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Broken diamonds and modular forms
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1. Introduction. In his pioneering book “Combinatory Analysis” [13,
Vol. II, Sect. VIII, pp. 91–170] MacMahon introduced Partition Analysis as
a computational method for solving combinatorial problems in connection
with systems of linear diophantine inequalities and equations. In particular,
he devotes Chapter II of Section IX to the study of plane partitions as a
natural application domain for his method.

In the course of a joint project devoted to Partition Analysis, the authors
have turned MacMahon’s method into an algorithm described in full detail
in [5, 6]. As demonstrated in references [2]–[11], the resulting computer al-
gebra package Omega (1) has been used as a powerful tool for combinatorial
investigation. In particular, in [8] we introduced “partition diamonds” as
new variations of plane partitions. This work inspired various other exten-
sions; see, for instance, [12] and [10]. Also the present paper can be viewed
as a generalization of [8] but being completely different from [12] and [10].
The graphs considered below are made up of chains of elongated partition
diamonds, and the related generating functions are infinite products. The
culmination of our study leads to an infinite family of modular forms. These,
in turn, lead to interesting arithmetic theorems and conjectures for the re-
lated partition functions.

The “most simple case” of classical plane partitions, treated by MacMa-
hon in [13, Vol. II, p. 183], is the situation where the non-negative integer
parts ai of the partitions are placed at the corners of a square such that the
following order relations are satisfied:

(1.1) a1 ≥ a2, a1 ≥ a3, a2 ≥ a4, a3 ≥ a4.
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It will be convenient to use arrows as an alternative description for ≥ re-
lations; for instance, Fig. 1 represents the relations (1.1). Here and through-
out the following it will be understood that an arrow pointing from ai to aj

is interpreted as ai ≥ aj .
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Fig. 1. The inequalities (1.1)

By using Partition Analysis MacMahon derives that

ϕ :=
∑

xa1
1 xa2

2 xa3
3 xa4

4(1.2)

=
1 − x2

1x2x3

(1 − x1)(1 − x1x2)(1 − x1x3)(1 − x1x2x3)(1 − x1x2x3x4)
,

where the sum is taken over all non-negative integers ai satisfying (1.1).
Furthermore, he observes that if x1 = x2 = x3 = x4 = q, the resulting
generating function is

1

(1 − q)(1 − q2)2(1 − q3)
.

In order to see how Partition Analysis works on (1.2) we need to recall the
key ingredient of MacMahon’s method, the Omega operator Ω≥.

Definition 1. The operator Ω≥ is given by

Ω≥

∞
∑

s1=−∞

· · ·
∞

∑

sr=−∞

As1,...,srλ
s1
1 · · ·λsr

r :=
∞

∑

s1=0

· · ·
∞

∑

sr=0

As1,...,sr ,

where the domain of the As1,...,sr is the field of rational functions over C

in several complex variables and the λi are restricted to a neighborhood of
the circle |λi| = 1. In addition, the As1,...,sr are required to be such that
any of the series involved is absolutely convergent within the domain of the
definition of As1,...,sr .

To avoid confusion we will always have Ω≥ operate on variables denoted
by letters in the middle of the Greek alphabet (e.g. λ, µ, ν). The parameters
unaffected by Ω≥ will be denoted by letters from the Latin alphabet.

We emphasize that it is essential to treat everything analytically rather
than formally because the method relies on unique Laurent series represen-
tations of rational functions.
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Another fundamental aspect of Partition Analysis is the use of elimi-
nation rules which describe the action of the Omega operator on certain
base cases. MacMahon begins the discussion of his method by presenting a
catalog [13, Vol. II, pp. 102–103] of twelve fundamental evaluations. Sub-
sequently he extends this table by new rules whenever he is forced to do
so. Once found, most of these fundamental rules are easy to prove. This
is illustrated by the following examples which are taken from MacMahon’s
list.

Proposition 1. For each integer s ≥ 1,

(1.3) Ω≥

1

(1 − λA)(1 − B/λs)
=

1

(1 − A)(1 − AsB)
;

(1.4) Ω≥

1

(1−λA)(1−λB)(1−C/λ)
=

1 − ABC

(1−A)(1−B)(1−AC)(1−BC)
.

Proof. We prove (1.3); the proof of (1.4) is analogous and is left to the
reader. By geometric series expansion the left-hand side equals

Ω≥

∑

i,j≥0

λi−sjAiBj = Ω≥

∑

j,k≥0

λkAsj+kBj ,

where the summation parameter i has been replaced by sj +k. But now Ω≥

sets λ to 1, which completes the proof.

Now we are ready for deriving the closed form expression for ϕ with
Partition Analysis.

Proof of (1.2). First, in order to get rid of the diophantine constraints,
one rewrites the sum expression in (1.2) into what MacMahon called the
“crude form” of the generating function,

ϕ = Ω≥

∑

a1,a2,a3,a4≥0

λa1−a2
1 λa1−a3

2 λa2−a4
3 λa3−a4

4 xa1
1 xa2

2 xa3
3 xa4

4

= Ω≥

1

(1 − λ1λ2x1)(1 − λ3x2/λ1)(1 − λ4x3/λ2)(1 − x4/(λ3λ4))
.

Next by rule (1.3) we eliminate successively λ1, λ3, and λ4,

ϕ = Ω≥

1

(1 − λ2x1)(1 − λ2λ3x1x2)(1 − λ4x3/λ2)(1 − x4/(λ3λ4))

= Ω≥

1

(1 − λ2x1)(1 − λ2x1x2)(1 − λ4x3/λ2)(1 − λ2x1x2x4/λ4)

= Ω≥

1

(1 − λ2x1)(1 − λ2x1x2)(1 − x3/λ2)(1 − x1x2x3x4)
.

Finally, applying rule (1.4) eliminates λ2 and completes the proof of (1.2).
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Instead of glueing squares together as in the case of standard plane par-
titions, in [8] we considered configurations shown in Fig. 2. In the present
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Fig. 2. A plane partition diamond of length n

paper we shall study the natural generalization depicted in Fig. 4 where we
use k-elongated diamonds, depicted in Fig. 3, instead of squares as building
blocks of the chain.
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Fig. 3. A k-elongated partition diamond of length 1
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Fig. 4. A k-elongated partition diamond of length n

Definition 2. For n, k ≥ 1 define

Hn,k := {(a1, . . . , a(2k+1)n+1) ∈ N
(2k+1)n+1 :

the ai satisfy the order relations in Fig. 4},

hn,k := hn,k(x1, . . . , x(2k+1)n+1) :=
∑

(a1,...,a(2k+1)n+1)∈Hn,k

xa1
1 · · ·x

a(2k+1)n+1

(2k+1)n+1,

hn,k(q) := hn,k(q, . . . , q).
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In Section 2 we shall derive a closed form, Theorem 6, for the full gen-
erating function hn,k. As a corollary, we will directly deduce

Theorem 1. For n, k ≥ 1,

hn,k(q) =

∏n−1
j=0 (1 + q(2k+1)j+2)(1 + q(2k+1)j+4) · · · (1 + q(2k+1)j+2k)

∏(2k+1)n+1
j=1 (1 − qj)

.

In Section 3, we shall prove a general theorem about partitions related
to directed graphs from which a source is deleted. In Figures 2, 3 and 4, a1

is a unique source.

Definition 3. For n, k ≥ 1 define

H∗
n,k := {(a2, . . . , a(2k+1)n+1) ∈ N

(2k+1)n :

the ai satisfy the order relations in Fig. 4

where the vertex labeled a1 has been deleted},

h∗
n,k := h∗

n,k(x2, . . . , x(2k+1)n+1) :=
∑

(a2,...,a(2k+1)n+1)∈H∗
n,k

xa2
2 · · ·x

a(2k+1)n+1

(2k+1)n+1,

h∗
n,k(q) := h∗

n,k(q, . . . , q).

In Section 4 we shall derive (Theorem 8) a closed form for the full gen-
erating function h∗

n,k, and from this we shall prove

Theorem 2. For n, k ≥ 1,

h∗
n,k(q) =

∏n−1
j=0 (1 + q(2k+1)j+1)(1 + q(2k+1)j+3) · · · (1 + q(2k+1)j+2k−1)

∏(2k+1)n
j=1 (1 − qj)

.

This then suggests the broken k-diamond in Fig. 5; it consists of two
separated k-elongated partition diamonds of length n where in one of them
the source is deleted.
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Fig. 5. A broken k-diamond of length 2n
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Definition 4. For n, k ≥ 1 define

H♦
n,k := {(b2, . . . , b(2k+1)n+1, a1, . . . , a(2k+1)n+1) ∈ N

(4k+2)n+1 :

the ai and bi satisfy all the order relations in Fig. 5},

h♦
n,k := h♦

n,k(x2, . . . , x(2k+1)n+1; y1, . . . , y(2k+1)n+1)

:=
∑

(b2,...,b(2k+1)n+1,a1,...,a(2k+1)n+1)∈H♦
n,k

xb2
2 · · ·x

b(2k+1)n+1

(2k+1)n+1
ya1
1 · · · y

a(2k+1)n+1

(2k+1)n+1
,

h♦
n,k(q) := h♦

n,k(q, . . . , q).

Now it is immediate from the fact that Fig. 5 is made up of two discon-
nected directed graphs that

h♦
n,k = hn,kh

∗
n,k.

Owing to Theorems 1 and 2 this immediately implies

Theorem 3. For k ≥ 1,

h♦
∞,k(q) =

∞
∏

j=1

1 + qj

(1 − qj)2(1 + q(2k+1)j)
=

q(k+1)/12η(2τ)η((2k + 1)τ)

η(τ)3η((4k + 2)τ)
,

where q = e2πiτ , and η(τ) := q1/24
∏∞

n=1(1 − qn) is Dedekind’s η-function.

Definition 5. For n ≥ 0 and k ≥ 1 let ∆k(n) denote the total number
of broken k-diamond partitions of n, i.e.,

h♦
∞,k(q) =

∞
∑

n=0

∆k(n)qn.

In Section 5 we shall prove the following two theorems.

Theorem 4. For n, k ≥ 1,

∆k(n) + 2
∞
∑

j=1

(−1)j∆k(n − j2)

is equal to the number of ordinary partitions of n into parts not congruent

to 2k + 1 modulo 4k + 2.

Theorem 5. For n ≥ 0,

∆1(2n + 1) ≡ 0 (mod3).

The following observations about congruences suggest strongly that there
are undoubtedly a myriad of partition congruences for ∆k(n). This list is
only to indicate the tip of the iceberg.

Conjecture 1. For n ≥ 0,

∆2(10n + 2) ≡ 0 (mod2).
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Conjecture 2. For n ≥ 0,

∆2(25n + 14) ≡ 0 (mod5).

Conjecture 3. For n ≥ 0, if 3 does not divide n then

∆2(625n + 314) ≡ 0 (mod52).

2. A closed form for hn,k. In this section we shall prove the following
theorem which provides a representation of the generating function hn,k as
a product. Throughout we shall use the convention

(2.1) X0 := 1, Xm := x1 · · ·xm (m ≥ 1).

Theorem 6. For n, k ≥ 1,

(2.2) hn,k(x1, . . . , x(2k+1)n+1)

=

(2k+1)n+1
∏

j=1

1

1 − Xj

n−1
∏

i=0

k
∏

l=1

1 − X(2k+1)i+2l−1X(2k+1)i+2l+1

1 − X(2k+1)i+2l+1/x(2k+1)i+2l
.

The proof of Theorem 6 requires some background preparation. Consider
the k-elongated partition diamond of length n = 1 in Figure 3. Similarly to
the proof of (1.2), the inequalities represented by the arrows can be coded
into the form

Λ(λ1, . . . , λ4k) := λa1−a2
1 λa1−a3

2 λa2−a4
3 λa2−a5

4 λa3−a4
5 λa3−a5

6 × · · ·

× λ
a2k−2−a2k

4k−5 λ
a2k−2−a2k+1

4k−4 λ
a2k−1−a2k

4k−3 λ
a2k−1−a2k+1

4k−2

× λ
a2k−a2k+2

4k−1 λ
a2k+1−a2k+2

4k .

We shall use this notation subsequently in our treatment of the case n = 1
of Theorem 6; see Lemma 2.2 and its proof.

The key to our Partition Analysis proof of Theorem 6 is the following
elimination rule.

Lemma 2.1.

(2.3) Ω≥

1 − ABλ1λ2

(1 − Aλ1)(1 − Bλ2)(1 − Cλ1λ2)(1 − Dλ1λ2)(1 − E/(λ1λ2))

=
(1 − AB)(1 − CDE)

(1 − A)(1 − B)(1 − C)(1 − D)(1 − CE)(1 − DE)
.

We remark that (2.3) may be proved automatically using the Omega

package. A direct proof is also easy to produce. First prove the case D = 0
of (2.3) by successively applying rule (1.4) and the similar rule [6, eq. (2.2)]

Ω≥

λ

(1 − Aλ)(1 − Bλ)(1 − C/λ)
=

1 + C − AC − BC

(1 − A)(1 − B)(1 − AC)(1 − BC)
.
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Lemma 2.1 then follows from the case D = 0 of (2.3) after rewriting the
left-hand side of (2.3) by inserting the partial fraction decomposition

1

(1 − Cλ1λ2)(1 − Dλ1λ2)
=

C

(C − D)(1 − Cλ1λ2)
−

D

(C − D)(1 − Dλ1λ2)
.

Our proof of Theorem 6 will be by mathematical induction on n. We
state the initial n = 1 case as a separate lemma.

Lemma 2.2. For k ≥ 1,

h1,k(x1, . . . , x2k+2) =
2k+2
∏

j=1

1

1 − Xj

k
∏

l=1

1 − X2l−1X2l+1

1 − X2l+1/x2l
.

Proof. We now proceed by induction on k. The case k = 1 is identity
(1.2). To pass from step k to step k + 1, we note that

h1,k+1(x1, . . . , x2k+4)

= Ω≥

∑

ai≥0

xa1
1 · · ·xak

2kx
a2k+1

2k+1 x
a2k+2

2k+2 x
a2k+3

2k+3 x
a2k+4

2k+4

× Λ(λ1, . . . , λ4k)λ
a2k−a2k+3

4k+1 λ
a2k+1−a2k+3

4k+2 λ
a2k+2−a2k+4

4k+3 λ
a2k+3−a2k+4

4k+4

= Ω≥

∑

a1,...,a2k+2≥0

xa1
1 · · ·x

a2k−1

2k−1 (x2kλ4k+1)
a2k(x2k+1λ4k+2)

a2k+1

× (x2k+2λ4k+3)
a2k+2Λ(λ1, . . . , λ4k)

×
∑

a2k+3,a2k+4≥0

(

x2k+3
λ4k+4

λ4k+1λ4k+2

)a2k+3
(

x2k+4

λ4k+3λ4k+4

)a2k+4

= Ω≥

h1,k(x1, . . . , x2k−1, x2kµ1, x2k+1µ2, x2k+2µ3)

(1 − x2k+3µ4/(µ1µ2))(1 − x2k+4/(µ3µ4))
,

where for brevity we have written µi instead of λ4k+i in the last line. We
now apply the induction hypothesis and obtain

h1,k+1(x1, . . . , x2k+4)

=
2k−1
∏

j=1

1

1 − Xj

k−1
∏

l=1

1 − X2l−1X2l+1

1 − X2l+1/x2l

× Ω≥

1

(1 − X2kµ1)(1 − X2k+1µ1µ2)(1 − X2k+2µ1µ2µ3)

×
1 − X2k−1X2k+1µ1µ2

1 − X2k+1µ2/x2k
·

1
(

1 − x2k+3
µ4

µ1µ2

)

(1 − x2k+4/(µ3µ4))
.

Eliminating µ3 and µ4 by rule (1.3) with s = 1, the Ω≥ portion of the
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above expression reduces to

1

1 − X2k+4
Ω≥

1 − X2k−1X2k+1µ1µ2

(1 − X2kµ1)(1 − X2k+1µ2/x2k)

×
1

(1 − X2k+1µ1µ2)(1 − X2k+2µ1µ2)(1 − x2k+3/(µ1µ2))

=
2k+4
∏

j=2k

1

1 − Xj
·
(1 − X2k−1X2k+1)(1 − X2k+1X2k+3)

(1 − X2k+1/x2k)(1 − X2k+3/x2k+2)
,

where the last line follows by Lemma 2.1. This then completes the proof of
Lemma 2.2 by induction.

Proof of Theorem 6. We proceed by induction on n. The case n = 1
is Lemma 2.2. For the induction step we proceed similarly to the proof of
Lemma 2.2. Namely,

hn+1,k(x1, . . . , x(2k+1)n+1, x(2k+1)n+2, . . . , x(2k+1)n+2k+2)

= Ω≥

∑

ai≥0

xa1
1 · · ·x

a(2k+1)n+1

(2k+1)n+1x
a(2k+1)n+2

(2k+1)n+2 · · ·x
a(2k+1)n+2k+2

(2k+1)n+2k+2

× λa1−a2
1 · · ·λ

a(2k+1)n−a(2k+1)n+1

4kn λ
a(2k+1)n+1−a(2k+1)n+2

4kn+1

× λ
a(2k+1)n+1−a(2k+1)n+3

4kn+2 · · ·λ
a(2k+1)n+2k+1−a(2k+1)n+2k+2

4k(n+1)

= Ω≥ hn,k(x1, . . . , x(2k+1)n, x(2k+1)n+1µ1µ2)

×
∑

b2,...,b2k+2≥0

xb2
(2k+1)n+2 · · ·x

b2k+2

(2k+1)n+2k+2µ
0−b2
1 µ0−b3

2 · · ·µ
b2k+1−b2k+2

4k ,

where again for brevity we have written bi for a(2k+1)n+i, and µi for λ4kn+i.
We now apply the induction hypothesis and obtain

hn+1,k(x1, . . . , x(2k+1)(n+1)+1)

=

(2k+1)n
∏

j=1

1

1 − Xj

n−1
∏

i=0

k
∏

l=1

1 − X(2k+1)i+2l−1X(2k+1)i+2l+1

1 − X(2k+1)i+2l+1/x(2k+1)i+2l

× Ω≥

1

1 − X(2k+1)n+1µ1µ2

∑

b2,...,b2k+2≥0

xb2
(2k+1)n+2 · · ·x

b2k+2

(2k+1)n+2k+2

× µ0−b2
1 µ0−b3

2 · · ·µ
b2k+1−b2k+2

4k .

Noting by the geometric series that

1

1 − X(2k+1)n+1µ1µ2
=

∑

b1≥0

Xb1
(2k+1)n+1µ

b1
1 µb2

2 ,
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we see that the above Ω≥ expression becomes

h1,k(X(2k+1)n+1, x(2k+1)n+2, . . . , x(2k+1)n+2k+2),

which by Lemma 2.2 equals

(2k+1)(n+1)+1
∏

j=(2k+1)n+1

1

1 − Xj

k
∏

l=1

1 − X(2k+1)n+2l−1X(2k+1)n+2l+1

1 − X(2k+1)n+2l+1/x(2k+1)n+2l
.

This completes the induction step and thus the proof of Theorem 6.

Proof of Theorem 1. In Theorem 6 replace each xi with q.

3. Source deletion. We propose here to prove a general theorem that
we shall subsequently apply to the k-diamonds considered in Section 2.

We now consider a general directed graph D with N vertices v1, . . . , vN .
As in the special cases considered in Section 1, we associate partitions by
considering as parts non-negative integers ai placed at each vertex vi, with
the understanding that the direction arrows between vertices are interpreted
as “≥” between the related summands.

Define the associated generating function by

P(D) =
∑

xa1
1 · · ·xaN

N

where the sum is over all partitions associated with D.

Theorem 7. Suppose v1 is a source in D (i.e., a vertex with no edges

directed into v1). Let D− be the directed graph obtained by deleting v1 from D.

Then

P(D−) = lim
x1→1−

(1 − x1)P(D).

Proof.

P(D) =
∞
∑

a1=0

xa1
1

∑∗
xa2

2 · · ·xaN

N

where “ ∗ ” denotes that we are summing over all partitions associated with
D− which have the added restriction that each ai associated with a vertex
in D dominated by a1 is, in fact, ≤ a1. Hence by Abel’s Lemma [1, p. 190,
Th. 14–7]

lim
x1→1−

(1 − x1)P(D) = lim
a1→∞

∑∗
xa2

2 · · ·xaN

N = P(D−),

because any partition associated to D− will be counted once a1 is large
enough.
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4. k-diamonds with deleted source. Having established Theorem 7,
the case of k-diamonds with deleted source is immediate from Theorem 6.

Theorem 8. Now X1 := 1 and Xn := x2 . . . xn. For n ≥ 2 and k ≥ 1,

h∗
n,k =

(2k+1)n+1
∏

j=2

1

1 − Xj

n−1
∏

i=0

k
∏

l=1

1 − X(2k+1)i+(2l−1)X(2k+1)i+(2l+1)

1 − X(2k+1)i+(2l+1)/x(2k+1)i+2l
.

Proof. By Theorem 7,

h∗
n,k = lim

x1→1−
(1 − x1)hn,k,

and the desired result follows immediately once we observe that the denom-
inator factor 1 − X1 in hn,k is canceled by 1 − x1.

Proof of Theorem 2. Theorem 2 is now an immediate consequence of
Theorem 8 because in the above each Xj → qj−1.

5. Broken k-diamonds. As we noted in the introduction, the first line
of Theorem 3 follows immediately by multiplying together the generating
functions in Theorems 1 and 2 and letting n → ∞. The exact formulations
of the infinite products follow by algebraic simplification.

Proof of Theorem 4. We begin with the classic theta series identity
[1, p. 178, Ex. 1]

∞
∑

n=−∞

(−1)nqn2
=

(q; q)∞
(−q; q)∞

,

where

(A; q)∞ =
∞
∏

j=0

(1 − Aqj).

By Theorem 3,

(

∞
∑

n=0

∆k(n)qn
)(

∞
∑

n=−∞

(−1)nqn2
)

=
(−q; q)∞

(q; q)2∞(−q2k+1; q2k+1)∞
·

(q; q)∞
(−q; q)∞

=
1

(q)∞(−q2k+1; q2k+1)∞

=
(q2k+1; q4k+2)∞

(q)∞
(by [1, pp. 164–165])

=
∞
∏

n=1
n 6≡2k+1 (mod4k+2)

1

1 − qn
.
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The first entry in the above sequence of equations clearly has

∆k(n) + 2
∞
∑

j=1

∆k(n − j2)(−1)j

as the coefficient of qn, and the final entry is clearly the generating function
for ordinary partitions in which no part is congruent to 2k+1 modulo 4k+2.
Coefficient comparison concludes the proof of Theorem 4.

Proof of Theorem 5.

∞
∑

n=0

∆1(n)qn =
(−q; q)∞

(q; q)2∞(−q3; q3)∞
=

(q2; q2)∞
(q; q)3∞(−q3; q3)∞

≡
(q2; q2)∞

(q3; q3)∞(−q3; q3)∞
(mod3)

(because (1 − X)3 ≡ 1 − X3 (mod3))

=
(q2; q2)∞
(q6; q6)∞

.

The latter expression is clearly an even function of q. This means that the
coefficients of odd powers of q are all zero. Hence for all n ≥ 0,

∆1(2n + 1) ≡ 0 (mod3).

6. Conclusion. The culmination of our study led to an infinite fam-
ily of modular forms. These, in turn, led to interesting arithmetic theorems
and conjectures for the related partition functions. As we said in the in-
troduction, Conjectures 1–3 suggest a true wealth of arithmetic theorems
concerned with ∆k(n).

We conclude with a remark that connects to previous work. Namely,
in [10] we considered plane partitions with diagonals, i.e., the generating
function of partitions into parts ai where the ai satisfy the order relations
depicted in Fig. 6. As stated in [10, Thm. 1] its rational function repre-

c c c c c c c c

c c c c c c c c

������

������

������
a1 a3 a5 a7 a9 a4n−3 a4n−1 a4n+1

a2 a4 a6 a8 a10

. . .

a4n−2 a4n a4n+2

- - - - - -

- - - - - -

? ? ? ? ? ? ? ?* * *

Fig. 6

sentation involves complicated irreducible numerator polynomials of total
degree 2. We want to note that despite the nice structure of the rational
function representation of h∗

n,k in Theorem 4 above, the poset H∗
n,2 can be

viewed as a variation of the poset described by Figure 6 if drawn in an
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equivalent alternative to Figure 4. For instance, for n = 3 the poset H∗
3,2

can be depicted as in Figure 7.

c c c

c c c c c

c c c c c

c c c

������

������

������

a1 a3 a5

a6 a8 a10

a11 a13 a15

a2 a4

a7 a9

a12 a14 a16

- -

- - - -

- - - -

- -

? ? ?

? ? ?

? ? ?

*

*

*

Fig. 7
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