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Uniformizing functions for certain Shimura curves,

in the case D = 6

by

P. Bayer and A. Travesa (Barcelona)

Introduction. Let H6 be the rational quaternion algebra of discrimi-
nant D = 6, which we consider embedded into M(2, R). Let Γ6 ⊆ SL(2, R)
be the group of units of norm 1 in a maximal order O6 ⊆ H6 of discriminant
D = 6. The quotient group Γ 6 = Γ6/{±1} ⊆ PSL(2, R) is a co-compact
Fuchsian group whose action on the upper half-plane H gives rise to a non-
singular complete curve X6 of genus zero. According to Shimura, the curve
X6 has a canonical model defined over Q. Our purpose is to compute a com-
plex uniformizing function t6 of X6 relying on the fundamental domain for
Γ 6 obtained in [1], and to derive from it a canonical model, j6.

The function j6 is an analog of the elliptic modular function j, which is
obtained from the split quaternion algebra M(2, Q), of discriminant D = 1.
However, the functions j and j6 present notable differences. The function
j is automorphic under the modular group PSL(2, Z), which is a triangle
Fuchsian group endowed with parabolic transformations. The function j6 is
automorphic for a quadrilateral Fuchsian group without parabolic transfor-
mations, Γ 6 ⊆ PSL(2, R). The lack of cusps in this case prevents the use of
Fourier series expansions.

The complex uniformizing function we aim to determine satisfies a non-
linear differential equation of the third order, which can be obtained from
the fundamental domain. In principle, it depends on eight parameters. Six of
these parameters can be specified uniquely by prescribing the values of t6 at
three points, but the remaining two need to be determined by other means.
In order to find their value, we simultaneously undertake the uniformization

of several quotients of X6: the curves X
(2)
6 , X

(3)
6 , X

(6)
6 , X+

6 , attached to a
group Γ+

6 /Γ 6 of involutions of X6.
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The Fuchsian groups uniformizing the curves X
(2)
6 , X

(3)
6 , X+

6 are triangle

groups, but the Fuchsian group uniformizing X
(6)
6 is again a quadrilateral

group. The associated differential equations in the triangle case are deter-
mined by particular choices of the uniformizing functions. But from the two

quadrilateral cases, X6 and X
(6)
6 , four accessory parameters remain. Two of

them will be determined from algebraic equations of the coverings, which
we compute beforehand. Formal integration of the differential equations will
provide the other two.

Once the five uniformizing equations are fully determined, we integrate

them to obtain the uniformizing functions t6, t
(2)
6 , t

(3)
6 , t

(6)
6 , t+6 . We expand

these functions as power series in local uniformizing parameters qP attached
to the vertices P of fundamental half domains. Moreover, we make explicit
the local development of t6 at the special complex multiplication points
of X6. Knowledge of the functions qP involves the local isotropy at P , the
exact determination of the integration constants, and the right choice of
local normalizing factors.

In the last part of the paper, we use the values of our functions at the
elliptic points and the special complex multiplication points to derive the
canonical models of all the curves involved.

We are indebted to the anonymous referee, whose valuable comments
have enabled us to improve the final version of the manuscript.

1. The Fuchsian group Γ 6 and the Shimura curve X6. Let H6 be
the rational quaternion algebra with basis {1, I, J, K} and defined by I2 = 3,
J2 = −1, IJ = −JI = K. Its discriminant D, given by the product of the
places v where H6 ⊗ Qv is a division algebra, is equal to 6. The algebra H6

is the rational non-split (D 6= 1) quaternion algebra of lowest discriminant
which is unramified at ∞. In particular, it can be embedded into M(2, R).

Throughout the paper we fix the embedding Φ : H6 → M(2, R) given by

x + yI + zJ + tK 7→
[

x + y
√

3 z + t
√

3

−(z − t
√

3) x − y
√

3

]

.

The reduced trace and the reduced norm of a quaternion are given by tr(x+
yI + zJ + tK) = 2x and n(x + yI + zJ + tK) = x2 − 3y2 + z2 − 3t2. They
agree with the trace and the determinant of the matrix Φ(x+ yI+ zJ+ tK).

All maximal orders in H6 are conjugate, and we fix the representative
in this conjugacy class to be O6 := Z[1, I, J, (1 + I + J + K)/2]. Let (O6)

∗

1 =
{γ ∈ O6 : n(γ) = 1} be the group of its units of reduced norm equal to one.
The group (O6)

∗

1 can be identified with its image Γ6 ⊆ SL(2, R) under Φ.
This group admits the following description, given in [1]:
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Γ6 =

{

γ =
1

2

[

α β

−β′ α′

]

: α, β ∈ Z[
√

3], det γ = 1, α ≡ β ≡ α
√

3 (mod2)

}

.

Here α′ denotes the non-trivial Galois conjugate of an element α ∈ Q(
√

3).
The projection Γ 6 := Γ6/{±1} in PSL(2, R) is a Fuchsian group which does
not have parabolic transformations.

Let H = {z ∈ C : Im z > 0} be the complex upper half-plane. The group
PSL(2, R) = GL+(2, R)/R∗ acts freely on H by homographic transforma-
tions γ(z) = (az + b)/(cz + d), defined by matrices γ =

[

a b
c d

]

∈ GL+(2, R).

The action of Γ 6 on H yields a compact Riemann surface Γ 6\H or, equiv-
alently, a projective non-singular curve X6, which is of genus zero. Note that
the explicit identification of Γ 6\H with P1(C) is by no means obvious, since
it implies the construction of coordinate functions automorphic under Γ 6.
By a theorem due to Shimura, we know that the curve X6 has a model
defined over Q without rational points.

A fundamental domain for the action of Γ 6 in H, together with some
distinguished complex multiplication points in it, called special complex
multiplication points (SCM), was computed in [1]. We summarize some of
its properties.

Theorem 1.1. Consider the hyperbolic hexagon [P1, P2, . . . , P6] with ver-

tices Pi given in Table 1. For each i, the isotropy group at Pi under Γ 6 is

generated by the class of the matrix ηi in Table 2. Under the identifications

(a) η2[P3, P2] = [P1, P2], (b) η4[P3, P4] = [P5, P4], (c) η6[P5, P6] = [P1, P6],

the hexagon yields a fundamental domain for the action of Γ 6 in H (see
Figure 1). The vertices P1 ≡ P3 ≡ P5 (modΓ 6) and P6 are elliptic of

order 2; the remaining vertices P2, P4 are elliptic of order 3. The points P0,
P7 ≡ P8 (modΓ 6) in Table 1 are a full set of representatives of the special

complex multiplication (SCM ) points of the genus zero curve X6.

a

a b

b

c c

P0
P1

P2
P3

P4

P5

P6

P7P8

Fig. 1. Fundamental domain for X6
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Table 1. Vertices of a fundamental domain for X6 and SCM points

P1 (−
√

3 + i)/2 P2 (−1 + i)/(1 +
√

3) P3 (2 −
√

3)i

P4 (1 + i)/(1 +
√

3) P5 (
√

3 + i)/2 P6 i

P7 (1 +
√

2 i)/
√

3 P8 (−1 +
√

2 i)/
√

3 P0 (
√

6 −
√

2)i/2

Table 2. Matrices representing generators for the isotropy groups at the vertices of the
hexagon

η1

[√
3 2

−2 −
√

3

]

η2
1

2

[

1 +
√

3 3 −
√

3

−3 −
√

3 1 −
√

3

]

η3

[

0 −2 +
√

3

2 +
√

3 0

]

η4
1

2

[

1 +
√

3 −3 +
√

3

3 +
√

3 1 −
√

3

]

η5

[√
3 −2

2 −
√

3

]

η6

[

0 1

−1 0

]

2. The Fuchsian group Γ+
6 and quotients of X6. Let N(O6) be the

normalizer of O6 in H6. The elements of N(O6) of positive reduced norm
define a subgroup whose image in GL+(2, R) will be denoted by Γ+

6 . The

group Γ6 is contained in Γ+
6 as a normal subgroup and the quotient Γ+

6 /Γ 6

is isomorphic to (Z/2Z)2. Its classes are represented by elements wd ∈ O6

of norm d dividing D = 6. They give rise to involutions of the curve X6,
denoted ωd (cf. [8]). We shall consider, together with the Shimura curve

X6, its quotients X
(d)
6 := X6/〈ωd〉 and X+

6 := X6/〈{ωd : d | 6}〉. All these
Shimura curves fit in the following diagram of Galois covers of degree two:

X6

{{xx
xx

x

�� ##
FF

FF
F

X
(2)
6

""
EE

EE
E

X
(3)
6

��

X
(6)
6

||yy
yy

y

X+
6

In what follows, we shall compute fundamental domains for the curves so
defined.

First, consider the elements w2 := 1 + J, w3 := (−3 − I − 3J + K)/2,
w′

3 := (3 + I − 3J + K)/2, and w6 := w2w3 = −3J + K in O6. Their
classes in Γ+

6 /Γ 6 define involutions ωd, ω
′

d of X6. Observe that ω′

3 = ω3,
because w′

3 = η6w3 and η6 ∈ Γ6; and ω6η
−1
2 = ω6, because η2 ∈ Γ6. Then

we have the following polygon identifications: ω2[P1, P2, P6] = [P3, P4, P6],
ω2[P2, P3, P6] = [P4, P5, P6], ω3[P2, P3, P6] = [P2, P6, P1], ω′

3[P3, P4, P6] =
[P6, P4, P5], ω6[P2, P3, P6] = [P4, P6, P3], and ω6η

−1
2 [P1, P2, P6] = [P6, P4, P5].
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Proposition 2.1. Figures 2 and 3 show fundamental domains for the

genus zero curves X
(2)
6 , X

(3)
6 , and X

(6)
6 . The identifications of the sides are

given as follows:

X
(2)
6 X

(3)
6 X

(6)
6

(a) η−1
4 ω2[P2, P3] = [P4, P3] ω3[P2, P3] = [P2, P6] ω6[P0, P3] = [P0, P6]

(b) ω2[P2, P6] = [P4, P6] ω′

3[P4, P3] = [P4, P6] η4ω6η6[P6, P7] = [P5, P7]

(c) ∗ ∗ η4[P3, P4] = [P5, P4]

a a

b b

P0

P2

P3

P4

P6

a

a

b

b

P0

P2

P3

P4

P6

Fig. 2. Fundamental domains for Γ
(2)
6 and Γ

(3)
6

a

a

b

b

c

cP0

P3

P4

P5

P6

P7

a a

b b

P0

P2 P4

P6

Fig. 3. Fundamental domains for Γ
(6)
6 and Γ+

6

Now, since the curve X+
6 can be obtained as a quotient of any of the

curves X
(d)
6 , d 6= 1, by any involution ωd′ , d′ 6= d, 1, we may use the identi-

fication ω6[P2, P3, P4] = [P4, P6, P2] to obtain a fundamental domain for the
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curve X+
6 from the fundamental domain for X

(2)
6 or, alternatively, for X

(3)
6 .

We state the result in the next proposition.

Proposition 2.2. Figure 3 shows a fundamental domain for the genus

zero curve X+
6 . The identifications of the sides are as follows:

(a) ω6[P2, P0] = [P4, P0], (b) ω6ω
−1
3 [P2, P6] = [P4, P6].

3. Fundamental half domains. The fundamental domains we have
obtained up to now show particular symmetries. We will take advantage of
this fact to compute the uniformizing functions we are looking for, that is,
functions t such that C(X(Γ )) ≃ C(t). For example, in Figure 1, besides the
obvious reflection in the imaginary axis, the two closed hyperbolic segments
joining P2 with P6 and P6 with P4 are a unique symmetry axis for X6, de-
noted (P2, P6, P4), the symmetry being the involution ω2 composed with the
reflection in the imaginary axis. Similarly, (P8, P2, P4, P7) is a symmetry axis
for X6, the symmetry being the involution ω6 composed with the reflection
in the imaginary axis (observe that ω6 = η4ω6 = η2ω6).

But not all the symmetries above are suitable for our purposes. In fact,
we require them to cut out half domains containing all the vertices of a
fundamental domain exactly once. These half domains will be called fun-

damental. Thus the reflection in the imaginary axis is not suitable, be-
cause it cuts out half domains containing twice the vertex P1 ≡ P3 ≡ P5

(modΓ 6), while one of the vertices P2 or P4 is missing. Similarly, the sym-
metry with axis (P8, P2, P0, P4, P7) is not suitable; for example, it identifies
the vertices P1 ≡ P3 ≡ P5 with P6 but P7 ≡ P8 appears twice in each
half domain. A convenient symmetry is the one with axis (P2, P6, P4), since
it cuts out the quadrilateral [P2, P3, P4, P6] as a fundamental half domain
for X6.

Proposition 3.1. Table 3 lists axes of symmetries and polygons defining

fundamental half domains for the curves X6, X
(2)
6 , X

(3)
6 , X

(6)
6 , and X+

6 . The

fundamental half domains are cut out of the fundamental domains in 1.1,
2.1 and 2.2.

Table 3. Fundamental half domains

Curve Axis of symmetry Polygons

X6 (P2, P6, P4) [P2, P3, P4, P6]

X
(2)
6 (P3, P6) [P3, P4, P6]

X
(3)
6 (P2, P4) [P2, P4, P6]

X
(6)
6 (P0, P4, P7) [P0, P4, P7, P6]

X+
6 (P0, P6) [P0, P4, P6]
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At this point, we compute the angles at the different vertices of the
polygons defining the corresponding fundamental half domains. Since the
angle at any vertex in a fundamental half domain equals half the sum of the
angles at the homologous vertices of the complete fundamental domain, we
obtain the results displayed in Table 4.

Table 4. Angles at the vertices of fundamental half domains

P0 P2 P3 P4 P6 P7

X6 ∗ π/3 π/2 π/3 π/2 ∗

X
(2)
6 ∗ ∗ π/4 π/3 π/4 ∗

X
(3)
6 π π/6 ∗ π/6 π/2 ∗

X
(6)
6 π/2 ∗ ∗ π/3 π/2 π/2

X+
6 π/2 ∗ ∗ π/6 π/4 ∗

4. Equations for the covers. The next step in our computation is to
determine the equations of the covers. We shall begin by controlling their
ramification. The ramification points can be easily seen from the pictures of
the fundamental domains, and we have the following result.

Proposition 4.1. Table 6 shows the ramification points of all the covers

of degree two that we have. The different ways in which they are identified

depend on the curve, and the identifications are shown in Table 5.

Table 5. Identification of points

X6 P0 P1 ≡ P3 ≡ P5 P2 P4 P6 P7 ≡ P8

X
(2)
6 P0 ≡ P7 P3 P2 ≡ P4 P2 ≡ P4 P6 P0 ≡ P7

X
(3)
6 P0 ≡ P7 P3 ≡ P6 P2 P4 P3 ≡ P6 P0 ≡ P7

X
(6)
6 P0 P3 ≡ P6 P2 ≡ P4 P2 ≡ P4 P3 ≡ P6 P7

X+
6 P0 ≡ P7 P3 ≡ P6 P2 ≡ P4 P2 ≡ P4 P3 ≡ P6 P0 ≡ P7

Table 6. All ramification and some splitting points of the covers

Cover P0 P2 P3 P4 P6 P7

X6 → X
(2)
6 P0P7 ∗ P 2

3 P2P4 P 2
6 ∗

X6 → X
(3)
6 P0P7 P 2

2 ∗ P 2
4 P3P6 ∗

X6 → X
(6)
6 P 2

0 ∗ ∗ P2P4 P3P6 P 2
7

X
(2)
6 → X+

6 P 2
0 ∗ ∗ P 2

4 P3P6 ∗

X
(3)
6 → X+

6 P 2
0 ∗ ∗ P2P4 P 2

6 ∗

X
(6)
6 → X+

6 P0P7 ∗ ∗ P 2
4 P 2

6 ∗
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Since the curves we are dealing with are all of genus zero, their function
field can be generated by a single automorphic function in each case. Due
to the fact that the group of automorphisms of P1(C) is isomorphic to
PSL(2, C), we may isolate a generator by requiring that it assumes three
given different values at three given different points.

Proposition 4.2. For each curve X6, X
(2)
6 , X

(3)
6 , X

(6)
6 , X+

6 , there exists

a uniformizing function, uniquely determined by three values at three vertices

of the fundamental half domains in Table 3.

Proof. Since our curves are of genus zero and the Fuchsian groups at-
tached to them admit fundamental half domains, the Riemann mapping the-
orem and the Schwarz reflection principle provide the existence of uniformiz-
ing functions (cf. [9]). Since PSL(2, C) is the automorphism group of P1(C),
the uniformizing functions are determined by their values at three points.

Table 7. Values of the uniformizing functions at the vertices

t P0 P2 P3 P4 P6 P7

t6 ∗ a 0 1 ∞ ∗

t
(2)
6 ∗ ∗ 0 1 ∞ ∗

t
(3)
6 ∗ 0 ∗ 1 ∞ ∗

t
(6)
6 0 ∗ ∗ 1 ∞ b

t+6 0 ∗ ∗ 1 ∞ ∗

We choose or name some initial values for the functions we are aiming
at in accordance with Table 7. Then we have the following theorem.

Theorem 4.3. The conditions in Table 7 define uniformizing functions

t6, t
(2)
6 , t

(3)
6 , t

(6)
6 , t+6 which fulfil the following algebraic relations:

(a) 4t+6 t
(2)
6 = (t

(2)
6 + 1)2, (b) t+6 = (2t

(3)
6 − 1)2,

(c) 4t
(2)
6 (2t

(3)
6 − 1)2 = (t

(2)
6 + 1)2, (d) t26 = t

(2)
6 ,

(e) 4t6t
(3)
6 = (t6 + 1)2, (f) t+6 + t

(6)
6 (t

(6)
6 − 2) = 0,

(g) 2t6t
(6)
6 = i(t6 − i)2, (h) 4t26t

+
6 = (t26 + 1)2,

(i) (t
(2)
6 + 1)2 + 4t

(2)
6 t

(6)
6 (t

(6)
6 − 2) = 0, (j) (2t

(3)
6 − 1)2 + t

(6)
6 (t

(6)
6 − 2) = 0.

All these functions take real values on the boundaries of their respective half

domains. Moreover , we have the following particular values:

(k) t
(2)
6 (P0) = −1, (l) t

(3)
6 (P0) = 1/2, (m) b = t

(6)
6 (P7) = 2,

(n) a = t6(P2) = −1, (o) t6(P0) = i, (p) t6(P7) = −i.
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Proof. We write for the moment c := t
(2)
6 (P0) and compute some

divisors of the functions, taking into account the ramification given in
Proposition 4.1:

div(t
(2)
6 − c)

(

1 − c

t
(2)
6

)

= div(t+6 ), div(t
(2)
6 − 1)

(

1 − 1

t
(2)
6

)

= div(t+6 − 1).

Since for genus 0 curves each zero degree divisor determines a function up to
a non-zero constant factor, there exist non-zero constants A, B ∈ C such that

A(t
(2)
6 − c)

(

1 − c

t
(2)
6

)

= t+6 , B(t
(2)
6 − 1)

(

1 − 1

t
(2)
6

)

= t+6 − 1.

Solving the system, we obtain (a) and the value c = −1.

Similarly, considering d := t
(3)
6 (P0) and computing div(t

(3)
6 − d)2 =

div(t+6 ), div(t
(3)
6 −1)t

(3)
6 = div(t+6 −1), we obtain (b) and the value d = 1/2.

(c) is an immediate consequence of (a) and (b). The remaining algebraic
relations are obtained analogously.

The defining conditions of the automorphic triangle functions t
(2)
6 , t

(3)
6 , t+6

uniquely determine the conformal representations of the half domains in
Table 3 in H. Thus, these functions are real on the boundary of their half

domains. The algebraic relations satisfied by the quadrangular functions t
(6)
6

and t6 imply that these functions are real on the boundary of their respective
half domains. In order to decide which of the two values i or −i equals t6(P0),
we note that, since the function t6 respects the orientation, the interior of
the quadrilateral [P2, P3, P4, P6] has to be mapped into H.

5. Uniformizing differential equations. We review the necessary
definitions and facts regarding Schwarzian derivatives, drawn mostly from
[2], [3] and [5].

Definition 5.1. Let f(z) be a non-constant smooth function and let
D(f, z) be the usual derivative. The Schwarzian derivative of f is defined as

Ds(f, z) =
2D(f, z)D3(f, z) − 3D2(f, z)2

D(f, z)2
;

and the automorphic derivative of f is defined as

Da(f, z) =
Ds(f, z)

D(f, z)2
.

Neither the Schwarzian derivative nor the automorphic derivative are
derivations in the usual sense, but these differential operators have some
properties similar to those of the standard derivation. We now state some
of these properties.
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Proposition 5.2.

(a) Let f(z), g(z) be non-constant smooth functions whose composition

g ◦ f is defined. Then the automorphic derivative satisfies the fol-

lowing chain rule:

Da(g ◦ f, z) = Da(g, f(z)) +
Da(f, z)

D(g, f(z))2
.

(b) Suppose that f(z)=w is a smooth function whose inverse function is

PGL(2, C)-multivalued. Then the Schwarzian derivative Ds(f−1, w)
is single valued and Ds(f−1, w) = −Da(f, z), where f−1(w) = z.

(c) For a homographic transformation γ(z) = (az + b)/(cz + d), γ =
[

a b
c d

]

∈GL(2, C), we have Da(γ, z) = 0. In particular , Da(f ◦ γ, z)
= Da(f, γ(z)) for any function f(z).

(d) Conversely , Da(γ, z) = 0 implies that γ(z) = (az + b)/(cz + d) for

some γ =
[

a b
c d

]

∈ M(2, C).

For a Fuchsian group Γ ⊆ PSL(2, R), and a Γ -automorphic function f ,
we deduce the Γ -invariance of Da(f, z).

Corollary 5.3. The automorphic derivative Da(f, z) of a Γ -auto-

morphic function, f(z), is again a Γ -automorphic function. That is to say ,
the following equality holds:

Da(f, γ(z)) = Da(f, z) for any γ ∈ Γ .

The main tool in our approach to the differential treatment of the uni-
formizing functions will be the following theorem.

Theorem 5.4. Let Γ be a Fuchsian group of the first kind such that the

associated curve X(Γ ) is of genus 0. Assume that we know a fundamental

half domain for the action of Γ in H. Suppose that t is a generator of

the field of Γ -automorphic functions such that its values at the vertices of

the fundamental half domain belong to P1(R). Then there exists a rational

function R(t) such that Da(t, z) + R(t) = 0. If αiπ are the internal angles

at the vertices of the fundamental half domain, then

R(t) =
∑ 1 − α2

i

(t − ai)2
+

∑ Bi

t − ai
,

where the Bi are constants and the summation extends over all vertices of

the fundamental half domain where the function t takes finite values ai.

Moreover , if the values of t at all vertices are finite, then

(a)
∑

Bi = 0,

(b)
∑

aiBi +
∑

(1 − α2
i ) = 0,

(c)
∑

a2
i Bi +

∑

ai(1 − α2
i ) = 0.
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But if ∞ is the value of t at a vertex with internal angle απ, then

(a)
∑

Bi = 0,

(b)
∑

aiBi +
∑

(1 − α2
i ) − (1 − α2) = 0.

In general, the above relations between the constants Bi, the angles αi,
and the values ai do not suffice to determine all the constants. In our case,
the relations between all our functions given in Theorem 4.3 fully determine
the constants Bi only for three of the five functions R(t), namely for those

associated to t
(2)
6 , t

(3)
6 , and t+6 . To determine the constants that remain, we

formally integrate the differential equation computing some coefficients of
the expansion in a neighbourhood of the point P6 and compare the solutions
using the equations for the covers we have obtained in Theorem 4.3. When

comparing solutions for t6 and t
(2)
6 , we obtain the value of the constant term

in the differential equation for t6; and when comparing solutions for t
(6)
6 and

t+6 , we obtain the value of the constant term in the differential equation for

t
(6)
6 . This gives the values of the automorphic derivatives.

Theorem 5.5. The functions defined by Table 7 satisfy the differential

equations Da(t, z) + R(t) = 0, where the rational functions R(t) are listed

in Table 8.

Table 8. Automorphic derivatives of the functions

Curve
Function

t

Vertices

Angles
−Da(t, z)

X6 t6
[P2, P3, P4, P6]

[π/3, π/2, π/3, π/2]

27t4 + 74t2 + 27

36t2(t2 − 1)2

X
(2)
6 t

(2)
6

[P3, P4, P6]

[π/4, π/3, π/4]

135t2 − 142t + 135

144t2(t − 1)2

X
(3)
6 t

(3)
6

[P2, P4, P6]

[π/6, π/6, π/2]

27t2 − 27t + 35

36t2(t − 1)2

X
(6)
6 t

(6)
6

[P0, P4, P7, P6]

[π/2, π/3, π/2, π/2]

27t4 − 108t3 + 211t2 − 206t + 108

36t2(t2 − 3t + 2)2

X+
6 t+6

[P0, P4, P6]

[π/2, π/6, π/4]

135t2 − 103t + 108

144t2(t − 1)2

6. Local uniformizing parameters. Our goal is to obtain explicit ex-
pansions of the uniformizing functions around the elliptic points and around
some CM points. The purpose of this section is to make a first choice of local
uniformizing parameters adapted to our functions (see definition below).
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Suppose that P ∈ H is any elliptic point of order e for the Γ -action.
By definition, the isotropy group at P , ΓP , will be generated by a transfor-
mation g ∈ PSL(2, R) of order e > 1. Let G ∈ Γ ⊆ SL(2, R) be a matrix
defining g. Since in all our cases −1 ∈ Γ , we may take the matrix G of order
2e, and since g is an elliptic transformation, the matrix G can be diago-
nalized. Let H ∈ GL(2, C) be such that D := HGH−1 =

[

ζ 0
0 ζ−1

]

, where ζ

is a 2eth primitive root of unity. We denote by h and d the homographic
transformations of P1(C) defined by H and D, respectively. Then

(∗) h(g(z)) = d(h(z)) = ζ2h(z).

By evaluating (∗) at the points z = P and z = P , we obtain

h(P ) = h(g(P )) = ζ2h(P ), h(P ) = h(g(P )) = ζ2h(P ).

Since e > 1, we have ζ2 6= 1, and since h is a bijective mapping of P1(C), we
must have h(P ) = 0 and h(P ) = ∞ (or h(P ) = ∞ and h(P ) = 0). Hence,

h(z) = k
z − P

z − P

(

or h(z) = k
z − P

z − P

)

,

for some constant k ∈ C − {0} to be determined.
Now we can expand any ΓP -automorphic function t around the point P

as a power series T in the variable h(z) = k(z − P )/(z − P ):

t(z) = T (h(z)) =

∞
∑

n=n0

anh(z)n.

We shall have T (h(z)) = t(z) = t(g(z)) = T (h(g(z))) = T (ζ2h(z)). Thus
an = 0 unless n ≡ 0 (mod e).

We extend these considerations to the case e=1 in the following definition.

Definition 6.1. A local parameter at a point P ∈ H for the ΓP -action
is any function

q(z) :=

(

k
z − P

z − P

)e

,

where e = #ΓP is the order of the isotropy group at P and k ∈ C − {0}
is a constant. The local parameter q is said to be adapted to a function
t =

∑

∞

n=m aneq
n if, moreover, are = 1 in the case that t − a0 has a zero of

order er at z = P , or a−re = 1 if t has a pole of order er at z = P .

In order to obtain local parameters adapted to our functions, we review
some classical facts regarding the Schwarzian functions. For this purpose,
let us consider the hypergeometric function defined by the series

F (a, b, c; w) =
∞

∑

n=0

(a)n(b)n

(c)n

wn

n!
, (a)n := a(a+1) · · · (a+n−1) =

Γ (a + n)

Γ (a)
,

which converges for |w| < 1 (cf. [7] and [11]).
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Theorem 6.2. Assume that c 6= 1. The functions F (a, b, c; w) and

w1−cF (a − c + 1, b − c + 1, 2 − c; w) are two linearly independent solutions

of the hypergeometric differential equation

w(1 − w)D2(f, w) + (c − (1 + a + b)w)D(f, w) − abf = 0.

The function

z = s(a, b, c; w) :=
w1−cF (a − c + 1, b − c + 1, 2 − c; w)

F (a, b, c; w)

provides a conformal representation of the upper half w-plane H onto the in-

terior of a triangle [A, B, C] in the z-plane and establishes a homeomorphism

between R∪{∞} and the boundary of the triangle. The vertices A, B, C can

be expressed in terms of Euler’s gamma function as

A = s(a, b, c; 0) = 0,

B = s(a, b, c; 1) =
Γ (c − a)Γ (c − b)Γ (2 − c)

Γ (c)Γ (1 − b)Γ (1 − a)
,

C = s(a, b, c;∞) = eπi(1−c) Γ (c − a)Γ (b)Γ (2 − c)

Γ (c)Γ (b − c + 1)Γ (1 − a)
.

The internal angles at these vertices are απ, βπ, γπ, where

α = 1 − c 6= 0, β = c − a − b, γ = b − a.

In the next theorem we compare the triangle [s(0), s(1), s(∞)] with the

triangles defining the functions t+6 , t
(2)
6 , and t

(3)
6 . In each case, this will allow

us to obtain the local constant k of the adapted local parameter in closed form.

Theorem 6.3. Let t be one of the three uniformizing functions defined

in Table 7 for which a fundamental half domain is a triangle; that is, t+6 ,

t
(2)
6 , and t

(3)
6 . Let απ, βπ, γπ be the internal angles at the vertices A, B,

C when t takes the values t(A) = 0, t(B) = 1, t(C) = ∞, or t(A) = 1,
t(B) = ∞, t(C) = 0, or t(A) = ∞, t(B) = 0, t(C) = 1. Then the local

constants kA adapted to the functions t are listed in Table 9.

Proof. First we explain the results for the case t(A) = 0. By formal
integration of the differential equation of the third order in Theorem 5.5, and
taking into account that t(A) = 0, it follows that there exists a normalized
power series in two variables

r(X, Y ) =
∞

∑

n=1

aneX
enY en, ae = 1,

and a constant λ ∈ C, such that

t(z) = r(λ; h1(z)) =

∞
∑

n=1

aneλ
enhen

1 (z)
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Table 9. Local constants for the triangle functions

t [A, B, C] eA t(A) a, b, c νA kA

t+6 [P0, P4, P6] 2 0
1

24
,

7

24
,

1

2
23 · 32 i

√
2 +

√
3

2

Γ ( 7
24

)Γ ( 11
24

)

Γ ( 19
24

)Γ ( 23
24

)

t+6 [P4, P6, P0] 6 1
1

24
,

13

24
,

5

6
2−1 · 3−2 2 +

√
3 − i

12

Γ ( 1
6
)Γ ( 7

24
)Γ ( 19

24
)

Γ ( 5
6
)Γ ( 11

24
)Γ ( 23

24
)

t+6 [P6, P0, P4] 4 ∞
1

24
,

5

24
,

3

4
25 · 3 −

(
√

2 +
√

3)(1 + i)

4
√

2

Γ ( 1
4
)Γ ( 13

24
)Γ ( 17

24
)

Γ ( 3
4
)Γ ( 19

24
)Γ ( 23

24
)

t
(2)
6 [P3, P4, P6] 4 0

1

12
,

1

3
,

3

4
32 · 2−4 (1 +

√
3)(1 + i)

8

Γ ( 1
4
)Γ ( 5

12
)

Γ ( 3
4
)Γ ( 11

12
)

t
(2)
6 [P4, P6, P3] 3 1

1

12
,

1

3
,

2

3
2 · 3−1 2 +

√
3 − i

6

Γ ( 1
3
)2Γ ( 7

12
)

Γ ( 2
3
)2Γ ( 11

12
)

t
(2)
6 [P6, P3, P4] 4 ∞

1

12
,

5

12
,

3

4
28 · 3 −

√
3(1 + i)

4
√

2

Γ ( 1
3
)Γ ( 2

3
)Γ ( 1

4
)

Γ ( 3
4
)Γ ( 7

12
)Γ ( 11

12
)

t
(3)
6 [P2, P4, P6] 6 0

1

12
,

7

12
,

5

6
2−3 · 3−2 (1 +

√
3)(1 + i)

12

Γ ( 1
6
)Γ ( 7

12
)

Γ ( 5
6
)Γ ( 11

12
)

t
(3)
6 [P4, P6, P2] 6 1

1

12
,

1

4
,

5

6
2−3 · 3−2 2 +

√
3 − i

12

Γ ( 1
6
)Γ ( 7

12
)

Γ ( 5
6
)Γ ( 11

12
)

t
(3)
6 [P6, P2, P4] 2 ∞

1

12
,

1

4
,

1

2
2

(1 +
√

3)(1 − i)

4

Γ ( 1
4
)Γ ( 5

12
)

Γ ( 3
4
)Γ ( 11

12
)

for any z in a neighbourhood of A. Here we take h1(z) := (z − A)/(z − A).
Observe that λ is defined up to multiplication by an eth root of unity.

Consider the Schwarzian function s(a, b, c; w) determined by the angles
απ, βπ, γπ, that is to say, a = (1 − α − β − γ)/2, b = (1 − α − β + γ)/2,
c = 1 − α. Since r satisfies the conditions r(λ; h1(A)) = 0, r(λ; h1(B)) = 1,
r(λ; h1(C)) = ∞, we can relate the inverse of the series defining s(a, b, c; w)
to the series defining t(z). A direct computation of the first terms in both
series suffices to establish the following lemma.

Lemma 6.4. Let u(a, b, c; z) denote the inverse series of s(a, b, c; w).
Then

r(ζe; h1(z)) = u(a, b, c; h1(z))

for any z ∈ C in the convergence domain and any eth root of unity ζe.

To continue the calculation of λ, we may use either the condition t(B) = 1
or, alternatively, the condition t(C) = ∞. In the first case, we obtain 1 =
t(B) = r(λ; h1(B)) = r(1; λh1(B)) = r(ζe; ζ

−1
e λh1(B)), and

ζ−1
e λh1(B) = s(a, b, c; 1) =

Γ (c − a)Γ (c − b)Γ (2 − c)

Γ (c)Γ (1 − b)Γ (1 − a)
.
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We can conclude that

λ = ζe
B − A

B − A

Γ (c − a)Γ (c − b)Γ (2 − c)

Γ (c)Γ (1 − b)Γ (1 − a)
.

In the second case, we obtain

λ = ζee
πi(1−c) C − A

C − A

Γ (c − a)Γ (b)Γ (2 − c)

Γ (c)Γ (b − c + 1)Γ (1 − a)
.

Both values of λ are equal and we may take kA to be the product of λ by
any eth root of unity. This is what we have done in Table 9, where we have
taken ζe = 1.

Now we explain the results for the cases t(A) = 1 or t(A) = ∞. When
t(A) = 1, t(B) = ∞, t(C) = 0, we change our function t to 1 − 1/t; this
function has the properties of the function t in the preceding case, and we
apply the same arguments. In the case t(A) = ∞, we change t to 1/(1 − t)
and proceed analogously.

Now, we compute local parameters for the two remaining uniformizing
functions. To begin with, we state a result that relates the local constants
for two points in H in the same Γ -orbit.

Proposition 6.5. Let P ∈ H be a point of order e ≥ 1 for the Γ -action.

For any w =
[

a b
c d

]

∈ Γ ⊆ SL(2, R), the local constants kP and kw(P ) adapted

to a Γ -automorphic function t, at P and w(P ), are related by

ker
w(P ) = ker

P

(

cP + d

cP + d

)er

,

where the value of r is given in Definition 6.1.

Theorem 6.6. Table 10 lists the local constants kP adapted to the quadri-

lateral uniformizing functions t6 and t
(6)
6 in neighbourhoods of the vertices

P of fundamental half domains and , also, in a neighbourhood of the SCM

point P0 for the function t6.

Proof. We begin by explaining the computation for the point P3 and the

curve X6. For this, we shall take into account the equation t26 = t
(2)
6 for the

covering X6 → X
(2)
6 , which we computed in Theorem 4.3. First, we integrate

the differential equations in Theorem 5.5 for the curves X6 and X
(2)
6 in a

neighbourhood of the point P3 in the form

t
(2)
6 (z) = r

(2)
6 (λ

(2)
6 ; h1(z)) =

∞
∑

n=1

a
(2)
4n λ

(2)
6

4n
h4n

1 (z), a
(2)
4 = 1,

t6(z) = r6(λ6; h1(z)) =

∞
∑

n=1

a2nλ2n
6 h2n

1 (z), a2 = 1,
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Table 10. Local constants for the quadrilateral functions

t P eP t(P ) νP kP

t
(6)
6 P0 2 0 22 · 32 i

√
2 +

√
3

2
√

2

Γ ( 7
24

)Γ ( 11
24

)

Γ ( 19
24

)Γ ( 23
24

)

t
(6)
6 P4 3 1 3−1 2 +

√
3 + i

12

Γ ( 1
6
)Γ ( 7

24
)Γ ( 19

24
)

Γ ( 5
6
)Γ ( 11

24
)Γ ( 23

24
)

t
(6)
6 P7 2 2 22 · 32 (2

√
3 + 3

√
2)(1 −

√
2 i)

12

Γ ( 7
24

)Γ ( 11
24

)

Γ ( 19
24

)Γ ( 23
24

)

t
(6)
6 P6 2 ∞ 22 i

√
2 +

√
3

4

Γ ( 1
4
)Γ ( 13

24
)Γ ( 17

24
)

Γ ( 3
4
)Γ ( 19

24
)Γ ( 23

24
)

t6 P0 1 i 22 · 3 i

√
2 +

√
3

2

Γ ( 7
24

)Γ ( 11
24

)

Γ ( 19
24

)Γ ( 23
24

)

t6 P2 3 −1 3−1 1 + (2 +
√

3)i

6 3
√

2

Γ ( 1
3
)2Γ ( 7

12
)

Γ ( 2
3
)2Γ ( 11

12
)

t6 P3 2 0 3 · 2−2 (1 +
√

3)(1 + i)

8

Γ ( 1
4
)Γ ( 5

12
)

Γ ( 3
4
)Γ ( 11

12
)

t6 P4 3 1 3−1 2 +
√

3 − i

6 3
√

2

Γ ( 1
3
)2Γ ( 7

12
)

Γ ( 2
3
)2Γ ( 11

12
)

t6 P6 2 ∞ 24

√
3(1 − i)

4
√

2

Γ ( 1
3
)Γ ( 2

3
)Γ ( 1

4
)

Γ ( 3
4
)Γ ( 7

12
)Γ ( 11

12
)

where e
(2)
6 = 4, e6 = 2 are the orders of the isotropy groups at P3, and

h1(z) = (z − P3)/(z − P 3).
Now, we impose the condition that these series expansions satisfy the

equation t26 = t
(2)
6 ; this gives us the relation λ4

6 = λ
(2)
6

4
, and so a local

constant λ6 adapted to t6 at P3 is, up to multiplication by a fourth root of

unity, the local constant λ
(2)
6 adapted to t

(2)
6 at P3.

To determine this fourth root of unity up to sign we note that the value
of t6 at P0 may be obtained by estimating the series at the point z = P0,
because the series is absolutely convergent at this point. But, if for λ6 we

take ±i times the value of λ
(2)
6 listed in Table 9, then the value of the series

at P0 approximates −i rather than i, as it should do. Thus, we must take

±1 times the value of λ
(2)
6 , as done in Table 10.

The local parameters adapted to t6 at the points P4, P6 and P0, and

the ones adapted to t
(6)
6 at P0, P4, and P6, are computed similarly. The

relationship between the ones we want to compute and the ones we use
to compute them are calculated taking into account the equations given in
Theorem 4.3, and they are as follows:

2λ
(6)
6 (P0)

2 = λ+
6 (P0)

2, λ
(6)
6 (P4)

6 = − λ+
6 (P4)

6, λ
(6)
6 (P6)

4 = − λ+
6 (P6)

4,

λ6(P0)
2 = 2λ

(6)
6 (P0)

2, 2λ6(P4)
3 = λ

(2)
6 (P4)

3, λ6(P6)
4 = λ

(2)
6 (P6)

4.
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To determine the roots of unity that we need, we note that although we
may estimate t6 at P0, because the series expansions of t6 are absolutely

convergent at this point, we cannot estimate t
(6)
6 at P4 nor at P6 with the

development of t
(6)
6 at P0, because this series is not absolutely convergent at

any of these points. But we may estimate the value of t
(6)
6 along the segment

joining P0 to P6, where t
(6)
6 must take negative real values, because in the

open segment [P0, P6) the development of t
(6)
6 at P0 is absolutely convergent.

This adjusts the root of unity for the local constant λ6(P0).

For the other, we proceed in a similar manner; but we need to mention
that, in the integration of the differential equation for t6 in a neighbourhood
of the SCM point P0, the solution depends on two parameters and not on
only one as in the other cases. The relation between them is obtained from
the equation that relates t6 to t+6 or, alternatively, the equation that relates

t6 to t
(6)
6 .

Finally, it remains to determine the local parameters adapted to t6 at P2

and adapted to t
(6)
6 at P7. For this, we shall use Proposition 6.5. Note that

w2(P0) = P7 and w6(P4) = P2;

thus, we may relate the local parameters adapted to t+6 at P0 and P7 to

obtain the latter, and then lift it to a local parameter adapted to t
(6)
6 at P7;

and, similarly, relating the local parameters adapted to t
(6)
6 at P4 and P2,

we obtain the latter, and then we lift it to a local parameter adapted to t6
at P2.

At this point, it would be natural to consider the adapted local parameter

qA(z) =

(

kA
z − A

z − A

)eA

as a uniformizing variable in the neighbourhood of the point A. By doing
this, we would obtain series developments

t(z) =
∞

∑

n=1

bnqn, bn := ane, b1 = 1, if t(A) = 0,

t(z) = t(A) +

∞
∑

n=1

bnqn, bn := ane, b1 = 1, if t(A) 6= 0,∞,

t(z) =

∞
∑

n=−1

bnqn, bn := ane, b−1 = 1, if t(A) = ∞.

However, the arithmetic properties of the coefficients bn can be improved.
With this aim in mind, the functions qA will be slightly modified in Section 7.



332 P. Bayer and A. Travesa

7. Local expansions. Series expansions for the uniformizing functions
considered in the preceding sections will be given in a neighbourhood of
the vertices of the fundamental half domain; all of them are elliptic points.
Moreover, the uniformizing function t6 will be developed in a neighbourhood

of the SCM point P0. Observe that P0 is an elliptic point for X
(6)
6 and X+

6 ,

but it is not elliptic for X6, X
(2)
6 and X

(3)
6 .

Case t(P ) 6= ∞. We begin by studying the uniformizing functions t at
the points P where they take a finite value v. First, we consider developments
of the shape

t(z) =
∞

∑

n=0

b′n
q(z)n

(en)!
, b′1 = e!.

Next we renormalize the function q. We replace q by ν−1q, where the values
of ν are listed in Tables 9 and 10. Thus,

t(z) =
∞

∑

n=0

b′′n
q(z)n

(en)!
, b′′1 = νe!.

Finally, we define the factor nv = νe!, where v = t(P ), and normalize the
generating function t by t(P, qP ; z) := n

−1
v t(z) so that

t(P, qP ; z) =

∞
∑

n=0

cn
qP (z)n

(en)!
, c1 = 1, qP (z) =

1

νP

(

kP
z − P

z − P

)eP

,

where the values of eP , kP and νP are listed in Tables 9 and 10.

Case t(P ) = ∞. Finally, we study the uniformizing functions t at the
point P6, where all of them take the value ∞. First, we consider develop-
ments of the shape

t(z) =
∞
∑

n=−1

b′n
q(z)n

(2e(n + 2))!
, b′

−1 = (2e)!.

Next we renormalize the function q. We replace q by ν−1q, where the values
of ν are listed in Tables 9 and 10. Thus,

t(z) =

∞
∑

n=−1

b′′n
q(z)n

(2e(n + 2))!
, b′′

−1 = ν(2e)!.

Finally, we define the factor n∞ = ν(2e)! and normalize the generating
function t by t(P, qP ; z) := n

−1
∞

t(z) so that

t(P, qP ; z) =
∞
∑

n=−1

cn
qP (z)n

(2e(n + 2))!
, c−1 = 1, qP (z) =

1

νP

(

kP
z − P

z − P

)eP

,

where the values of eP , kP and νP are listed in Tables 9 and 10.
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The following lemma, whose proof is left to the reader, justifies the choice
of the local functions qP (z)n/(2e(n + 2))!.

Lemma 7.1. Let

f(q) :=
∞

∑

n=1

an

(en)!
qn

be a power series such that a1 = e! and an ∈ Z. Define

1

f(q)
=

∞
∑

n=−1

bn

(2e(n + 2))!
qn.

Then bn ∈ (2e)!Z for any n ≥ −1.

We note that each generating function t(P, qP ; z) is a representative of
the homothety class of the corresponding function t. The representatives
depend on the point P and the relations between them are compiled in
Table 11.

Table 11. Local uniformizing functions t(P, qP ; z) = n
−1
t(P ) · t(z)

X X+
6 X

(2)
6 X

(3)
6 X

(6)
6 X6

t t+6 t
(2)
6 t

(3)
6 t

(6)
6 t6

n∞ 3870720 = 30965760 = 48 = 24 · 3 96 = 25 · 3 384 = 27 · 3

212 · 33 · 5 · 7 215 · 33 · 5 · 7

t+6 (P6, qP6
) t

(2)
6 (P6, qP6

) t
(3)
6 (P6, qP6

) t
(6)
6 (P6, qP6

) t6(P6, qP6
)

n0 144 = 24 · 32 27

2
= 2−1 · 33 10 = 2 · 5 72 = 23 · 32 3

2
= 2−1 · 3

t+6 (P0, qP0
) t

(2)
6 (P3, qP3

) t
(3)
6 (P2, qP2

) t
(6)
6 (P0, qP0

) t6(P3, qP3
)

n1 40 = 23 · 5 4 = 22 10 = 2 · 5 2 2

t+6 (P4, qP4
) t

(2)
6 (P4, qP4

) t
(3)
6 (P4, qP4

) t
(6)
6 (P4, qP4

) t6(P4, qP4
)

n2 ∗ ∗ ∗ 72 = 23 · 32 ∗

∗ ∗ ∗ t
(6)
6 (P7, qP7

) ∗

n−1 ∗ ∗ ∗ ∗ 2

∗ ∗ ∗ ∗ t6(P2, qP2
)

ni ∗ ∗ ∗ ∗ 12 = 22 · 3

∗ ∗ ∗ ∗ t6(P0, qP0
)

Since they might be useful for further studies (as in the case of the mod-
ular j-function), we provide the starting coefficients for some developments
of the complex uniformizing function t6 of the curve X6.
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The coefficients cn (1 ≤ n ≤ 10) of t6(P3, qP3 ; z):

1 = 1

0 = 0

−48 = −24 · 3

0 = 0

27504 = 24 · 32 · 191

0 = 0

−64498392 = −23 · 32 · 7 · 127973

0 = 0

436272183216 = 24 · 34 · 23 · 229 · 63913

0 = 0

The coefficients cn (0 ≤ n ≤ 10) of t6(P4, qP4 ; z):

1/2 = 2−1

1 = 1

20 = 22 · 5

1356 = 22 · 3 · 113

227040 = 25 · 3 · 5 · 11 · 43

74611380 = 22 · 3 · 5 · 1243523

42574294080 = 26 · 32 · 5 · 17 · 19 · 45767

38683567274400 = 25 · 32 · 52 · 5372717677

52554612744944640 = 210 · 32 · 5 · 11 · 23 · 4507937111

101782604056899960000 = 26 · 34 · 54 · 139 · 226002762361

270629344957362042528000 = 28 · 34 · 53 · 29 · 16126171 · 223259851

The coefficients cn (0 ≤ n ≤ 10) of t6(P0, qP0 ; z):

i/12 = −i · (1 + i)−4 · 3−1

1 = 1

−12i = i · (1 + i)4 · 3

−226 = −2 · 113

5664i = (1 + i)10 · 3 · 59

160728 = 23 · 3 · 37 · 181

−5467296i = −(1 + i)10 · 3 · 56951

−211472208 = −24 · 35 · 109 · 499

9193300992i = −i · (1 + i)20 · 32 · 571 · 1747

445513958784 = 27 · 33 · 128910289

−23734590202368i = −(1 + i)18 · 34 · 15919 · 35951
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The coefficients cn (−1 ≤ n ≤ 10) of t6(P6, qP6 ; z):

1

0

18480

0

12803590800

0

−817993722627081000

0

−156078929845326558019950000

0

122859953407720110679241179380345000

0

and their factorizations:

1

0

24 · 3 · 5 · 7 · 11

0

24 · 32 · 52 · 7 · 112 · 13 · 17 · 19

0

−23 · 33 · 53 · 73 · 11 · 13 · 17 · 19 · 23 · 29 · 47 · 61

0

−24 · 34 · 55 · 73 · 112 · 13 · 17 · 192 · 23 · 29 · 31 · 41 · 13729

0

23 · 35 · 54 · 74 · 114 · 132 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 661 · 59107

0

In [3], the preceding method has been applied in the modular case, pro-
viding natural series expansions for all the triangle modular functions (in-
cluding the elliptic modular function j) around any elliptic point or cusp.
Thus, in this case, each of these functions also supplies a family of natural
arithmetic developments.

8. Canonical models. In this section we derive explicit canonical mod-

els for the curves X6, X
(2)
6 , X

(3)
6 , X

(6)
6 , X+

6 . Actually, the models we have
computed up to now are complex models or, more precisely, models de-
fined over the field Q(ζ12), where ζ12 is a 12th primitive root of unity (cf.
Corollary 8.2 and Remark 8.3).

Note that X6 has no real points; in particular, although it is of genus
zero and defined over Q, the field Q(X6) cannot be generated by a single
function valued in P1(C).
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We know by Shimura [10] that there exist canonical rational models

j6 : Γ 6\H → X6(C), j
(d)
6 : Γ

(d)
6 \H → X

(d)
6 (C), d = 2, 3, 6, and j+

6 : Γ+
6 \H →

X+
6 (C), which are compatible with the projections on the left hand side and

the covering mappings on the right hand side.

Lemma 8.1. The points j6(P2) and j6(P4) are rational over Q(
√
−3).

The points j6(P3) and j6(P6) are rational over Q(
√
−1). The points j6(P0)

and j6(P7) are rational over Q(
√
−6,

√
−3).

Proof. The points j6(P2) and j6(P4) are elliptic of order 3; therefore,
they are rational over the field Q(

√
−3) (cf. [4]). Analogously, the points

j6(P3) and j6(P6) are elliptic of order 2; therefore, they are rational over
the field Q(

√
−1). On the other hand, the points j6(P0) and j6(P7) are

complex multiplication points for the quadratic field Q(
√
−6). They are

the fixed points for the embeddings Q(
√
−6) →֒ H6 given, respectively, by√

−6 7→ −3J + K and
√
−6 7→ I − 3J. According to the model of Shimura,

we have

Q(j6(P0)) · Q(
√
−6) = Q(j6(P7)) · Q(

√
−6)

= HCF(Q(
√
−6)) = Q(

√
−6,

√
−3).

Corollary 8.2. The models given by the functions t+6 , t
(2)
6 , t

(3)
6 , t

(6)
6 ,

and t6 are defined over k := Q(ζ24) = Q(
√
−3,

√
−1,

√
2).

Proof. Since all of our curves are of genus zero and all of them have
k-rational points, their fields of rational functions over k are generated by a
single function. Now, since the automorphism group of the field is PSL(2, k),
the generator is uniquely determined by its value at three k-rational points.

But our functions t+6 , t
(2)
6 , t

(3)
6 , t

(6)
6 and t6 take k-rational values 0, 1, ∞ at

points that are k-rational in the canonical model. Therefore, they generate
the function fields over k.

Remark 8.3. Actually, the minimal field of definition of the points
j6(P0) and j6(P7) is Q(

√
−3) (cf. Theorem 8.7). For the minimal field of

definition of each of the preceding models see the discussion preceding The-
orem 8.7.

Now, we prove that the model computed for X+
6 is the canonical model.

Proposition 8.4. For the curve X+
6 we have:

(a) j+
6 (P0) = j+

6 (P7), j+
6 (P2) = j+

6 (P4), j+
6 (P3) = j+

6 (P6) ∈ X+
6 (Q).

(b) X+
6 (Q) ≃ P1(Q).

(c) Q(X+
6 ) = Q(t+6 ).

Proof. The points j+
6 (P0) = j+

6 (P7), j+
6 (P2) = j+

6 (P4) and j+
6 (P3) =

j+
6 (P6) are the only points of X+

6 that are elliptic, and they are of different
orders; therefore, they must be rational. Since X+

6 is defined over Q and of
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genus 0, we obtain (b). Finally, t+6 takes rational values at the three rational
points j+

6 (P0), j+
6 (P4), j+

6 (P6) and we obtain (c).

Next, we show that there are Q-rational points in any of the curves X
(2)
6 ,

X
(3)
6 and X

(6)
6 .

Proposition 8.5. For the curves X
(2)
6 , X

(3)
6 and X

(6)
6 , we have:

(a) j
(2)
6 (P2) = j

(2)
6 (P4), j

(2)
6 (P0) = j

(2)
6 (P7) ∈ X

(2)
6 (Q).

(b) j
(3)
6 (P3) = j

(3)
6 (P6), j

(3)
6 (P0) = j

(3)
6 (P7) ∈ X

(3)
6 (Q).

(c) j
(6)
6 (P2) = j

(6)
6 (P4), j

(6)
6 (P3) = j

(6)
6 (P6) ∈ X

(6)
6 (Q).

Therefore, there exist isomorphisms X
(2)
6 (Q) ≃ P1(Q), X

(3)
6 (Q) ≃ P1(Q)

and X
(6)
6 (Q) ≃ P1(Q).

Proof. (a) The point j
(2)
6 (P2) = j

(2)
6 (P4) is the unique elliptic point of

order 3 of X
(2)
6 ; therefore, it must be rational. Moreover, the cover X

(2)
6 →

X+
6 ramifies only at the points j+

6 (P0) and j+
6 (P4), which are rational. Since

one of the ramification points, namely j
(2)
6 (P4), is rational, the other must

also be rational; that is, j
(2)
6 (P0) = j

(2)
6 (P7) ∈ X

(2)
6 (Q).

(b) We argue similarly, with P4 replaced by P6.

(c) Now, j
(6)
6 (P2) = j

(6)
6 (P4) is the unique elliptic point of order 3, and

the ramification points are j+
6 (P4) and j+

6 (P6).

Corollary 8.6. There exist automorphic functions u2, u3, u6 such that

Q(X
(2)
6 ) = Q(u2), Q(X

(3)
6 ) = Q(u3) and Q(X

(6)
6 ) = Q(u6).

To compute these functions u2, u3, u6, we shall take in account the

ramification of the coverings. Since X
(2)
6 → X+

6 is ramified only at the points

such that t+6 takes the values 0, 1, the field extension Q(X
(2)
6 )|Q(X+

6 ) =
Q(t+6 ) is ramified exactly at t+6 and t+6 −1. Therefore, we can choose u2 such
that u2

2 = r2t
+
6 (t+6 − 1)−1, where r2 is a square free integer. On the other

hand, since X
(3)
6 → X+

6 is ramified only at the points such that t+6 takes the

values 0, ∞, the field extension Q(X
(3)
6 )|Q(X+

6 ) is ramified exactly at t+6 and

∞. Therefore, we can choose u3 such that u2
3 = r3t

+
6 , where r3 is a square

free integer. And finally, since X
(6)
6 → X+

6 is ramified only at the points

such that t+6 takes the values 1, ∞, the field extension Q(X
(6)
6 )|Q(X+

6 ) is
ramified exactly at t+6 − 1 and ∞. Therefore, we can choose u6 such that
u2

6 = r6(t
+
6 − 1), where r6 is a square free integer. Moreover, the three

quadratic subfields of the field Q(X
(3)
6 ) · Q(X

(6)
6 ) = Q(X6) being Q(X

(2)
6 ),

Q(X
(3)
6 ) and Q(X

(6)
6 ), we may take the constants r2, r3 and r6 such that

one of them equals the product of the other two.
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Now, observe that the equations in Theorem 4.3 imply the following
ones:

(

t
(2)
6 + 1

t
(2)
6 − 1

)2

=
t+6

t+6 − 1
, (2t

(3)
6 − 1)2 = t+6 , (t

(6)
6 − 1)2 = 1 − t+6 .

Therefore, we have

u2 =
√

r2
t
(2)
6 + 1

t
(2)
6 − 1

, u3 =
√

r3 (2t
(3)
6 − 1), u6 =

√
−r6 (t

(6)
6 − 1).

Next we compute the constants r2, r3 and r6. Since t
(2)
6 takes values

in Q(
√
−1) for three Q(

√
−1)-rational points of X

(2)
6 , namely, the points

j
(2)
6 (P3), j

(2)
6 (P4), j

(2)
6 (P6), we have Q(

√
−1)(X

(2)
6 ) = Q(

√
−1)(t

(2)
6 ). There-

fore,

Q(
√
−1)(u2) = Q(

√
−1)(X

(2)
6 ) = Q(

√
−1)(t

(2)
6 ) = Q(

√
−1)(

√
r2 u2).

Thus,
√

r2 ∈ Q(
√
−1). Working similarly for t

(3)
6 and X

(3)
6 , we find that√

r3 ∈ Q(
√
−3). Since r2 and r3 are square free, we must have r2 = −1 or

r2 = 1, and r3 = −3 or r3 = 1. To discard the value r3 = 1, we observe
that Q(X6) = Q(u3, u6), and if r3 = 1, then the two functions u3, u6 would
take rational values (1, 0) at P4, while j6(P4) is not a rational point of X6.
This fixes r3 = −3. Similarly, if r2 = 1, then the two functions u2 and 1/u6

would take rational values (1, 0) at P6, while j6(P6) is not a rational point
of X6 and Q(X6) = Q(u2, 1/u6). This fixes r2 = −1 and r6 = 3.

We are now in a position to make precise the minimal field of definition

of the models in Corollary 8.2: it is Q for t+6 ; Q(
√
−1) for t

(2)
6 ; Q(

√
−3) for

t
(3)
6 and t

(6)
6 ; and Q(

√
−3,

√
−1) for t6.

We have proven the following result. In particular, our functions satisfy
the algebraic equation for X6 given by Ihara (cf. [6]).

Theorem 8.7. The functions j+
6 , j

(2)
6 , j

(3)
6 , j

(6)
6 : H → P1(C) given by

j+
6 = t+6 , j

(2)
6 = u2 =

√
−1

t
(2)
6 + 1

t
(2)
6 − 1

,

j
(3)
6 = u3 =

√
−3 (2t

(3)
6 − 1), j

(6)
6 = u6 =

√
−3 (t

(6)
6 − 1),

and the function j6 : H → P2(C) given by

j6 = (u3 : u6 : 1) = (u2 : 1 : 1/u6) = (1 : 1/u2 : 1/u3)

define canonical models of the curves X+
6 , X

(2)
6 , X

(3)
6 , X

(6)
6 , and X6, respec-

tively. For the canonical model of the curve X6, we have Q(X6) = Q(j6) =
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Q(u3, u6) = Q(u2, u6) = Q(u2, u3) and the equations

u2
3 + u2

6 + 3 = 0, u2
2 + 1 +

3

u2
6

= 0, 1 +
1

u2
2

+
3

u2
3

= 0

provide a set of affine rational charts for the projective curve X6/Q. More-

over , j6(P0) = (0 : −
√
−3 : 1) and j6(P7) = (0 :

√
−3 : 1).
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