researh.



Compat integers and fatorials 1972. The main results. Let
c(x) =

∑

i≤x, i∈C

1, cp(x) =
∑

i≤x, i∈Cp

1.Theorem 1.(i) For every x ≥ 1,
c(x) = λx + R(x),where

λ =
6

π2

∏

p∈P

(

1 +
1

p + 1

∞
∑

i=1

p−(2i−1)

)

= 0.872497 . . . ,

|R(x)| ≤







k1(log x + k2)
√

x if x ≤ 4 · 1019,
k1

(

log x + k2 + e
k3

√

log x
log log

√

x log
x

4 · 1019

)√
x if x > 4 · 1019,with k1 = 28.841303 . . . , k2 = 0.152970 . . . , k3 = 5.263054 . . . .(ii) For any �xed prime p,

cp(x) = βpx + O(log log x)with the onstant in O(. . .) equal to 1/log 2, where
βp =

p − 1

p

∞
∑

i=0

p−2i
.Theorem 2.

|C !
2 ∩ C !

q| =



















































7, q = 3, q = 5,

6, q = 7,

5, q = (24k+1 + 3)/5, k ≥ 2,

4, q = 22k−1
+ 1, k ≥ 3,

3, q = 2k + 3, k ≥ 3,

2

(

1 +

⌊

log2

q − 5

2k − q

⌋)

, 2k−1 + 3 < q ≤ 2k − 1, k ≥ 4,

q 6= (2k+2 + 3)/5.Theorem 3. For a �xed t ∈ N,
|{q ∈ P, q ≤ 2m : |C !

2 ∩ C !
q| = 2t}| ∼ 2t

(2t−1 + 1)(2t + 1)
π(2m);moreover ,

lim sup
n→∞

|{q ∈ P, q ≤ n : |C !
2 ∩ C !

q| = 2t}|
π(n)

=
1

2t−1 + 1
,

lim inf
n→∞

|{q ∈ P, q ≤ n : |C !
2 ∩ C !

q| = 2t}|
π(n)

=
1

2t + 1
.



198 V. ShevelevTheorem 4. For su�iently large k, as q varies over (2k−1 + 3, 2k − 1):(i) |C !
2 ∩ C !

q| assumes all even values in the interval [2, 0.95k − 2];(ii) the number of primes q ∈ (2k−1 + 3, 2k − 1) for whih |C !
2 ∩C !

q| = 2twith t ∈ [1, 0.475k − 1] is not less than
0.09

log 2

20.525(k−1)

k
.Remark 1. The proof depends on the estimates regarding the numberof primes in short intervals [2℄. Improvements in these estimates will implyorresponding improvements in Theorem 4, namely that |C !

2 ∩ C !
q| assumesall even values in a larger interval.For a given t ∈ N onsider the funtion

q(t) = min{q ∈ P : |C !
2 ∩ C !

q| = 2t}.Theorem 5. For su�iently large t,
2t − 1 ≤ q(t) ≤ 2⌈40t/19⌉.Remark 2. Similarly to Remark 1 improvements in the above mentionedestimates will imply orresponding improvements of the upper bound for

q(t).3. Proof of Theorem 1. Let r be a �xed square-free number. Considerthe auxiliary funtion βr(x), de�ned as the number of positive integers notexeeding x, not divisible by the square of any prime, exept perhaps theprime divisors of r.Lemma 1. For every x ≥ 1,
βr(x) =

6

π2

∏

p|r

(

1 − 1

p2

)−1

x + ̺(x),

where |̺(x)| ≤ 3.5
√

x.Proof. By inlusion-exlusion
βr(x) = ⌊x⌋ −

∑

p≤x
p ∤ r

⌊

x

p2

⌋

+
∑

p<q≤x
p,q ∤ r

⌊

x

p2q2

⌋

− · · ·(1)
=

∑

i≤x

∑

d2|i
(d,r)=1

µ(d) =
∑

d≤√
x

(d,r)=1

µ(d)
∑

i≤x
d2|i

1

=
∑

d≤√
x

(d,r)=1

µ(d)

⌊

x

d2

⌋

= x
∑

d≤√
x

(d,r)=1

µ(d)

d2
+ R(x),



Compat integers and fatorials 199where(2) |R(x)| ≤ 1

2

∑

d≤√
x

|µ(d)| + o(
√

x) =
1

2
β1(

√
x) + o(

√
x).

The oe�ient 1/2 in (2) follows from the well known estimate |∑n≤x µ(n)|
= o(x) (see [17℄). Now

∞
∑

d=1
(d,r)=1

µ(d)

d2
=

∏

p∈P
p ∤ r

(

1 − 1

p2

)

=
∏

p∈P

(

1 − 1

p2

)

∏

p|r

(

1 − 1

p2

)−1

=
6

π2

∏

p|r

(

1 − 1

p2

)−1

,

and therefore(3) ∑

d≤√
x

(d,r)=1

µ(d)

d2
=

6

π2

∏

p|r

(

1 − 1

p2

)−1

−
∑

d>
√

x
(d,r)=1

µ(d)

d2
.

We estimate the seond term on the right-hand side trivially:(4) ∣

∣

∣

∣

∑

d>
√

x
(d,r)=1

µ(d)

d2

∣

∣

∣

∣

≤
∑

d≥⌊√x⌋+1

1

d2
≤

∞\
⌊√x⌋

dt

t2
=

1

⌊√x⌋ .

It is easy to see that supx≥1

√
x/⌊√x⌋ =

√
3.99 . . ./1 = 2. So, by (4),(5) x

∣

∣

∣

∣

∑

d>
√

x
(d,r)=1

µ(d)

d2

∣

∣

∣

∣

≤ 2
√

x.

Taking into aount that in (2) o(
√

x) ≤ √
x for x ≥ 1, by (1)�(5), for every

x we have
βr(x) =

6

π2

∏

p|r

(

1 − 1

p2

)−1

x + ̺(x)

where |̺(x)| ≤ √
x(1/2 + 1 + 2) = 3.5

√
x.Remark 3. It follows from the proof of Lemma 1 that for x large enoughwe have ̺(x) ≤ (1 + 3/π2 + ε)

√
x.For a �xed square-free number r, denote by Br the set of square-freenumbers n for whih (n, r) = 1, and put

br(x) = |Br ∩ {1, 2, . . . , x}|.In partiular, B = B1 is the set of all square-free numbers.



200 V. ShevelevLemma 2.
br(x) =

6r

π2

∏

p|r
(p + 1)−1x + Rr(x),

where for every x ≥ 1 and every r ∈ B,
|Rr(x)| ≤

{

57.682607 . . .
√

x if r ≤ N,

57.682607 . . . e
7.443083...

√

log r
log log r

√
x if r ≥ N + 1,where N = 6469693229.Proof. Consider the funtion λ : P → {1, 2} de�ned by

λ(p) =

{

1, p | r,
2, p ∤ r.By inlusion-exlusion(6) br(x) = ⌊x⌋ −

∑

p≤x

⌊

x

pλ(p)

⌋

+
∑

p<q≤x

⌊

x

pλ(p)qλ(p)

⌋

− · · · ,

where all sums are over primes only. It follows from (6) that
br(x) =

(

⌊x⌋ −
∑

p≤x
p ∤ r

⌊

x

p2

⌋

+
∑

p<q≤x
p,q ∤ r

⌊

x2

p2q2

⌋

− · · ·
)

−
∑

p1|r

(⌊

x

p1

⌋

−
∑

p≤x
p ∤ r

⌊

x

p1
/p2

⌋

+
∑

p<q≤x
p,q ∤ r

⌊

x

p1
/p2q2

⌋

− · · ·
)

+
∑

p1<p2: p1p2|r

(⌊

x

p1p2

⌋

−
∑

p≤x
p ∤ r

⌊

x

p1p2
/p2

⌋

+
∑

p<q≤x
p,q ∤ r

⌊

x

p1p2
/p2q2

⌋

− · · ·
)

− · · ·
=

∑

d|r
µ(d)βr

(

x

d

)

.

Therefore, by Lemma 1,
br(x) =

6

π2

∏

p|r

(

1 − 1

p2

)−1

x
∑

d|r

µ(d)

d
+ Rr(x)(7)

=
6

π2

∏

p|r

(

1 − 1

p2

)−1
∏

p|r

(

1 − 1

p

)

x + Rr(x)

=
6

π2

∏

p|r

p

p + 1
x + Rr(x) =

6r

π2

∏

p|r
(p + 1)−1x + Rr(x),



Compat integers and fatorials 201where(8) |Rr(x)| ≤ 3.5
√

x
∑

d|r

1√
d

= 3.5
∏

p|r

(

1 +
1√
p

)√
x.

Let w(r) denote the number of prime divisors of r. If w(r) ≤ 9, then
∏

p|r

(

1 +
1√
p

)

≤
∏

2≤p≤23

(

1 +
1√
p

)

= 16.480745 . . . .

If w(r) ≥ 10, then r ≥ ∏

2≤p≤29 p = 6469693230. Put m = pw(r) ≥ 29.For m ≥ 29, as is well known (f. [16℄), ∏

2≤p≤m p > 2m. Therefore, if
w(r) ≥ 10, then 2m <

∏

p|r p = r, i.e. m < log2 r. Taking into aount thatthe nth prime satis�es pn ≥ n log n, and π(m) ≤ 1.6m/log m for every m ≥ 2(f. [16℄), we have
(9) log

∏

p|r

(

1 +
1√
p

)

− log
∏

p≤23

(

1 +
1√
p

)

≤ log
∏

p≤m

(

1 +
1√
p

)

− log
∏

p≤23

(

1 +
1√
p

)

≤
∑

29≤p≤m

1√
p

=
∑

n : 29≤pn≤m

1√
p

n

≤
π(m)
∑

n=10

1√
n log n

≤
1.6m/log m\

9

dt√
t log t

=

1.6m/log m\
9

t1/4

√
log t

dt

t3/4
.

Notie that for t > e2 the funtion t1/4/
√

log t inreases. Therefore, sinefor m ≥ 9 we have log log m < 1
3 log(1.6m),

log
∏

p|r

(

1 +
1√
p

)

− log 16.480745 . . .

≤
(

1.6
m

log m

)1/4

(log 1.6 + log m − log log m)−1/2

1.6m/log m\
9

dt

t3/4

≤ 4

(

1.6
m

log m

)1/2(2

3
log m

)−1/2

= 4
√

24
m1/2

log m
< 4

√

2.4

log 2

√
log r

log log r
.



202 V. ShevelevThus, for N = 6469693229 and every r ∈ B,
∏

p|r

(

1 +
1√
p

)

≤
{

16.480745 . . . if r ≤ N ,
16.480745 . . . e

7.443083...
√

log r
log log r if r ≥ N + 1.By (7) and (8) we obtain the onlusion of the lemma.Now we an omplete the proof of Theorem 1(i). Let a ≥ 1 be a ompatnumber. Denote by r(a) the produt of all prime divisors of a; set r(1) = 1.Consider, further, the subset C(a) of the ompat numbers of the form a2s,where a ∈ C and s ∈ Br(a). It is evident that, if a1 6= a2, then C(a1) ∩ C(a2)

= ∅, and therefore C =
⋃

a∈C Ca, where the union is disjoint. Consequently,by Lemma 2,
c(x) = b1(x) +

∑

2≤a≤√
x, a∈C

br(a)

(

x

a2

)(10)
=

6

π2

(

1 +
∑

2≤a≤√
x

a∈C

∏

p|r(a)

(

1 − 1

p + 1

)

1

a2

)

x + R∗(x),

where
|R∗(x)| ≤ 3.5

√
x +

∑

2≤a≤√
x

a∈C

∣

∣

∣

∣

Rr(a)

(

x

a2

)∣

∣

∣

∣

≤ 3.5
√

x +
∑

2≤a≤√
x : r(a)=N

a∈C

∣

∣

∣

∣

Rr(a)

(

x

a2

)∣

∣

∣

∣

+
∑

a≤√
x : r(a)≥N+1

a∈C

∣

∣

∣

∣

Rr(a)

(

x

a2

)∣

∣

∣

∣

with N = 6469693229. Therefore, if x ≤ N2, then
|R∗(x)| ≤ (3.5 + k1 log x)

√
x,where k1 = 28.841303 . . . . If x > N2, then

|R∗(x)| ≤ (3.5 + k1 log x)
√

x

+ k1
√

x
∑

a≤√
x : r(a)≥N+1

a∈C

1

a
e
7.443083...

√
log r(a)

log log r(a) ,

where the last sum does not exeed
∑

N+1≤a≤√
x : r(a)≥N+1

1

a
e
7.443083...

√

log a
log log a ≤ e

k3

√

log x
log log

√

x log

√
x

Nwith k3 = 7.443083/
√

2 = 5.263054 . . . .Moreover, if we replae in (10) the sum ∑

a≤√
x, a∈C by ∑

a∈C , then theerror does not exeed (see (4))
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6x

π2

∑

n>
√

x

1

n2
≤ 6

π2

(

sup
x≥4

√
x

⌊√x⌋

)√
x =

6

π2

√
8.999 . . .

2

√
x = 0.911890 . . .

√
x.

Thus,(11) c(x) =
6x

π2

∑

a∈C

∏

p|r(a)

(

1 − 1

p + 1

)

1

a2
+ R(x),

where R(x) = R∗(x) + 0.911890 . . .
√

x. Hene
(12) |R(x)| ≤







k1(log x + k2)
√

x if x ≤ N2,
k1

(

log x + k2 + e
k3

√

log x
log log

√

x log
x

N2

)√
x if x > N2,with N = 6469693229, k1 = 28.841303 . . . , k2 = (3.5 + 0.911890 . . .)/k1 =

0.152970 . . . , k3 = 5.263054 . . . .It remains to evaluate the sum (11). For a �xed l ∈ B, denote by C(l)the set of all ompat numbers a with r(a) = l. By (11),(13) c(x) =
6x

π2

∑

l∈B

∏

p|l

(

1 − 1

p + 1

)

∑

a∈C(l)

1

a2
+ R(x).

Consider the funtion A : N → R given by
A(l) =







∑

a∈C(l)

1/a2, l ∈ B,

0, l 6∈ B.It is evident that, if l1, l2 ∈ B and (l1, l2) = 1, then
A(l1l2) =

∑

a∈C(l1l2)

1

a2
=

∑

a∈C(l1)

1

a2

∑

a∈C(l2)

1

a2
= A(l1)A(l2).

It follows that A(l) is a multipliative funtion. Hene the funtion f de�nedby
f(l) =

∏

p|l

(

1 − 1

p + 1

)

A(l)

is also multipliative. Consequently ([4, p. 103℄),
(14) ∞

∑

n=1

f(n) =
∏

p∈P

(1 + f(p) + f(p2) + · · · ).



204 V. ShevelevSine f(pk) = 0 for k ≥ 2, by (13) we have
c(x) =

6x

π2

∞
∑

l=1

f(l) + R(x) =
6x

π2

∏

p∈P

(1 + f(p)) + R(x)

=
6x

π2

∏

p∈P

(

1 +

(

1 − 1

p + 1

)(

1

p2
+

1

p4
+

1

p8
+ · · ·

))

+ R(x)

=
6

π2

∏

p∈P

(

1 +
1

p + 1

(

1

p
+

1

p3
+

1

p7
+

1

p15
+ · · ·

))

x + R(x).

Employing the estimate of R(x) given by (12) (with 4·1019 < N2), we obtainassertion (i) of the theorem.To prove (ii), note that it is evident that
cp(n) =

(⌊

n

p

⌋

−
⌊

n

p2

⌋)

+

(⌊

n

p2

⌋

−
⌊

n

p3

⌋)

+

(⌊

n

p4

⌋

−
⌊

n

p5

⌋)

+ · · ·

=

(⌊

n

p

⌋

−
⌊

n

p3

⌋)

+

(⌊

n

p4

⌋

−
⌊

n

p5

⌋)

+ · · · .Let
p2d−1 ≤ n < p2d

, d ∈ N.If d ≥ 2 we have exatly d − 1 nonzero terms in brakets. Sine
d − 1 ≤ log log n − log log p

log 2
,we have

cp(n) =
n

p
− n

p2
+

n

p2
− n

p3
+ · · · + n

p2d−1 − n

p2d+1
+ O(log log n),where the onstant in O(. . .) equals 1/log 2. Hene

cp(n) = n
p − 1

p

(

1

p
+

1

p2
+

1

p4
+ · · · + 1

p2d−1

)

+ O(log log n)

= n
p − 1

p

∞
∑

i=0

p−2i − n
p − 1

p

∞
∑

i=d

p−2i
+ O(log log n),and it su�es to notie that

n
p − 1

p

∞
∑

i=d

p−2i
<

p − 1

p

(

1 +
1

p
+

1

p2
+ · · ·

)

= 1.This ompletes the proof.Remark 4. In Theorem 1(i), we an redue k3 to √
2+ε (at the expenseof enlarging k1). In fat, for small δ > 0 and large enough m = m(δ) =

e2.25/δ2 , aording to B. Rosser [12℄, ∏

2≤p≤m p > e(1−4δ2/3)m, and we an
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log

∏

p≤m

(

1 +
1√
p

)

≤ K(δ) +

m/(log m−4)\
e1/2δ

tδ√
log t

dt

t1/2+δ
, m > m(δ)(m(δ) was hosen with something to spare to satisfy the tehnial inequality

(1 − 3δ) log m < (1 − 2δ)((log m − 4)(log(log m − 4)))1/2). Then we obtainfor x ≥ 3, instead of (12),
R(x) ≤ Kε

√
x e

(
√

2+ε)
(log x)1/2

log log x log x.It an be shown that we an take Kε = ee21ε−2 .4. Proof of Theorem 24.1. Auxiliary propositions. Denote by σg(n) the sum of digits in thebase g representation of n ∈ N.Lemma 3 ([11℄).
σg(n) = n − (g − 1)

∑

t≥1

⌊

n

gt

⌋

, n ∈ N.By Lemma 3 we may express n in terms of σp(n) and the exponent ep(n)for whih pep(n)‖n!:(15) n = (p − 1)ep(n) + σp(n).In [11℄, the estimate σg(n) ≤ (g − 1) logg(gn) is proved. The followinglemma improves this bound, whih will be useful later.Lemma 4.
σg(n) ≤ (g − 1) logg(n + 1).Proof. Let σg(n) ≡ r (mod g− 1), where 0 ≤ r ≤ g− 2. Given any k, thesmallest n for whih σg(n) = (g − 1)k + r is

n = rgk + (g − 1)(gk−1 + gk−2 + · · · + 1) = (r + 1)gk − 1

= (r + 1)g(σg(n)−r)/(g−1) − 1.Hene for every n we have
σg(n) ≤ r + (g − 1) logg(n + 1) − (g − 1) logg(r + 1).Now for r = 0 the lemma follows diretly, while for r ≥ 1 we have r ≤

(g− 1)log(r + 1)/log g, and so 1 ≤ r ≤ g− 2, sine x/log(x + 1) inreases atleast for x ≥ 1.From Lemmas 3 and 4 we obtain the following estimate.Corollary 1. ep(n) = n/(p − 1)+Rp(n), where − logp(n+1) ≤ Rp(n)
< 0.



206 V. ShevelevProposition 1. For n ≥ 6 we have n ∈ C !
2 if and only if there existsan α ≥ 2 suh that n = 2α + 2 or n = 2α + 3.Proof. If n is of the required form, then

e2(n) = 2α−1 + 1 + 2α−2 + · · · + 1 = 2α, α ≥ 2,and thus n ∈ C !
2.Now assume that n ∈ C !

2, n ≥ 6. By (15) there exists some α ∈ N so that
e2(n) = 2α and(16) n = e2(n) + σ2(n) = 2α + σ2(n).Further, by Lemma 4,

σ2(n) ≤ ⌊log2(n + 1)⌋ < n/2, n ≥ 6.Therefore, by (16) we have 2α < n < 2α + n/2 and onsequently 2α < n <
2α+1, so that α = ⌊log2 n⌋. Taking this into aount, we apply σ2 to bothsides of (16):(17) σ2(n) = σ2(2

⌊log2 n⌋ + σ2(n)).Sine σ2(n) ≤ 1 + ⌊log2(n)⌋ < 2⌊log2(n)⌋, by (17) we have(18) σ2(n) = 1 + σ2(σ2(n)), n ≥ 6.Now by (18), and Lemma 3 for g = 2,
σ2(n) = 1 + σ2(n) −

∑

t≥1

⌊

σ2(n)

2t

⌋

and therefore ∑

t≥1⌊σ2(n)/2t⌋ = 1. It follows that σ2(n) = 2 or 3, and (16)implies that n = 2α + 2 or n = 2α + 3.Proposition 2. If q is an odd prime, then |C !
2 ∩ C !

q| ≥ 2.Proof. If q = 3, then 3, 6 ∈ C !
2 ∩ C !

3. Let q ≥ 5. Put k = ⌈log2(q + 1)⌉.Then k ≥ 3 and 2k−1 +1 ≤ q ≤ 2k−1. If q = 2k−1 +1, then by Proposition 1we have q + 1, q + 2 ∈ C !
2 ∩ C !

q. If q ≥ 2k−1 + 3, then 2q ≥ 2k + 6 and
q + 3 ≤ 2k + 2 < 2k + 3 < 2q.Therefore, ⌊(2k + 2)/q⌋ = ⌊(2k + 3)/q⌋ = 1, i.e. 2k + 2, 2k + 3 ∈ C !

2 ∩ C !
q.Later we shall see that the minimal q for whih |C !

2 ∩ C !
q| = 2 is q = 37.Proposition 3. If p < q are primes so that (q − 1)/(p − 1) is not apower of 2, then the set C !

p ∩ C !
q is �nite. Moreover , if n ∈ C !

p ∩ C !
q, then

n < 2

(

1 +
log 2

2 log q − 1

)

q2 − 1.



Compat integers and fatorials 207Proof. We have (p − 1)/log p < (q − 1)/log q, whene
(p − 1) logp(n + 1) < (q − 1) logq(n + 1), n ∈ N.Therefore, by Lemma 4,(19) max(σp(n), σq(n)) ≤ (q − 1) logq(n + 1),and we �nd(20) n − (q − 1) logq(n + 1)

n − 1
<

n − σp(n)

n − σq(n)
<

n − 1

n − (q − 1) logq(n + 1)
.Notie that the funtion

γq(x) =
logq x

x + q − 2dereases for x > max(q − 2, e2). Let α be the positive root of the equation
log 2 + α/2 − α2/8 = α log q. Then α < 1 and we have

log(2 + α) = log 2 + log

(

1 +
α

2

)

< log 2 +
α

2
− α2

4
+

α2

8
= α log q,i.e. logq(2 + α) < α, and

γq((2 + α)q2) =
2 + logq(2 + α)

(2 + α)q2 + q − 2
<

1

q2
.Therefore, for n ≥ (2 + α)q2 − 1 we have γq(n + 1) < 1/q2 and onsequently

q logq(n + 1) < (n + q − 1)/q. By (20),
n − σp(n)

n − σq(n)
<

n − 1

n − n/q − 1 + 1/q
=

q

q − 1
,and

n − σp(n)

n − σq(n)
>

q − 1

q
>

q − 2

q
.Thus(21) q − 2 < (q − 1)

n − σp(n)

n − σq(n)
< q.

Further, sine n ∈ C !
p ∩ C !

q, there exist nonnegative integers α, β sothat ep(n) = 2α, eq(n) = 2β, where α ≥ β, and aording to (15) we have
n − σp(n) = (p − 1)2α and n − σq(n) = (q − 1)2β.Consequently, by (21) we obtain q − 2 < (p − 1)2α−β < q, whene
(p− 1)2α−β = q − 1, whih is a ontradition. Therefore, n < (2 + α)q2 − 1.



208 V. ShevelevIt remains to notie that
α = 2(((2 log q − 1)2 + 2 log 2)1/2 − (2 log q − 1))

= 2(2 log q − 1)

((

1 +
2 log 2

(2 log q − 1)2

)1/2

− 1

)

< 2(2 log q − 1)
log 2

(2 log q − 1)2
=

2 log 2

2 log q − 1
,and the proposition follows.Corollary 2. If p = 2 and q is a non-Fermat prime, then for n ∈

C !
2 ∩ C !

q we have
n ∈

(

q, 2

(

1 +
log 2

2 log q − 1

)

q2 − 1

)

.In spite of the fat that the upper bound in Proposition 3 is quite onve-nient, the numerial experiments show that the value of the maximal elementof the set C !
p ∩ C !

q depends on the distane between (q − 1)/(p − 1) and thenearest power of 2 (see Table 2). Now we shall give an estimate whih ismore sensitive to this fator.Proposition 4. Under the onditions of Proposition 3, we have
n

log(n + 1)
≤ max(a(p, q), b(p, q)) for n ∈ C !

p ∩ C !
q,where

a(p, q) =
p − 1

log p
(1 − 2

−{log2
q−1
p−1

}
)−1,

b(p, q) =
q − 1

log q
(1 − 2

{log2
q−1
p−1

}−1
)−1,and {x} denotes the frational part of x.Proof. For n ∈ C !

p ∩C !
q there exist α ≥ β, α, β ∈ Z+, so that ep(n) = 2α,

eq(n) = 2β, and by Corollary 1 we have
n

p − 1
− logp(n + 1) ≤ 2α <

n

p − 1
,

n

q − 1
− logq(n + 1) ≤ 2β <

n

q − 1
.Therefore

q − 1

p − 1

(

1−(p−1)
logp(n + 1)

n

)

≤ 2α−β ≤ q − 1

p − 1

(

1−(q−1)
logq(n + 1)

n

)−1

,
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(22) α − β + log2

(

1 − (q − 1)
logq(n + 1)

n

)

≤ log2

q − 1

p − 1

≤ α − β + log2

(

1 − (p − 1)
logp(n + 1)

n

)

.Notie that
b(p, q) >

q − 1

log q

(

1 − 1

2

)−1

=
2(q − 1)

log q
.Consequently, if n/log(n + 1) ≤ 2(q − 1)/log q, then the onlusion ofthe proposition is satis�ed trivially. Let now n/log(n + 1) > 2(q − 1)/log q(and ertainly n/log(n + 1) > 2(p − 1)/log p). Then

log2

(

1 − (q − 1)
logq(n + 1)

n

)

> −1,

log2

(

1 − (p − 1)
logp(n + 1)

n

)

> −1.By (22),
α − β − 1 < log2

q − 1

p − 1
< α − β + 1.We distinguish between two ases:

Case 1: ⌊

log2
q−1
p−1

⌋

= α − β − 1. By the left inequality in (22) we have
α − β + log2

(

1 − (q − 1)
logq(n + 1)

n

)

≤ α − β − 1 +

{

log2

q − 1

p − 1

}

,whih implies n/log(n + 1) ≤ b(p, q), and the proposition follows.
Case 2: ⌊

log2
q−1
p−1

⌋

= α − β. By the right inequality in (22) we have
α − β +

{

log2

q − 1

p − 1

}

≤ α − β − log2

(

1 − (p − 1)
logp(n + 1)

n

)

,so that n/log(n + 1) ≤ a(p, q), and the proposition again follows.Proposition 5.(i) If p < q are primes suh that (q − 1)/(p − 1) is a power of 2, then
n ∈ C !

p ∩ C !
q if n ∈ C !

p and σp(n) = σq(n). For n ≥ q2 the onverseimpliation holds as well.(ii) If n ≥ 4, p = 2 and q is a Fermat prime, then n ∈ C !
2 ∩ C !

q if andonly if n ∈ C !
2 and σ2(n) = σq(n).Proof. (i) If n ∈ C !

p and σp(n) = σq(n) then by (15) there exists anonnegative integer α suh that
n = (p − 1)2α + σq(n).



210 V. ShevelevMoreover, by assumption, there exists γ ∈ N so that (q − 1)/(p − 1) = 2γ .Therefore, by (19) and (15),
n = (q − 1)2α−γ + σq(n) = (q − 1)eq(n) + σq(n),and hene eq(n) = 2α−γ and n ∈ C !

p ∩ C !
q.Conversely, if n ∈ C !

p ∩C !
q, then by (15) there exist nonnegative integers

α and β so that(23) 2α(p − 1) + σp(n) = 2β(q − 1) + σq(n) = nunder the ondition (q − 1)/(p − 1) = 2γ . Therefore, by (23),(24) n − σp(n)

n − σq(n)
= 2α−β−γ .Furthermore,(25) 1 ≤ σp(n) ≤ (p − 1)⌊logp(n + 1)⌋.Therefore, by (24)�(25),(26) n − (p − 1)⌊logp(n + 1)⌋

n − 1
≤ 2α−β−γ ≤ n − 1

n − (q − 1)⌊logq(n + 1)⌋ .Notie that the funtion (logp x)/x dereases for x > e. Sine 2/p2 ≤
1/2(p − 1) for p ≥ 2, we have

logp(n + 1)

n + 1
<

2

p2
≤ 1

2(p − 1)
for n > p2 − 1,whih yields

(p − 1)⌊logp(n + 1)⌋ <
n + 1

2
.For n > q2 − 1 we also have (q − 1)⌊logq(n + 1)⌋ < (n + 1)/2, and by(26), 1/2 < 2α−β−γ ≤ 2. Now (24) implies σp(n) = σq(n).(ii) Let p = 2 and q be of the form 2k+1. Sine σ2(n) 6= σq(n) for n = 4, 5,and 4, 5 6∈ C !

2, we suppose that max(6, q) ≤ n < q2, and n ∈ C !
2 ∩ C !

q. ByProposition 1 there exists an α ≥ 2 so that n = 2α + i, where i = 2 or 3.Sine α ≥ k, put α = k + t, t ≥ 0. Notie that
eq(n) =

⌊

n

q

⌋

=

⌊

2k+t + i

2k + 1

⌋

,where i = 2 or 3. For t ≥ 2 we evidently have 2t−1 + 1 ≤ 2k+t+i
2k+1

< 2t, whihontradits the fat that n ∈ C !
q.Therefore, onsider t = 0 and t = 1 only. We obtain four numbers

2k + 2 = q + 1, 2k + 3 = q + 2, 2k+1 + 2 = 2q, 2k+1 + 3 = 2q + 1,belonging to C !
2 ∩ C !

q, and for eah of them σ2(n) = σq(n).
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2 ∩ C !

3, we have σ2(3) 6= σ3(3).As an important onsequene we obtain the following statement.Proposition 6. Let q be a Fermat prime.(i) For α ≥ 2, we have 2α+2 ∈ C !
q if and only if the diophantine equation

(27) qx + qy = 2α + 2is solvable in nonnegative integers x, y.(ii) For α ≥ 2 we have 2α+3 ∈ C !
q if and only if the diophantine equation

(28) qx + qy + qz = 2α + 3is solvable in nonnegative integers x, y, z.Proof. Follows from Propositions 1 and 5.Thus, to desribe the set C !
2 ∩C !

q for a Fermat prime q, it su�es to �ndall solutions of (28) in nonnegative integers.4.2. Proof of Theorem 2 for non-Fermat primes. We start with severallemmas.Lemma 5. Let q be an odd non-Fermat prime so that 2k−1 + 3 ≤ q < 2kfor some k ≥ 3. If some number n of the form n = 2k+l + i, where i = 2or 3, belongs to C !
q, then 0 ≤ l ≤ k − 1.Proof. Notie that l ≥ 0, as otherwise n < q and n 6∈ C !

q. Put ∆ = 2k−q.Now,(29) 1 ≤ ∆ ≤ 2k − 2k−1 − 3 = 2k−1 − 3 ≤ q − 6.Furthermore,(30) n = 2k+l + i = 2l(2k − ∆) + 2l∆ + i = 2lq + (2l∆ + i).Sine, by Proposition 1, n ∈ C !
2, we have n ∈ C !

2 ∩ C !
q, and, by Corollary 1,

n ≤ 3q2 − 1. Therefore,(31) eq(n) =

⌊

n

q

⌋

+

⌊

n

q2

⌋

≤
⌊

n

q

⌋

+ 2.Suppose that l ≥ k. Then q < 2k ≤ 2l, and by (30),(32) eq(n) ≥
⌊

n

q

⌋

≥ 2l + 1.On the other hand, by (29)�(31) we have
(33) eq(n) ≤ 2l +

⌊

2l∆ + 3

q

⌋

+ 2 ≤ 2l + 2 +

⌊

2l(2k−1 − 3) + 3

q

⌋

< 2l + 2 +

⌊

2l − 3 · 2l

2k−1 + 3

⌋

≤ 2l+1 + 2 − 3 · 2k

2k−1 + 2k−1
= 2l+1 − 1.Now (32)�(33) ontradit the ondition n ∈ C !

q. Thus, l ≤ k − 1.



212 V. ShevelevLemma 6. Under the onditions of Lemma 5, the number n = 2k+l + i,where i = 2 or 3, belongs to C !
q if and only if 2l∆ + i < q.Proof. If 2l∆ + i < q, then by (30),

eq(n) = 2l +

⌊

2l

q

⌋

= 2l,i.e., n ∈ C !
q.Conversely, let n ∈ C !

q. We distinguish between two ases:
Case a: l = k − 1. We have n = 22k−1 + i ∈ C !

2 ∩ C !
q, where i = 2 or 3.Hene(34) ⌊

n

q2

⌋

≤
⌊

22k−1 + 3

(2k−1 + 3)2

⌋

≤ 1.By (29), (30) and (34),(35) eq(n) ≤ 2k−1 +

⌊

2k−1∆ + i

q

⌋

+ 1 ≤ 2k−1 +

⌊

2k−1(q − 6) + i

q

⌋

+ 1.Sine q ≤ 2k − 1, and the funtion (2k−1(x − 6) + i)/x inreases,
2k−1(q − 6) + i

q
≤ 2k−1(2k − 7) + 3

2k − 1
< 2k−1 − 1.Therefore, by (35),(36) eq(n) ≤ 2k−1 + 2k−1 − 2 + 1 = 2k − 1.On the other hand, by (30),(37) eq(n) ≥ 2k−1 +

⌊

2k−1∆ + i

q

⌋

.If 2k−1∆ + i ≥ q, then (36)�(37) imply 2k−1 + 1 ≤ eq(n) ≤ 2k − 1, whihontradits the ondition n ∈ C !
q.

Case b: l ≤ k − 2. Now n ≤ 22k−2 + 3, and instead of (32) we obtain
⌊n/q2⌋ = 0, and therefore instead of (35) we �nd that(38) eq(n) ≤ 2l +

⌊

2l(q − 6) + 3

q

⌋

≤ 2l + (2l − 1) = 2l+1 − 1.On the other hand, by (30),(39) eq(n) = 2l +

⌊

2l∆ + i

q

⌋

and again we onlude that, if 2l∆ + i ≥ q, then (38)�(39) ontradit theondition n ∈ C !
q.Now we need an additional tehnial lemma.



Compat integers and fatorials 213Lemma 7. The diophantine equation(40) n(2m + 1) = 2k+m + 3, m ≥ 0, k ≥ 0, n ∈ N,has only the following solutions:
1) k = 0, m = 0, n = 2.
2) k ≡ 3 (mod4), m = 2, n = (2k+2 + 3)/5.Proof. Let

k = rm + s, 0 ≤ s < m.It is easy to see that
(2m + 1)

⌊k/m⌋
∑

i=0

(−1)i2k−mi = 2k+m + (−1)r2s, m ≥ 1.Therefore,(41) 2k+m + 3 ≡ (−1)r+12s + 3 (mod2m + 1), m ≥ 1.If (40) is valid, then by (41),(42) (−1)r+12s + 3 ≡ 0 (mod2m + 1).If r in (42) is even, then 2s − 3 ≡ 0 (mod2m + 1). This is impossible, sine
2s−3 < 2m +1 and 25−3 6= 0. If the r is odd, then 2s +3 ≡ 0 (mod2m +1),
m ≥ 1. If here m ≥ 3, then 2s + 3 ≤ 2m−1 + 3 < 2m + 1. Therefore, m ≤ 2,and in addition the ase m = 1 is impossible. If m = 2, from (40) we �nd
n = (2k+2 + 3)/5. Also notie that if in (40) we have m = 0, then 2n = 2k+3,so that k = 0 and n = 2.Now we are able to omplete the proof of Theorem 2 in the ase of anon-Fermat prime q.1) Let q = 2k−1 + 3. First suppose that k ≥ 4, i.e., q ≥ 11. Then byLemma 6, we have 2k+l + i ∈ C !

2 ∩ C !
q, i = 2, 3, l ≥ 0, if and only if

∆ · 2l + i < q = 2k−1 + 3, where ∆ = 2k−1 − 3. Thus,(43) (2k−1 − 3)2l ≤ 2k−1 + 2 − i, i = 2, 3.If l ≥ 1, this is impossible for k ≥ 4. Therefore l = 0 and we have twoelements from C !
2 ∩ C !

q, namely
2k + 2 = 2q − 4 and 2k + 3 = 2q − 3.Moreover, in this ase q = 2k−1 + 3 ∈ C !

2 ∩ C !
q. Thus, if k ≥ 4,

C !
2 ∩ C !

q = {q, 2q − 4, 3q − 3}.It remains to deal with the ase q = 7, k = 3. Here (43) is satis�ed if
2l ≤ 6 − i, i.e., l = 0, 1 for i = 2, 3 and l = 2 for i = 2. That gives �venumbers from C !

2 ∩ C !
7: 10, 11, 18, 19 and 34. Moreover, 7 ∈ C !

2 ∩ C !
7. Thus

|C !
2 ∩ C !

7| = 6.



214 V. ShevelevAs a simple onsequene we obtain the following statement.Proposition 7.
C ! = {1, 2, 3, 6, 7, 10, 11}.Proof. It is su�ient to onsider the numbers 1, 2, 3, 4, 5, 6, 7, 10, 11,18, 19, 34.2) Let q = (2k+2 + 3)/5, where k ≡ 3 (mod4). The smallest q > 7 of thiskind is q = 103, obtained for k = 7. The smallest q > 103 is q = 6710887,obtained for k = 23. Let k ≥ 7. Here

∆ = 2k − 2k+2 + 3

5
=

2k − 3

5
.Now by Lemma 6 we have 2k+l + i ∈ C2 ∩ Cq, i = 2, 3, l ≥ 0, if and only if

∆ · 2l + i =
2k+l − 3 · 2l + 5i

5
< q =

2k+2 + 3

5
, k ≥ 7.Hene l ≤ 2, and in the ase l = 2,

2k+2 + i < 2k+2 + 3and i = 2. Thus we have exatly �ve suitable numbers:
l = 0 : n1 = 2k + 2 =

5q + 5

4
, n2 = 2k + 3 =

5q + 9

4
,

l = 1 : n3 = 2k + 2 =
5q + 1

2
, n4 = 2k+1 + 3 =

5q + 3

2
,

l = 2 : n5 = 2k+2 + 2 = 5q − 1,so that |C !
2 ∩ C !

q| = 5.3) Let q ≥ 2k−1 + 5 and q 6= (2k+2 + 3)/5. First of all, we will showthat in this ase |C !
2 ∩ C !

q| is even. To this end, it su�es to show that theinequality ∆ · 2l + 2 < q implies ∆ · 2l + 3 < q. Indeed, if ∆ · 2l + 3 = q or
(2k − q) · 2l + 3 = q, then

q(2l + 1) = 2k+l + 3,and by Lemma 7 we have l = 2, q = (2k+2 + 3)/5, where k ≡ 3 (mod4).This ontradits the assumption. Therefore, by Lemma 6, 2k+l + i ∈ C !
2∩C !

qif and only if (2k − q)2l +3 < q. Notie that l = 0 is trivially a suitable ase,whih gives two numbers from C !
2 ∩ C !

q, namely, 2k + 2 and 2k + 3. In thease of l ≥ 1, the inequality (2k − q)2l + 3 < q implies (2k − q)2l ≤ q − 5.Thus, n ∈ C !
2 ∩ C !

q if and only if n = 2k+l + i, where i = 2 or 3, and
0 ≤ l ≤

⌊

log2
q−5
2k−q

⌋. Therefore(44) |C !
2 ∩ C !

q| = 2

(

1 +

⌊

log2

q − 5

2k − q

⌋)

.This ompletes the proof of Theorem 2 when q is a non-Fermat prime.



Compat integers and fatorials 2154.3. Proof of Theorem 2 when q is a Fermat prime. Aording to Propo-sition 6, we need to investigate the diophantine equation(45) 2α + 3 = qx + qy + qzin nonnegative integers α, x, y, z, where q is a Fermat prime.We need the following result of G. C. Gerono (1871).Proposition 8 (see [15, p. 374℄). The diophantine equation 2α +1 = gxfor α ≥ 2, x ≥ 2, g ≥ 2, has the only solution α = 3, x = 2, g = 3.Taking into aount this result, we break up the investigation of (45) intothe following ases:1. q ≥ 17, x, y, z ≥ 1,2. q ≥ 17, z = 0, x 6= y
(exept the solution α = 1 + log2(q − 1), x = y = 1),3. q = 3, z = 0, x 6= y
(exept the solutions α = 2, x = y = 1; α = 3, x = y = 2),4. q = 5, z = 0, x 6= y (exept the solution α = 3, x = y = 1),5. q = 5, x, y, z ≥ 1.4.3.1. Case 1: q ≥ 17, x, y, z ≥ 1. We start with the following straight-forward lemma.Lemma 8. If q = 22h−1

+1, h ≥ 3, then the subgroup of (Z/qZ)∗ generatedby 2 is
{2j : 0 ≤ j ≤ 2h−1} ∪ {q − 2j : 1 ≤ j ≤ 2h−1}.Proposition 9. If q ≥ 17 is a Fermat prime, then (45) has no solutionswith x, y, z ≥ 1.Proof. It is su�ient to prove that 2α + 3 is not divisible by q. Let

q = 22h−1
+ 1, h ≥ 3. If 2m + 3 ≡ 0 (mod q) then −3 is generated by 2 in

(Z/qZ)∗. Using Lemma 8, we easily see that the only possibility is h = 2.4.3.2. Case 2: q ≥ 17, z = 0, x 6= y.Lemma 9. If q = 22h−1 , h ≥ 3, is a Fermat prime, then q divides 2m +1if and only if m = 2hk − 2h−1 for some k ∈ N.Proof. Follows from the onnetion between j and 2j (modm), whih isimpliit in Lemma 8.Suppose now that in (45) we have z = 0, x, y ≥ 1, x 6= y, q = 22h−1
+ 1,

h ≥ 3. Then q | 2α−1 + 1, and by Lemma 9 we have
α = 2h(k − 1) + 2h−1 + 1for some k ≥ 1, so that(46) 2(22hk−2h−1
+ 1) = (22h−1

+ 1)x + (22h−1
+ 1)y.



216 V. ShevelevIf k = 1, then
2 = (22h−1

+ 1)x−1 + (22h−1
+ 1)y−1,whene x = y = 1, ontraditing the assumption x 6= y. Hene k ≥ 2.Consequently, 2hk − 2h−1 ≥ 2h+1 − 2h−1 > 2h, so that (46) yields

2 ≡ 22h−1
x + 22h−1

y + 2 (mod22h
).Thus(47) x + y ≡ 0 (mod22h−1

),and in partiular x and y have the same parity.Suppose that, in (46), x and y are both even. Taking (46) modulo 3, weobtain
2 6= (22h−1

+ 1)x + (22h−1
+ 1)y

= ((22h−1
+ 2) − 1)x + ((22h−1

+ 2) − 1)y

= (2(22h−1
+ 1) − 1)x + (2(22h−1

+ 1) − 1)y ≡ 2 (mod3),whih is a ontradition. Thus, x and y are both odd. Let x = 2l − 1,
y = 2m − 1, l, m ∈ N. By (47),

l + m ≡ 1 (mod22h−1−1).Hene, l and m have di�erent parities. Moreover, by (46),(48) 2(22hk−2h−1
+ 1)(22h−1

+ 1) = ((22h−1
+ 1)2)l + ((22h−1

+ 1)2)m.Notie that, sine h ≥ 3, we have 22h−1
+ 1 = (24)2

h−3
+ 1 ≡ 2 (mod5).Therefore (22h−1

+ 1)2 ≡ −1 (mod5), and aording to (48), sine l and
m have di�erent parities, we have 0 ≡ 22hk−2h−1

+ 1 = 22h−1(2k−1) + 1 =
((24)2

h−3
)2k−1 + 1 ≡ 2 (mod5). This ontradition shows that (45) has nosolutions with z = 0, x ≥ 1, y ≥ 1 and x 6= y. A simple sorting out of otherpossibilities gives the following.Proposition 10. If q ≥ 17 is a Fermat prime then (45) has only thefollowing solutions (up to permutation of x, y, z):

• x = 1, y = 0, z = 0, α = log2(q − 1);
• x = y = 1, z = 0, α = log2(q − 1).4.3.3. Case 3: q = 3, z = 0, x 6= y. Here we investigate the equation(49) 2α + 2 = 3x + 3y.Sine

2α−1 + 1 = (3 − 1)α−1 + 1 ≡
{

0 (mod3), α ≡ 0 (mod2),

2 (mod3), α ≡ 1 (mod2),
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α in (49) is even: α = 2t, t ≥ 2. Rewrite (49) as(50) 4t + 2 = 3x + 3y, t ≥ 2, x, y ≥ 1, x 6= y.Suppose that, say, x > y. Suppose x, y have distint parities. Then

3x + 3y = 3y(3 · 3x−y−1 + 1) ≡ 0 (mod4),whih ontradits (50). Next, suppose x, y are both odd. Then
3x + 3y − 2 = 3(3x−1 + 3x−1) − 2 = 3(9(x−1)/2 + 9(x−1)/2) − 2 ≡ 4 (mod8),whih is again impossible in (50). It follows that x, y are both even, say,
x = 2r, y = 2u. Substitute this in (50):(51) 4t + 2 = 9r + 9u (r > u ≥ 1, t ≥ 2).Writing t = 3s+ i, where s ≥ 0 and i = 1, 2, 3, we easily obtain 22i−1 +1 ≡ 0
(mod9). Thus i = 2 and t = 3s + 2, and instead of (51) we onsider theequation(52) 26s+4 + 2 = 9r + 9u, r > u ≥ 1, s ≥ 0,whene

4 ≡ 2r + 2u (mod7).Sine 21 ≡ 2, 22 ≡ 4, 23 ≡ 1 (mod7), it follows that r ≡ u ≡ 1 (mod3).Put r = 3v + 1, u = 3w + 1, v > w ≥ 0. Then by (52),(53) 43s+2 + 2 = 93v+1 + 93w+1, v > w ≥ 0, s ≥ 0.By taking this modulo 5 we have
(−1)s + 2 ≡ (−1)v+1 + (−1)w+1 (mod5).Therefore, v and w have the same parity; moreover, v and w are even, and

s is also even.Put s = 2σ, v = 2ν, w = 2ω. Then by (53),(54) 46σ+2 + 2 = 96ν+1 + 96ω+1, ν > ω ≥ 0.Let us write (54) in the form(55) 16 · 84σ + 2 = 9(274ν + 274ω), ν > ω ≥ 0.Now by taking this modulo 19 we have
−3 · 84σ + 2 ≡ 9(84ν + 84ω) (mod19).Taking into aount that

84 = 642 ≡ 72 ≡ 11 (mod19),we have(56) 9(11ν + 11ω) + 3 · 11σ ≡ 2 (mod19).Sine 111 ≡ 11, 112 ≡ 7, 113 ≡ 1; 9 · 111 ≡ 4, 9 · 112 ≡ 6, 9 · 113 ≡ 9;
3 · 111 ≡ 14, 3 · 112 ≡ 2, 3 · 113 ≡ 3 (mod19), we see that the unique



218 V. Shevelevpossibility in (56) is σ ≡ ν ≡ ω ≡ 0 (mod3). Finally, put ν = 3β, ω = 3γ,
σ = 3δ, β > γ ≥ 0. By (54) we have

236δ+4 + 2 = 336β+2 + 336γ+2, β > γ ≥ 0.Consider two ases:1) γ = 0, β ≥ 1. Then
236δ+4 ≡ 7 (mod27), i.e. 16 · 4ϕ(27)δ ≡ 7 (mod27),whene 16 ≡ 7 (mod27). We have a ontradition.2) γ ≥ 1, β ≥ 2. Then

236δ+4 ≡ 25 (mod27), i.e. 16 · 4ϕ(27)δ ≡ 25 (mod27),whene 16 ≡ 25 (mod27). Again we have a ontradition. Consequently, wehave proved the following statement.Proposition 11. The diophantine equation (49): 2α + 2 = 3x + 3y doesnot have solutions in x ≥ 1, y ≥ 1, x 6= y.By a simple sorting out of the possibilities not inluded in Proposition 11,using Proposition 8, we obtain the following onsequene.Corollary 3. If x, y ≥ 0, α ≥ 2 then the diophantine equation 2α+2 =
3x + 3y has only the following solutions:

• α = 4, x = y = 2;
• α = 3, x = 2, y = 0; α = 3, x = 0, y = 2;

• α = 2, x = y = 1.4.3.4. Case 4: q = 5, z = 0, x 6= y. Here we investigate the equation(57) 2α + 2 = 5x + 5y, x, y ≥ 1, x 6= y, α ≥ 5.(It is evident that for α ≤ 4, (57) has no solutions in x ≥ 1, y ≥ 1, x 6= y.)Sine modulo 5 we have 21 ≡ 2, 22 ≡ 4, 23 ≡ 3, 24 ≡ 1, it follows thatin (57), α = 4k + 3, k ≥ 1. Thus by (57),(58) 24k+3 + 2 = 5x + 5y, k ≥ 1, x ≥ 1, y ≥ 1, x 6= y.By taking this modulo 16 we have
2 ≡ (4 + 1)x + (4 + 1)y ≡ (x + y) + 2 (mod16).Therefore, x + y ≡ 0 (mod4), and x, y have the same parity. Taking now(58) modulo 3, we have

1 ≡ (6 − 1)x + (6 − 1)y ≡ 2(−1)x (mod3).Consequently, both x and y are odd.



Compat integers and fatorials 219Put x = 2l − 1, y = 2m − 1. Then l + m ≡ 1 (mod2). Now instead of(58) we have
(59) 24k+3 + 2 = 52l−1 + 52m−1, k ≥ 1, l ≥ 1, m ≥ 1,

l 6= m, l + m ≡ 1 (mod2),i.e. 5(24k+3 + 2) = 25l + 25m. By taking this modulo 13 we immediatelyobtain(60) 24k+2 + 1 ≡ 0, i.e. 42k+1 ≡ 12, 42k ≡ 3 (mod13), k ≥ 1.Sine modulo 13 we have
41 ≡ 4, 42 ≡ 3, 43 ≡ 12, 44 ≡ 9, 45 ≡ 10, 46 ≡ 1,from (60) we obtain

2k ≡ 2 (mod6), i.e. k ≡ 1 (mod3).Put k = 3r + 1, r ≥ 0. Then by (59),
(61) 212r+7+2 = 52l−1+52m−1, l ≥ 1, m ≥ 1, l 6= m, l+m ≡ 1 (mod2).Further, by taking this modulo 7 we have

4 ≡ −22l−1 − 22m−1, i.e. 4l + 4m ≡ 6 (mod7).Sine 41 ≡ 4, 42 ≡ 2, 43 ≡ 1 (mod7), it follows that either l ≡ 1, m ≡ 2
(mod3) or l ≡ 2, m ≡ 1 (mod3). By symmetry it su�es to onsider onlythe �rst possibility. Put l = 3u + 1, m = 3v + 2, u, v ≥ 0. Sine in (61),
l + m ≡ 1 (mod2), we have u + v ≡ 0 (mod2), and by (61) we obtain(62) 212r+7 + 2 = 56u+1 + 56v+3, r, u, v ≥ 0, u + v ≡ 0 (mod2).We shall write (62) in the form

212r+7 + 2 = 5 · 1252u + 1252v+1.Sine 125 ≡ −8 (mod19), we have
212r+7 + 2 ≡ 5 · 26u − 26v+3 (mod19).Sine 26 ≡ 7 (mod19), we obtain 2 · 72r+1 + 2 ≡ 5 · 7u − 8 · 7v (mod19), i.e.(63) 72r+1 + 7u+1 + 4 · 7v ≡ 18 (mod19), r, u, v ≥ 0, u + v ≡ 0 (mod2).Notie that modulo 19 we have 71 ≡ 7, 72 ≡ 11, 73 ≡ 1; 4 · 71 ≡ 9, 4 · 72 ≡ 6,

4 ·73 ≡ 4. Consequently, as is easy to hek, we have only three ases in (63):(a) 2r + 1 ≡ 0, u ≡ 1, v ≡ 2 (mod3),(b) 2r + 1 ≡ 2, u ≡ 2, v ≡ 2 (mod3),() 2r + 1 ≡ 1, u ≡ 0, v ≡ 0 (mod3).
Case (a). Put 2r+1 = 3(2λ+1), i.e. r = 3λ+1, u = 3ξ +1, v = 3η +2,

λ, ξ, η ≥ 0.



220 V. ShevelevSine u + v ≡ 0 (mod2), we have ξ + η ≡ 1 (mod2). By (62),(64) 236λ+19 + 2 = 518ξ+7 + 518η+15.By taking this modulo 125 we have 236λ+18 ≡ −1 (mod125).Sine min{α ≥ 1 : 2α ≡ −1 (mod125)} = 50 and ϕ(125) = 100 we have(65) 36λ + 18 ≡ 50 (mod100), i.e. 9λ ≡ 8 (mod25).On the other hand, notie that 56 + 1 = 15626 = 2 · 13 · 601 and 56 ≡ −1
(mod601). Now by (64) we have
236λ+19 + 2 = 5(56)3ξ+1 + 125(56)3η+2 ≡ 5(−1)ξ+1 + 125(−1)η (mod601).Taking into aount that ξ + η ≡ 1 (mod2), we onlude that, modulo 601,

236λ+19 + 2 ≡
{

130, η is even,
−130, η is odd,i.e.(66) 236λ+18 ≡

{

64, η is even,
−66, η is odd.Now notie that all residues of powers of 2 modulo 601 are:

2i, i = 1, 2, . . . , 9; 210 ≡ 423, 211 ≡ 245, 212 ≡ 490, 213 ≡ 379,

214 ≡ 157, 215 ≡ 314, 216 ≡ 27, 217 ≡ 54,

218 ≡ 108, 219 ≡ 216, 220 ≡ 432, 221 ≡ 263,

222 ≡ 526, 223 ≡ 451, 224 ≡ 301, 225 ≡ 1.Now we see that in (66) the residue −66 ≡ 535 (mod601) is impossible.Therefore η is even and 236λ+12 ≡ 1 (mod601), so 36λ + 12 ≡ 0 (mod25),hene 9λ ≡ −3 (mod25). That ontradits (65).
Case (b). Put 2r + 1 = 3(2λ + 1) + 2, i.e. r = 3λ + 2, u = 3ξ + 2,

v = 3η + 2, λ, ξ, η ≥ 0. Sine u + v ≡ 0 (mod2), we have ξ + η ≡ 0 (mod2).By (62),(67) 236λ+31 + 2 = 518ξ+13 + 518η+15.By taking this modulo 125 we have 236λ+30 ≡ −1 (mod125). Consequently,as in Case (a) we obtain(68) 36λ + 30 ≡ 50 (mod100), i.e. 9λ ≡ 5 (mod25).On the other hand, again, sine 56 ≡ −1 (mod601), by (67) we have
236λ+31 + 2 = 5(56)3ξ+2 + 125(56)3η+2 ≡ 5(−1)ξ + 125(−1)η (mod601).Taking into aount that ξ + η ≡ 0 (mod2), we onlude that

236λ+31 + 2 ≡
{

130, η is even,
−130, η is odd,



Compat integers and fatorials 221and as in Case (a) we �nd that η is even and
236λ+24 ≡ 64 (mod601), 36λ + 24 ≡ 0 (mod25),i.e. 9λ ≡ −6 (mod25). That ontradits (68).

Case (). Put 2r + 1 = 3(2λ) + 1, i.e. r = 3λ, and u = 3ξ, v = 3η,
λ, ξ, η ≥ 0. Sine u + v ≡ 0 (mod2), we have ξ + η ≡ 0 (mod2). By (62),(69) 236λ+7 + 2 = 518ξ+1 + 518η+3.Here we onsider two subases: (′) ξ ≥ 1, (′′) ξ = 0.
Subcase (′): ξ ≥ 1. By taking (69) modulo 125 we �nd

236λ+6 ≡ −1 (mod125).Therefore, as above 36λ + 6 ≡ 50 (mod100) and so(70) 9λ ≡ 11 (mod25).On the other hand, by (69) we have
236λ+7 + 2 = 5(56)3ξ + 125(56)3η ≡ 5(−1)ξ + 125(−1)η (mod601)and

236λ+7 + 2 ≡
{

130, η is even,
−130, η is odd.As above we �nd that η is even and 236λ ≡ 1 (mod601). Consequently,

36λ ≡ 0 (mod25). This ontradits (70).
Subcase (′′): ξ = 0. By (69),(71) 236λ+7 − 3 = 518η+3.This equation is a speial ase of the following equation onsidered in [1℄:

1 + 2a = 3b5c + 2d3e5ffor a = 36λ + 7, b = 0, c = 18η + 3, d = 2, e = f = 0. Sine a ≥ 7, c ≥ 3, by[1℄ the equation (71) has only the solution λ = 0, η = 0.Thus, we provedProposition 12. The diophantine equation (57): 2λ + 2 = 5x + 5y hasonly the following solution: λ = 7, x = 3, y = 1, in λ ≥ 2, x > y ≥ 1.4.3.5. Case 5: q = 5, x, y, z ≥ 1. Here we investigate the equation(72) 2α + 3 = 5x + 5y + 5z, x, y, z ≥ 1, α ≥ 4.Sine in (72), 2α ≡ 2 (mod5), we obtain λ = 4t + 1, t ≥ 1. Thus,(73) 24t+1 + 3 = 5x + 5y + 5z, t, x, y, z ≥ 1.By taking this modulo 3 we have
2 ≡ (−1)x + (−1)y + (−1)z (mod3).



222 V. ShevelevBy symmetry, it is su�ient to onsider the ase: x ≡ 0, y ≡ z ≡ 1 (mod2).Put x = 2k, y = 2l − 1, z = 2m − 1. Then by (73),(74) 24t+1 + 3 = 52k + 52l−1 + 52m−1, t, k, l, m ≥ 1.After multiplying (74) by 5, we onsider it modulo 13:
10 · 16t + 2 ≡ −8(−1)k + (−1)l + (−1)m,i.e.

16t+1 − 2 ≡ 8(−1)k + (−1)l+1 + (−1)m+1 (mod13).Taking into aount that 161 ≡ 3, 162 ≡ 9, 163 ≡ 1 (mod13), notie thatthe expression 8(−1)k +(−1)l+1 +(−1)m+1 +2 gives a residue of a power of16 only in ase when k, l, m are odd; therefore t ≡ 1 (mod3). Put k = 2a+1,
l = 2b + 1, m = 2c + 1, t = 3d + 1, a, b, c, d ≥ 0. Then by (74),(75) 212d+5 + 3 = 54a+2 + 54b+1 + 54c+1, a, b, c, d ≥ 0.Modulo 7 this gives 0 ≡ 24a+2 − 24b+1 − 24c+1, i.e., sine 24 ≡ 2 (mod7),

2a+1 ≡ 2b + 2c (mod7).Sine 21 ≡ 2, 22 ≡ 4, 23 ≡ 1 (mod7), we evidently have three possibilities:(a) a ≡ b ≡ c ≡ 1 (mod3),(b) a ≡ b ≡ c ≡ 2 (mod3),() a ≡ b ≡ c ≡ 0 (mod3).Let us onsider eah of them.(a) a ≡ b ≡ c ≡ 1 (mod3). Put a = 3β + 1, b = 3γ + 1, c = 3δ + 1,
β, γ, δ ≥ 0. By (75) we have

212d+5 + 3 = 512β+6 + 512γ+5 + 512δ+5, β, γ, δ ≥ 0.Sine 56 ≡ −1 (mod601), we have 212d+5 ≡ −1+2 · 55 − 3 ≡ 236 (mod601).However, the number 236 does not appear among the residues of powers of2 modulo 601 (see above). We have a ontradition.(b) a ≡ b ≡ c ≡ 2 (mod3). Put a = 3β + 2, b = 3γ + 2, c = 3δ + 2,
β, γ, δ ≥ 0. By (75) we have

212d+5 + 3 = 512β+10 + 512γ+9 + 512δ+9, β, γ, δ ≥ 0.By taking this modulo 601 we have 212d+5 ≡ 510+2·59−3 = −54−2·53−3 ≡
324 (mod601). We again obtain a ontradition.() a ≡ b ≡ c ≡ 0 (mod3). Put a = 3β, b = 3γ, c = 3δ, β, γ, δ ≥ 0. By(75) we have(76) 212d+5 + 3 = 512β+2 + 512γ+1 + 512δ+1, β, γ, δ ≥ 0.



Compat integers and fatorials 223By taking this modulo 601 we have 212d+5 ≡ 25 + 10 − 3 ≡ 32 (mod601).Thus 12d ≡ 0 (mod25), and so d ≡ 0 (mod25). Put d = 25λ, λ ≥ 0. By (76),
2300λ+5 + 3 = 512β+2 + 512γ+1 + 512δ+1, λ, β, γ, δ ≥ 0.Now we show that γ or δ is 0. Indeed, if γ, δ ≥ 1, then 2300λ+5 ≡ −3 (mod25).Consequently, 300λ+5 ≡ 17 (mod20). This is a ontradition. By symmetrywe an further suppose that δ = 0 in (76). We have(77) 2300λ+5 − 2 = 512β+2 + 512γ+1, λ, β, γ ≥ 0.Now we show that also γ = 0. Indeed, if γ ≥ 1 then taking this modulo 25gives

2300λ+5 ≡ 2 (mod25), so 300λ + 5 ≡ 1 (mod20).Again we obtain a ontradition.Thus, γ = 0 in (77). Therefore
2300λ+5 − 7 = 512β+2.If β ≥ 1, then

2300λ+5 ≡ 7 (mod125).Notie that min{α ≥ 1 : 2α ≡ 7 (mod125)} = 85. Sine ϕ(125) = 100, wehave 300λ + 5 ≡ 85 (mod100), and so 5 ≡ 85 (mod100). Again we have aontradition. Therefore in (74), β = 0, 2300λ+5 = 32, and λ = 0. Hene, weproved the following statement.Proposition 13. The diophantine equation (72): 2α + 3 = 5x + 5y + 5zhas the only solution: α = 5, x = 2, y = 1, z = 1 in x ≥ y ≥ z ≥ 1, α ≥ 4.By a simple sorting out of the possibilities not inluded in Propositions12, 13, using Proposition 8 we obtainCorollary 4. The diophantine equation 2α +3 = 5x +5y +5z has onlythe following solutions (up to a permutation of x, y, z):
• α = 7, x = 3, y = 1, z = 0;
• α = 5, x = 2, y = 1, z = 1;
• α = 3, x = 1, y = 1, z = 0;
• α = 2, x = 1, y = 0, z = 0.Now we are able to omplete the proof of Theorem 2 when q is a Fermatprime in the following more detailed form:Proposition 14.(i) If q ≥ 17 is a Fermat prime, then C !

2∩C !
q = {q+1, q+2, 2q, 2q+1}.(ii) C !

2 ∩ C !
3 = {3, 6, 7, 10, 11, 18, 19}.(iii) C !

2 ∩ C !
5 = {6, 7, 10, 11, 35, 130, 131}.



224 V. ShevelevProof. (i) Aording to Propositions 6 and 10 the solution x = 1, y = 0,
z = 0, α = log2(q − 1) of (45) (or its permutation) orresponds to theelements q + 1, q + 2 of C !

2 ∩ C !
q, while the solution x = 1, y = 1, z = 0,

α = log2(q − 1) (or its permutation) orresponds to the elements 2q, 2q + 1.(ii) Aording to Proposition 6 and Corollary 3 the solution α = 4,
x = y = 2, z = 0 of (45) (or its permutation) orresponds to the elements
18, 19 of C !

2 ∩ C !
3; the solution α = 2, x = y = 1, z = 0 (or its permuta-tions) orresponds to 6, 7, while the solution α = 3, x = 2, y = z = 0(or its permutation) orresponds to 10, 11. Finally, notie that by Propo-sition 1 the numbers ≤ 5 are onsidered separately. Among them only

3 ∈ C !
2 ∩ C !

3.(iii) Aording to Proposition 6 and Corollary 4 the solution α = 7,
x = 3, y = 1, z = 0 (or its permutation) of (45) orresponds to the elements
130, 131 of C !

2 ∩ C !
5; the solution α = 5, x = 2, y = 1, z = 1 (or itspermutation) orresponds to 35; the solution α = 3, x = 1, y = 1, z = 0(or its permutation) orresponds to 10, 11, while the solution α = 2, x = 1,

y = 1, z = 0 (or its permutation) orresponds to 6, 7. Finally, 5 6∈ C !
2 ∩ C !

5.This ompletes the proof of Theorem 2.5. Proof of Theorem 3. 1) Let q be a prime in the interval [2k−1 + 5,
2k − 1], q 6= (2k+2 + 3)/5. By Theorem 2, |C !

2 ∩ C !
q| = 2t if and only if

2t−1 ≤ (q − 5)/(2k − q) < 2t, or(78) 2k+t−1 + 5

2t−1 + 1
≤ q <

2k+t + 5

2t + 1
, k ≥ 3.Put

2k+t−1 + 5

2t−1 + 1
= x,

2k+t + 5

2t + 1
= x + △x.Then

△x =
2k+t−1 − 5 · 2t−1

(2t−1 + 1)(2t + 1)
∼ 1

2t + 1
x (k → ∞).By the prime number theorem, for λ = 1/(2t + 1),

π(x + △x) − π(x) ∼ λx

log x
(x → ∞).Therefore, the number of primes q in [2k−1+5, 2k−1] for whih |C !

2∩C !
q| = 2tis

λx

π(2k−1) log x
∼ 2k+t−1

(2t + 1)(2t−1 + 1)
· k − 1

2k−1(k + t − 1)

∼ 2t

(2t−1 + 1)(2t + 1)
(k → ∞),whene the �rst formula of Theorem 3 evidently follows.



Compat integers and fatorials 225Remark 5. In partiular, we see that
∞
∑

t=1

2t

(2t−1 + 1)(2t + 1)
= 1.

It also follows diretly that
∞

∑

t=1

2t

(2t−1 + 1)(2t + 1)
= 2

∞
∑

t=1

(

1

2t−1 + 1
− 1

2t + 1

)

= 2

(

1

2
− 1

3
+

1

3
− 1

5
+

1

5
− · · ·

)

.

2) Further, by (78) the lim sup on the left-hand side of the seond formulaof Theorem 3 is attained for the sequene
n′

m =

⌊

2m+t + 5

2t + 1

⌋

,while the lim inf of the same expression is attained for the sequene
n′′

m =

⌊

2m−1+t + 5

2t−1 + 1

⌋

.Thus we have
lim sup

n→∞

|{q ∈ P, q ≤ n : |C !
2 ∩ C !

q| = 2t}|
π(n)

= lim
m→∞

∑

k≤m

(

π
(

2k+t+5
2t+1

)

− π
(

2k+t−1+5
2t−1+1

))

π
(

2m+t+5
2t+1

)

= lim
m→∞

∑

k≤m

(

π
(

2k+t

2t+1

)

− π
(

2k+t

2t+2

))

π
(

2m+t

2t+1

)

= lim
m→∞

∑

k≤m π
(

2k+t

(2t+1)(2t+2)

)

π
(

2m+t

2t+1

) =
1

2t−1 + 1
lim

m→∞

∑

k≤m π(2k+t−1)

π(2m+t)
.

Sine by the Bertrand postulate π(2m+t+1) > π(2m+t), the lassial Stolztheorem and the prime number theorem yield
lim

m→∞

∑

k≤m π(2k+t−1)

π(2m+t)
= lim

m→∞
π(2m+t−1)

π(2m+t) − π(2m+t−1)
= 1.Thus the seond formula of Theorem 3 follows.



226 V. ShevelevAnalogously,
lim inf
n→∞

|{q ∈ P, q ≤ n : |C !
2 ∩ C !

q| = 2t}|
π(n)

= lim
m→∞

∑

k≤m−1

(

π
(

2k+t+5
2t+1

)

− π
(

2k+t−1+5
2t−1+1

))

π
(

2m−1+t+5
2t−1+1

)

= lim
m→∞

∑

k≤m−1 π
(

2k+t

(2t+1)(2t+2)

)

π
(

2m+t−1

2t−1+1

)

=
1

2t + 1
lim

m→∞

∑

k≤m−1 π(2k+t−1)

π(2m+t−1)
=

1

2t + 1
.

6. Some orollaries. Sine the funtion (x − 5)/(2k − x) inreases forany �xed k ≥ 4, from (44) we obtain the following result.Corollary 5. If q is a prime ≥ 7, then in the estimate(79) |C !
2 ∩ C !

q| ≤ 2(1 + ⌊log2(q − 5)⌋)we have equality if and only if q is a Mersenne prime.Further, from (79) and Proposition 2 we have:Corollary 6. If 7 ≤ q < 2k, then(80) 2 ≤ |C !
2 ∩ C !

q| ≤ 2k.Moreover , the upper bound in (80) is attained if and only if q is a Mersenneprime.Corollary 7. If q ≥ 7 and n ∈ C !
2∩C !

q, then n ≤ 1
2(q+1)2+3. Equalityholds for Mersenne primes ≥ 31.Proof. From the proof of Theorem 2 it follows that

Sq := max{n : n ∈ C !
2 ∩ C !

q}(81)
=















































19, q = 3,
131, q = 5,
5q − 1, q = (24k+1 + 3)/5, k ≥ 1,
2q + 1, q = 22k−1

+ 1, k ≥ 3,

2q − 3, q = 2k + 3, k ≥ 3,
2

k+⌊log2
q−5

2k
−q

⌋
+ 3, 2k−1 + 5 ≤ q ≤ 2k − 1,

k ≥ 4, q 6= (2k+2 + 3)/5.Therefore, for q ≥ 31 the maximal value of Sq is attained at a Mersenne



Compat integers and fatorials 227prime q = 2k − 1, k ≥ 5. Thus, for q ≥ 31,
Sq ≤ (q + 1)2⌊log2(q−5)⌋ + 3 = (q + 1)

q + 1

2
+ 3 =

1

2
(q + 1)2 + 3,and this estimate, aording to (81), is true for q ≥ 7.Corollary 8. For q = 7 and all non-Fermat primes q ≥ 13, q ∈

(2k−1, 2k), k ≥ 4, that do not have the forms 2n + 3, (2n + 3)/5 (n > 3)and for whih(82) ⌊

log2

q − 1

2k − q

⌋

∤ kwe have(83) |C !
2 ∩ C !

q| = 2max{α ∈ N : ∃m, ⌊2m/q⌋ = 2α−1}.Proof. From the equality ⌊2m/q⌋ = 2α−1, we �nd(84) 2m−α ≤ 2m

2α−1 + 1
< q < 2m−α+1.So, m − α + 1 = k. Therefore, by (84),

2m−α+1 − 2m

2α−1 + 1
> 2k − q,whene 2k/(2k − q) > 2α−1 + 1, 2α−1 < q/(2k − q). Thus,

maxα = 1 +

⌊

log2
q

2k − q

⌋

.By Theorem 2 it is left to prove that(85) ⌊

log2
q

2k − q

⌋

=

⌊

log2
q − 5

2k − q

⌋

.If (85) is not true, then there exists β ∈ N so that
q − 5

2k − q
< 2β ≤ q

2k − q
,so that(86) 2k+β ≤ q(2β + 1) < 2k+β + 5.But if q(2β + 1) = 2k+β + 3, then by Lemma 7, q has the form (2n + 3)/5,ontrary to assumption. Thus by (86),

q(2β + 1) = 2k+β + 1,whene β | k and β =
⌊

log2
q−1
2k−q

⌋. The latter ontradits (82). In additionnotie that formula (83) is also true for q = 7.Corollary 9. For every t ≥ 1 the set of primes
{q ∈ P : |C !

2 ∩ C !
q| = 2t}



228 V. Shevelevis in�nite. Moreover , every arithmeti progression a, a + d, a + 2d, . . . with
(a, d) = 1 ontains in�nitely many primes of this type for every �xed t.Proof. If, for a �xed t, xk = (2k+t−1 + 5)/(2t−1 + 1), then the interval(78) ontains only primes under onsideration and has length asymptotiallyequal to xk/(2t + 1) (k → ∞). Consequently, as is well known [10℄, it on-tains asymptotially xk/ϕ(d)(2t + 1) log xk primes belonging to the abovearithmeti progression.7. Proof of Theorem 4. In the theory of the existene of primes inshort intervals the best result known to date is due to Baker, Harman andPintz [2℄. They showed for su�iently large x the existene of a prime in theinterval (x, x + x0.525) and, moreover, obtained the estimate(87) π(x + x0.525) − π(x) > 0.09

x0.525

log x
.Aording to Theorem 2 the interval (78) ontains only primes q ∈ (2k−1+3,

2k − 1), k ≥ 4, for whih |C !
2 ∩ C !

q| = 2t if q 6= (2k+2 + 3)/5.We shall show that for eah t ∈ [1, 0.475k − 1] (k ≥ 5) the interval (78)ontains an interval of type [x, x + x0.525]. Indeed, we have
2k+t + 5

2t + 1
=

2k+t−1 + 5

2t−1 + 1
+

2k+t−1 − 5 · 2t−1

(2t−1 + 1)(2t + 1)

>
2k+t−1 + 5

2t−1 + 1
+ 2k−t−1 ≥ 2k+t−1 + 5

2t−1 + 1
+ 20.525k

=
2k+t−1 + 5

2t−1 + 1
+

(

2k+t−1 + 2k

2t−1 + 1

)0.525

≥ 2k+t−1 + 5

2t−1 + 1
+

(

2k+t−1 + 5

2t−1 + 1

)0.525

.By (87) for su�iently large k the number of primes for whih |C !
2∩C !

q| = 2twith t ∈ [1, 0.475k − 1] is not less than
0.09

(

2k+t−1 + 5

2t−1 + 1

)0.525
/

ln
2k+t−1 + 2k

2t−1 + 1
≥ 0.09

log 2
· 20.525(k−1)

k
.Remark 6. Notie that if H. Cramer's 1937 onjeture ([8, A2℄)

lim sup
n→∞

pn+1 − pn

(ln pn)2
= 1,where pn is the nth prime, is true, then in Theorem 4(i) for large enough kthe number |C !

2 ∩ C !
q| assumes all even values in the interval [2, ⌊(1 − ε)k⌋].



Compat integers and fatorials 2298. Proof of Theorem 5. Notie that from Theorem 2 it follows that
q(1) = 37, q(2) = 13, q(3) = 5,

q(4) = 29, q(5) = 31, . . . .Let t ≥ 5. For k ≥ t onsider the number(88) ̺ = ̺(k, t) = min{j ≥ 2k−t : 3 ≤ 2k − j ∈ P}.It is evident that(89) 2k−t ≤ ̺, i.e. k − t ≤ ⌊log2 ̺⌋.Lemma 10. If(90) q = 2k − ̺ ∈ P,then in (89) equality holds if and only if(91) |C !
2 ∩ C !

q| = 2t, t ≥ 5.Proof. It is evident that q > 2k−1 and ̺ < 2k−1. Let (91) be valid. Thenby Theorem 2 for the prime q of (90) we have
t = 1 +

⌊

log2
q − 5

2k − q

⌋

= 1 +

⌊

log2
2k − ̺ − 5

̺

⌋

≤ 1 + ⌊log2(2
k − ̺ − 5)⌋ − ⌊log2 ̺⌋ ≤ 1 + k − 1 − ⌊log2 ̺⌋

= k − ⌊log2 ̺⌋,i.e. k − t ≥ ⌊log2 ̺⌋. Therefore, in (89) we have equality.Conversely, let(92) k − t = ⌊log2 ̺⌋.Then by Theorem 2 and (90) we have
|C !

2 ∩ C !
q| = 2

(

1 +

⌊

log2

q − 5

2k − q

⌋)

= 2

(

1 +

⌊

log2

2k − ̺ − 5

̺

⌋)

≤ 2(1 + ⌊log2(2
t+⌊log2 ̺⌋ − ̺ − 5)⌋ − ⌊log2 ̺⌋)

= 2(1 + t + ⌊log2 ̺⌋ − 1 − ⌊log2 ̺⌋) = 2t.On the other hand,
|C !

2 ∩ C !
q| = 2

(

1 +

⌊

log2

2k − ̺ − 5

̺

⌋)

≥ 2(1 + ⌊⌊log2(2
k − ̺ − 5)⌋ − log2 ̺⌋)

= 2(1 + ⌊log2(2
k − ̺ − 5)⌋ − ⌊log2 ̺⌋)

= 2(1 + k − 1 − k + t) = 2t.So, |C !
2 ∩ C !

q| = 2t.



230 V. ShevelevCorollary 10. Let(93) k0(t) = min{k ≥ t : k − t = ⌊log2 ̺(t, k)⌋}.Then(94) q(t) = 2k0(t) − ̺.Now we omplete the proof of Theorem 5. Put x = 2k − 20.525k. Then
x+x0.525 = 2k −20.525k +20.525k

(

1− 1

20.475k

)0.525

= 2k − 0.525

20.475k
−· · · < 2k.So by (88)�(89), taking into aount the above result of Baker, Harman andPintz, for su�iently large k, say k ≥ k1, we have

2k−t ≤ ̺ ≤ 2max(0.525k, k−t).Therefore, the ondition k − t = ⌊log2 ̺(t, k)⌋ in (93) is satis�ed at least for
k ≥ max(t/0.475, k1). Consequently, for large enough t, namely t ≥ 0.475k1,we have k0 ≤ ⌈40t/19⌉. By (94) we onlude that q(t) ≤ 2⌈40t/19⌉.Remark 7. Aording to Cramer's above-mentioned onjeture the in-terval (x, x+xε) must ontain a prime for su�iently large x, namely x ≥ xε.In this ase in the same way one an prove that for t ≥ (1 − ε)xε we have
q(t) = 2⌈t/(1−ε)⌉.9. Numerial results. 1) Theorem 2 and Proposition 3 give a possibil-ity to �ll the following tables, exept for the ases 3 ≤ p < q ≤ 47 for whih
(q − 1)/(p − 1) is a power of 2.Table 1. The ardinality of C !

p ∩ C !
q for 2 ≤ p < q ≤ 47

q \ p 2 3 5 7 11 13 17 19 23 29 31 37 41 433 75 7 ?7 6 8 911 3 4 9 2213 4 3 11 ? 2317 4 ? ? 13 23 2219 3 2 10 16 38 25 4223 4 0 7 28 28 53 29 3729 8 3 16 13 15 24 48 39 4031 10 6 25 11 18 21 61 46 39 9037 2 3 8 14 36 22 36 ? 52 50 6341 2 3 5 21 ? 36 27 42 73 53 52 9643 2 3 5 21 26 39 25 33 109 57 55 81 14747 4 3 10 32 19 69 26 29 79 68 63 64 93 120



Compat integers and fatorials 231Notie that for the exeptional ases the ount up to 108 shows that
|C !

3 ∩ C !
5| ≥ 25, |C !

3 ∩ C !
17| ≥ 10, |C !

5 ∩ C !
17| ≥ 23, |C !

7 ∩ C !
13| ≥ 66,

|C !
11 ∩ C !

41| ≥ 76, |C !
19 ∩ C !

37| ≥ 175.Table 2. The maximal elements Mp,q of the sets C !
p ∩ C !

q, 2 ≤ p < q ≤ 47

q \ p 2 3 5 7 11 13 17 19 23 29 31 37 41 433 195 131 27 34 20 2011 19 20 24 9813 35 20 38 ? 5417 35 ? ? 50 50 3819 35 20 39 55 170 56 15223 67 � 39 202 98 390 68 9429 259 71 260 55 54 116 144 86 6831 575 518 524 55 92 64 278 154 92 26037 67 71 74 104 332 110 152 ? 184 86 15441 67 71 74 202 ? 204 84 170 368 122 92 33243 67 71 74 202 175 207 84 94 730 128 128 184 69647 131 71 134 1550 98 1550 140 94 390 234 140 110 204 386Notie that for the exeptional ases the ount until 108 shows that
M3,5 ≥ 524306, M3,17 ≥ 262160, M5,17 ≥ 262164,

M7,13 ≥ 25165860, M11,41 ≥ 20503, M19,37 ≥ 18874439.Further, notie that Proposition 4 gives a qualitative explanation of thevariation of the numbers Mp,q, in partiular, near the �resonane points�
(p, q), for whih (q − 1)/(p − 1) is a power of 2.2) The list of primes ≤ 108 for whih formula (83) of Corollary 8 is nottrue ontains only 25 primes. They are:

3, 5, 11, 13, 17, 19, 43, 67, 103, 131, 241, 257, 683, 2731, 4099, 32771, 43691,

61681, 65537, 65539, 174763, 262147, 2796203, 6710887, 15790321.3) Evaluation of the funtion q(t). Notie that formulas (88), (93), (94)give a simple algorithm for �nding the values of q(t). It follows from The-orem 5 that the running time of this algorithm is O(t) with the impliitonstant in O(. . .) not exeeding 40/19.
Example. Let t = 6. If k = 6, then ̺ = 64−61 = 3, but 6 6= 6−⌊log2 3⌋;if k = 7, then ̺ = 128 − 113 = 15, but 6 6= 7 − ⌊log2 15⌋; if k = 8, then
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̺ = 256 − 251 = 5 and 6 = 8 − ⌊log2 5⌋. Therefore, by (93), (94), k0 = 8,
̺ = 5, and q(6) = 28 − 5 = 251.Table 3. Values of q(t)

t 1 2 3 4 5 6 7 8 9 10
q(t) 26 − 27 24 − 3 23 − 3 25 − 3 25 − 1 28 − 5 27 − 1 29 − 3 210 − 3 212 − 5

t 11 12 13 14 15 16 17 18 19
q(t) 212 − 3 216 − 17 213 − 1 217 − 9 218 − 11 218 − 5 217 − 1 220 − 5 219 − 1

t 20 21 22 23 24 25 26 27 28
q(t) 223 − 15 222 − 3 226 − 27 224 − 3 226 − 3 230 − 35 231 − 61 231 − 19 229 − 34) On numbers n for whih ep(n) and eq(n) are powers of an odd prime ν.The following two tables are based on a natural generalization of Proposi-tion 3. Let ν ≥ 2 be a prime. For a prime p de�ne C !

ν,p = {n ∈ N : ∃α ∈
Z+, ep(n) = να}. One an prove, similarly to Proposition 3, the followinggeneralization.Proposition 15. If p < q are primes so that (q − 1)/(p − 1) is not apower of ν, then the set C !

ν,p ∩ C !
ν,q is �nite. Moreover , if n ∈ C !

ν,p ∩ C !
ν,q,then

n ∈
[

q, 2

(

1 +
log 2

2 log q − 1

)

q2 − 1

)

.Notie that if ν ≥ 3 and p = 2 then (q − 1)/(p − 1) is never a powerof ν and thus all sets C !
ν,2 ∩ C !

ν,q are �nite. In addition onsider the ase
p = 2, q = ν.Proposition 16. For ν ≥ 5 we have |C !

ν,2 ∩ C !
ν,ν | = 0 or 2.Proof. Let n ∈ C !

ν,2 ∩ C !
ν,ν . By Proposition 16 for q = ν ≥ 5 we have

n ≤ 2

(

1 +
log 2

2 log 5 − 1

)

ν2 − 1 = 2.62 . . . ν2 − 1.Therefore, eν(n) = 1 or ν. Notie now that n 6∈ [2ν, ν2−1] (else 2 ≤ eν(n) ≤
ν − 1) and n 6∈ [ν2, 2.62 . . . ν2 − 1] (else eν(n) ≥ ν + 1). Thus, n ≤ 2ν − 1and eν(n) = 1. Further, n ≥ ν ≥ 5, therefore e2(n) ≥ 3, and onsequently
e2(n) ≥ ν. Moreover, e2(n) < n ≤ 2ν − 1. Thus, e2(n) = ν, and if n is even,also n + 1 ∈ C !

ν,2 ∩ C !
ν,ν . Sine e2(n − 2) ≤ ν − 1 and e2(n + 2) ≥ ν + 1, wehave |C !

ν,2 ∩ C !
ν,ν | = 2 or 0.In addition, notie that if an even n ∈ C !

ν,2 ∩ C !
ν,ν is given then byLemmas 3, 4 using the fats that n ≤ 2ν − 2, e2(n) = ν we have

ν + 1 ≤ n = e2(n) + σ2(n) ≤ ν + log2(n + 1)

≤ ν + log2(2ν − 1) < ν + 1 + log2 ν.



Compat integers and fatorials 233Thus, if for some even n ∈ [ν + 1, ν + 1 + log2 ν) we have e2(n − 2) ≤ ν − 1and e2(n) ≥ ν + 1, then
C !

ν,2 ∩ C !
ν,ν = ∅.Aording to Proposition 16 we have a partition of the set of all primes

≥ 5 into two subsets. In Table 4 we provide the value of |C !
ν,2 ∩ C !

ν,ν | for
ν < 200. Table 4. The numbers λν = |C !

ν,2 ∩ C !
ν,ν |, 5 ≤ ν ≤ 199

ν 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
λν 0 2 2 0 0 2 2 0 2 0 2 0 2 2 0 0 2
ν 71 73 79 83 89 97 101 103 107 109 113 127 131 137
λν 2 2 2 0 2 2 2 0 2 0 2 2 2 2
ν 139 149 151 157 163 167 173 179 181 191 193 197 199
λν 0 2 0 0 0 0 2 0 2 2 2 2 0Table 5. The ardinality of C !

3,p ∩ C !
3,q for 2 ≤ p < q ≤ 61

q \ p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 593 35 1 17 0 ? 311 0 1 9 413 0 3 ? 6 1417 0 9 3 16 6 1019 0 2 1 ? 8 7 2623 2 1 5 5 11 10 11 2229 0 1 6 2 33 13 12 10 2231 0 3 10 6 ? 20 14 12 15 6137 0 3 ? 7 7 ? 17 18 14 26 3841 0 3 4 7 3 18 28 19 18 17 22 5943 2 6 2 11 1 10 34 20 20 15 19 50 9747 2 6 0 14 0 5 58 36 23 18 16 34 58 7753 2 12 0 21 7 0 26 76 28 24 22 21 34 46 7059 2 1 3 4 11 1 9 30 46 29 28 22 23 27 46 8261 2 0 5 2 11 5 7 22 58 29 30 24 21 25 38 74 156
Notie that for the exeptional ases for whih (q − 1)/(p − 1) is a powerof 3, the ount up to 108 shows that
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|C !

3,3∩C !
3,7| ≥ 8, |C !

3,5∩C !
3,13| ≥ 18, |C !

3,3∩C !
3,19| ≥ 7, |C !

3,7∩C !
3,19| ≥ 29,

|C !
3,11 ∩ C !

3,31| ≥ 65, |C !
3,5 ∩ C !

3,37| ≥ 17, |C !
3,13 ∩ C !

3,37| ≥ 75.Remark 8. One an prove, similarly to Proposition 4, the followinggeneralization that gives a qualitative explanation of the variation of themaximal elements Mν,p,q of the sets C !
ν,p ∩ C !

ν,q.Proposition 17. If ν is an odd prime and p < q are primes so that
(q − 1)/(p − 1) is not a power of ν, then for n ∈ C !

ν,p ∩ C !
ν,q we have

n

log(n + 1)
≤ max(aν(p, q), bν(p, q)),where

aν(p, q) =
p − 1

log p
(1 − ν

−{logν
q−1
p−1

}
)−1,

bν(p, q) =
q − 1

log q
(1 − ν

{logν
q−1
p−1

}−1

)−1.

10. Open problems1. Is C !
p in�nite for p ≥ 3?Due to the fat that Cp is of density lose to 1 by Theorem 1, we expetthe answer to be in the a�rmative.2. Is the set C !

p ∩ C !
q �nite for primes 3 ≤ p < q with (q − 1)/(p − 1) apower of 2?3. Does the diophantine equation σp(n) = σq(n), where p 6= q are �xedprimes, have in�nitely many solutions?4. Is the set of primes q for whih |C !

2 ∩ C !
q| = 3 in�nite?Notie that by Theorem 2 this question is equivalent to the questionabout the in�nity of primes of the form 2n + 3.5. Is the set of primes q for whih |C !

2 ∩ C !
q| = 5 in�nite?By Theorem 2, this question is equivalent to the question about thein�nity of primes of the form (2n + 3)/5.6. Is the set of primes q for whih |C !

2∩C !
q| 6= 2max{α ∈ N : ∃m, ⌊2m/q⌋

= 2α−1}, in�nite?The question arises in view of Corollary 8.7. Find a generalization of Theorem 2 to the set C !
ν,ν ∩ C !

ν,q, ν < q (seeSetions 7, 4).Remark 9. Together with Proposition 15, one an obtain a generaliza-tion of Proposition 5: if p < q are primes so that (q − 1)/(p − 1) is a powerof ν (≥ 3), then n ∈ C !
ν,p ∩ C !

ν,q if n ∈ C !
ν,p and σp(n) = σq(n) (and for

n ≥ q2, only if).



Compat integers and fatorials 235Moreover, if we all the primes of the form 1+(ν−1)νk ν-Fermat primes,then for n ≥ 2ν, p = ν and a ν-Fermat prime q (f. Proposition 5(ii)) wehave: n ∈ C !
ν,ν ∩C !

ν,q if and only if n ∈ C !
ν,ν and σν(n) = σq(n). Moreover, asin Proposition 1 one an prove that for n ≥ ν3 − ν2 + ν we have: n ∈ C !

ν,ν ifand only if n has the form (ν−1)να +ν + i, α ≥ 2, i = 0, 1, . . . , ν−1. Takinginto aount that [2ν, ν3 − ν2 + ν) ∩ C !
ν,ν = ∅, we onlude that if n ≥ 2νand q is a ν-Fermat prime, then there is a bijetion between C !

ν,ν ∩C !
ν,q andthe set of solutions of the diophantine equation

2ν−1
∑

j=1

qxj = (ν − 1)να + 2ν − 1, ν ≥ 2,in integers α ≥ 2, 0 ≤ x1 ≤ · · · ≤ x2ν−1 (f. Proposition 6).8. Is the set {p ∈ P : |C !
p,2 ∩ C !

p,p| = t} in�nite a) for t = 0; b) for t = 2?Remark 10. Notie that this question for t = 2 is equivalent to thequestion of in�nitude of primes of the form p = e2(n), n ∈ N. E.g., for theMersenne primes p = 2k − 1, k ≥ 3, we have e2(p + 1) = p. Thus, in thisase |C !
p,2 ∩C !

p,p| = 2. On the other hand, for the Fermat primes p = 2k + 1,
k ≥ 2, we have e2(p + 1) = p− 1 and e2(p + 3) = p + 1 + δp,5. Thus, for eahFermat prime p ≥ 5 the set C !

p,2 ∩ C !
p,p is empty.Analogously, one an show that for a prime p of the form p = 2k +2l −1,

2 ≤ l ≤ k − 1, we have e2(p + 3) = p. Thus, |C !
p,2 ∩ C !

p,p| = 2. On the otherhand, for a prime p of the form p = 2k−l, 3 ≤ l ≤ k, we have e2(p+l−2) < p,
e2(p + l) > p. Therefore, C !

p,2 ∩ C !
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