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Ranks of elliptic curves in cubic extensions
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For an elliptic curve over the rationals, Goldfeld’s conjecture [4] asserts
that the analytic rank, ords=1 L(Ed/Q, s), of quadratic twists Ed of E is
positive for squarefree d’s with density 1/2. In other words, the analytic
rank of E goes up in quadratic extensions Q(

√
d)/Q half of the time. In

particular, for every E/Q there are

(a) infinitely many quadratic extensions where the rank goes up, and
(b) infinitely many ones where it does not.

In fact, both (a) and (b) are known for the analytic rank and also for the
arithmetic (Mordell–Weil) rank rk E(K) = dimQ E(K) ⊗Z Q.

On the other hand, root number formulas in [2, 7] show that the situation
is somewhat different for extensions Q( r

√
m)/Q with r>2 and varying m>1.

We will be concerned with the case r = 3, and there are examples of curves
(such as E =19A3, see [2, Cor. 7]) for which the analytic rank goes up in
every non-trivial extension Q( 3

√
m)/Q; so (b) fails for cubic extensions. As

for (a), the formulas do imply that the analytic rank goes up in infinitely
many cubic extensions if E/Q is semistable. It turns out that the same is
true of the arithmetic rank for any E over a number field K. Thus we have

Theorem 1. Let K be a number field and let E/K be an elliptic curve.

There are infinitely many classes [m] ∈ K∗/K∗3 (with m ∈ K∗) such that

rkE(K( 3
√

m)) > rk E(K).

Proof. First, E has finite torsion over the compositum K(µ3, { 3
√

m}m∈K∗),
as every prime v of it has finite residue field, and prime-to-v torsion injects
under the reduction map modulo v if E has good reduction at v.

Second, with F = K(µ3, 3
√

m), the natural map

e : E(K)/lE(K) → E(F )/lE(F )
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is injective for l 6= 2, 3; in fact, the kernel-cokernel exact sequence for the
Kummer maps for E(K) and E(F ) (see [8, §VIII.2]) shows that ker e is
contained in H1(Gal(F/K), E(F )[l]), which is trivial for l 6= 2, 3, because
the order of Gal(F/K) divides 6.

It follows from these two facts that points of E(K) can become divisible
by some prime l only in finitely many of the extensions K( 3

√
m). Thus it

suffices to show that E(L) is strictly larger than E(K) for infinitely many
distinct fields of the form L = K( 3

√
m). (This argument works generally for

any abelian variety and r

√
m with r ≥ 2.)

Now suppose E/K is given by

E : y2 = x3 + ax + b, a, b ∈ K,

assuming for the moment that a 6= 0. Let P = (xP , yP) be a non-trivial
3-torsion point on E. Thus, P is an inflection point, and the function f
(unique up to a constant) with divisor 3(P) − 3(O) defines a line

L : y − yP = κ(x − xP), κ =
3x2

P + a

2yP
.

A computation shows that xP = κ2/3 and yP = (κ4 + 3a)/6κ, so L is
defined over the field K(κ) = K(xP , yP) = K(P). Parametrise L by (x, y) =
(xP−τ/3, yP−κτ/3), express the right-hand side solely in terms of κ and τ ,
and use this to define a map from A2 to A2. In other words, let k and t be
indeterminates and consider the rational map φ : A2

k,t → A2
x,y given by

x =
k2 − t

3
, y =

k4 + 3a − 2k2t

6k
.

Substituting these into the equation for E shows that the Zariski closure of
φ−1(E) is the affine curve

C : 4k2t3 = k8 + 18ak4 + 108bk2 − 27a2.

The degree 8 polynomial P (k) on the right has discriminant −224321a2(4a3+
27b2)3 6= 0, so C is non-singular and geometrically irreducible; in fact, C has
geometric genus 7. It is also clear from the construction that P (κ) = 0,
although the fact that the equation of C has no terms with t and t2 is
somewhat surprising, and depends on the exact choice of expressions for xP

and yP in terms of κ.
Now every x ∈ K∗ gives a point Qx = (x, 3

√
mx) ∈ C(K( 3

√
mx)) with

mx = P (x)/4x2. These Qx lie in infinitely many distinct extensions
K( 3

√
m)/K, for otherwise the compositum F = K({ 3

√
mx}x∈K∗) would be

a number field with C(F ) infinite, contradicting Faltings’ theorem. Finally,
if mx /∈ K∗3, then the point φ(Qx) is in E(K( 3

√
mx)) but not in E(K).

It remains to note that the same construction works when a = 0, except
that the equation of C has to be divided by k2, in which case C has geometric
genus 4 rather than 7.
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Remark 2. For K = Q, a related result due to Fearnley and Kisilevsky
([3, Thm. 1a]) is that for any E/Q, the set of abelian cubic extensions L/Q
for which rk E(L) > rk E(Q) is either empty or infinite. (Note also the
appearance of the polynomial P (x) in Prop. 3 of [3].)

Remark 3. Call a prime v ofK anomalous forE[p] ifE has good reduction

at v, and the reduced curve Ẽ has non-trivial p-torsion over the residue
field kv; so p is anomalous for E/Q as defined by Mazur in [6] if it is anoma-
lous for E[p] in this terminology.

Suppose that P (x) is irreducible over K, so that it is a minimal polyno-
mial for κ. Then for all but finitely many primes v of K, P (x) has a root mod-
ulo v if and only if v is anomalous for E[3]. It follows easily that apart from
finitely many exceptions, every extension K( 3

√
m)/K produced in the proof

of the theorem is ramified at some anomalous prime for E[3]. The appearance
of anomalous primes in the construction is not coincidental, and has possibly
a deep connection to Iwasawa theory. We illustrate this with one example.

Example 4. Take E = X1(11) of conductor 11 over K = Q,

E : y2 = x3 − 1

3
x +

19

108
.

If m > 1 is a cube-free integer, then the analytic rank of E/Q( 3
√

m) is odd
if and only if 11 |m. Let us look at the even rank case.

Define M = Q(µ3). From 3-descents for E/Q and E−3/Q, one obtains
E(M) ∼= Z/5Z and X(E/M)[3] = 1. It follows that the cyclotomic Euler
characteristic χcyc(E/M) is 1, as it is the 3-part of the quantity

(†) |X(E/M)[3∞]| ·
∏

v|3

|Ẽ(kv)|2 ·
∏

v

cv · |E(M)|−2,

and all of the terms are 3-adic units.
Now let Fm = M( 3

√
m) for some cube-free m which is prime to 11.

This is an abelian cubic extension of M , and an application of a formula
by Hachimori and Matsuno for the λ-invariant in p-power Galois extensions
shows that the following conditions are equivalent (cf. [5, Thm. 3.1] and
[1, Cor. 3.20, 3.24]):

(i) either rkE(Fm) > 0, or rkE(Fm) = 0 and χcyc(E/Fm) 6= 1,

(ii) v |m for some prime v of M such that Ẽ(kv)[3] 6= 0.

Moreover, the expression for χcyc(E/Fm) as in (†) shows that (i) actually
reads “either rk E(Fm) > 0 or |X(E/Fm)[3]| 6= 0”, because the other terms
stay prime to 3.

As for (ii), a prime v of M with v | l (l 6= 3, 11) is anomalous for
the 3-torsion of E/M if and only if l is anomalous for the 3-torsion of
E/Q. This is clear if l splits in M , and for l inert this follows by inspec-
tion of the possible conjugacy classes of Frobenius of l ≡ 2 (mod 3) in
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Gal(Q(E[3])/Q) ∼= GL2(F3). To be precise, it is not hard to see that the
possible degrees of the irreducible factors of

P (x) = x8 − 6x4 + 19x2 − 3

modulo such l are (1, 1, 2, 2, 2) and (8), so P (x) has a linear factor over Fl

if and only if it has one over Fl2 .
For E = X1(11), the above equivalence shows that anomalous primes are

responsible for either the rank of E or X[3] going up in cubic extensions.
Incidentally, this proves that rkE(Q( 3

√
m)) is zero for infinitely many m

(those not divisible by 11 or anomalous primes), but does not say whether
it is the rank or X[3] that goes up otherwise. On the other hand, the
construction in Theorem 1 implies the following:

Lemma 5. For E = X1(11), we have rkE(Q( 3
√

m)) > 0 for infinitely

many distinct cube-free integers m > 1 that are prime to 11, and infinitely

many of those with 11 ‖m.

Proof. It is easy to see that every x ∈ Q∗ which is an 11-adic unit and
satisfies x ≡ ±1 mod 11 (resp. x 6≡ ±1 mod 11) gives a point φ(Qx) of
E(Q( 3

√
m)) with 11 ‖m (resp. 11 ∤ m).
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