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Introduction. Already Lagrange knew that the negative Pell equation

X2 − DY 2 = −1(1)

is solvable in rational integers if and only if the continued fraction expan-
sion of

√
D has an odd period. Simpler applicable algebraic conditions for

discriminants with two or three prime divisors were found by Dirichlet in
terms of quadratic and biquadratic characters. But within his framework,
the cases where all prime divisors are biquadratic residues to each other,
are not decidable. The following theorem yields decidability for a special
subcase.

Theorem. Assume D = pq where p ≡ q ≡ 1 mod 4 are distinct positive

primes. If (p/q)4 = (q/p)4 = 1, and if D = pq = a4 + 4b2 with (a/p) = −1,
then the negative Pell equation (1) does not have an integral solution.

Proof. Assume that t2 −Du2 = −1 is an integer solution of (1), and put
ε = t + u

√
D. Since β = 2b +

√
D is primitive (i.e., has no rational divisors

6= ±1) and has norm −a4, the element εβ is primitive and has norm +a4,
hence there exist coprime integers r, s such that r2 − Ds2 = a4.

We now use the following

Lemma 1. Assume that x2 − Dy2 = m2 for coprime integers x, y and

some odd m. Then one of the equations X2−DY 2 = m or X2−DY 2 = pm
has a primitive solution.

This implies that either X2 −DY 2 = a2 or X2 −DY 2 = pa2 is solvable.
The second equation does not have solutions by Lemma 2 below. Thus we are
left with X2 − DY 2 = a2. Reapplying Lemma 1 shows that X2 − DY 2 = a
or X2 − DY 2 = pa is solvable. Both equations imply immediately that
(a/p) = +1, contrary to our assumptions.
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Proof of Lemma 1. From x2 −Dy2 = m2 we get (x−m)(x+m) = pqy2.
It is easily checked that gcd(x − m, x + m) = 2, hence x + m = 2vr2 and
x − m = 2ws2 for coprime r, s and vw = pq. Subtracting these equations
from each other and dividing through by 2 gives m = vr2 −ws2. Now there
are the following cases:

• v = 1, w = pq: then r2 − Ds2 = m.
• v = p, w = q: then pr2 − qs2 = m, hence (pr)2 − Ds2 = pm.
• v = q, w = p: then Dr2 − (qs)2 = pm, and using the unit ε we find

(qst + Dru)2 − D(qs + rt)2 = pm.
• v = pq, w = 1: here Dr2 − s2 = m, and using ε we get what we want.

Primitivity in all cases is easily checked.

Lemma 2. The equation X2 − DY 2 = pa2 does not have a solution.

Proof. Dividing through by p shows that there are integers r, s with

pr2 − qs2 = a2.(2)

This implies (−1/p)4(q/p)4(s/p) = (a/p). Now (q/p)4 = +1 and (a/p) = −1
by assumption; next (−1/p)4 = (2/p). Thus we find (2/p)(s/p) = −1.

Now write s = 2ℓv for some odd integer v; since s must be even, we have
ℓ ≥ 1. Then quadratic reciprocity and (2) show that (v/p) = (p/v) = 1,
hence (s/p) = (2/p)ℓ. If ℓ = 1, then −1 = (2/p)(s/p) = (2/p)2 = +1, a
contradiction. Thus ℓ ≥ 2, hence p ≡ 1 mod 8 by (2), so we get the same
contradiction −1 = (2/p)(s/p) = +1.
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This paper was inspired by a similar theorem for D = 2p (see [1], [2]).
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