Ranks of elliptic curves in cubic extensions

by

TIM DOKCHITSER (Cambridge)

For an elliptic curve over the rationals, Goldfeld's conjecture [4] asserts that the analytic rank, $\operatorname{ord}_{s=1} L(E_d/\mathbb{Q}, s)$, of quadratic twists E_d of E is positive for squarefree d's with density 1/2. In other words, the analytic rank of E goes up in quadratic extensions $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$ half of the time. In particular, for every E/\mathbb{Q} there are

- (a) infinitely many quadratic extensions where the rank goes up, and
- (b) infinitely many ones where it does not.

In fact, both (a) and (b) are known for the analytic rank and also for the arithmetic (Mordell–Weil) rank $\operatorname{rk} E(K) = \dim_{\mathbb{Q}} E(K) \otimes_{\mathbb{Z}} \mathbb{Q}$.

On the other hand, root number formulas in [2, 7] show that the situation is somewhat different for extensions $\mathbb{Q}(\sqrt[r]{m})/\mathbb{Q}$ with r > 2 and varying m > 1. We will be concerned with the case r = 3, and there are examples of curves (such as E = 19A3, see [2, Cor. 7]) for which the analytic rank goes up in every non-trivial extension $\mathbb{Q}(\sqrt[3]{m})/\mathbb{Q}$; so (b) fails for cubic extensions. As for (a), the formulas do imply that the analytic rank goes up in infinitely many cubic extensions if E/\mathbb{Q} is semistable. It turns out that the same is true of the arithmetic rank for any E over a number field K. Thus we have

THEOREM 1. Let K be a number field and let E/K be an elliptic curve. There are infinitely many classes $[m] \in K^*/K^{*3}$ (with $m \in K^*$) such that

$$\operatorname{rk} E(K(\sqrt[3]{m})) > \operatorname{rk} E(K).$$

Proof. First, E has finite torsion over the compositum $K(\mu_3, \{\sqrt[3]{m}\}_{m \in K^*})$, as every prime v of it has finite residue field, and prime-to-v torsion injects under the reduction map modulo v if E has good reduction at v.

Second, with $F = K(\mu_3, \sqrt[3]{m})$, the natural map

$$e: E(K)/lE(K) \to E(F)/lE(F)$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 11G05.

is injective for $l \neq 2,3$; in fact, the kernel-cokernel exact sequence for the Kummer maps for E(K) and E(F) (see [8, §VIII.2]) shows that ker *e* is contained in $H^1(\text{Gal}(F/K), E(F)[l])$, which is trivial for $l \neq 2,3$, because the order of Gal(F/K) divides 6.

It follows from these two facts that points of E(K) can become divisible by some prime l only in finitely many of the extensions $K(\sqrt[3]{m})$. Thus it suffices to show that E(L) is strictly larger than E(K) for infinitely many distinct fields of the form $L = K(\sqrt[3]{m})$. (This argument works generally for any abelian variety and $\sqrt[r]{m}$ with $r \geq 2$.)

Now suppose E/K is given by

$$E: y^2 = x^3 + ax + b, \quad a, b \in K,$$

assuming for the moment that $a \neq 0$. Let $\mathcal{P} = (x_{\mathcal{P}}, y_{\mathcal{P}})$ be a non-trivial 3-torsion point on E. Thus, \mathcal{P} is an inflection point, and the function f (unique up to a constant) with divisor $3(\mathcal{P}) - 3(O)$ defines a line

$$\mathcal{L}: y - y_{\mathcal{P}} = \kappa(x - x_{\mathcal{P}}), \quad \kappa = \frac{3x_{\mathcal{P}}^2 + a}{2y_{\mathcal{P}}}.$$

A computation shows that $x_{\mathcal{P}} = \kappa^2/3$ and $y_{\mathcal{P}} = (\kappa^4 + 3a)/6\kappa$, so \mathcal{L} is defined over the field $K(\kappa) = K(x_{\mathcal{P}}, y_{\mathcal{P}}) = K(\mathcal{P})$. Parametrise \mathcal{L} by $(x, y) = (x_{\mathcal{P}} - \tau/3, y_{\mathcal{P}} - \kappa\tau/3)$, express the right-hand side solely in terms of κ and τ , and use this to define a map from \mathbb{A}^2 to \mathbb{A}^2 . In other words, let k and t be indeterminates and consider the rational map $\phi : \mathbb{A}^2_{k,t} \to \mathbb{A}^2_{x,y}$ given by

$$x = \frac{k^2 - t}{3}, \quad y = \frac{k^4 + 3a - 2k^2t}{6k}.$$

Substituting these into the equation for E shows that the Zariski closure of $\phi^{-1}(E)$ is the affine curve

$$C: 4k^2t^3 = k^8 + 18ak^4 + 108bk^2 - 27a^2.$$

The degree 8 polynomial P(k) on the right has discriminant $-2^{24}3^{21}a^2(4a^3 + 27b^2)^3 \neq 0$, so C is non-singular and geometrically irreducible; in fact, C has geometric genus 7. It is also clear from the construction that $P(\kappa) = 0$, although the fact that the equation of C has no terms with t and t^2 is somewhat surprising, and depends on the exact choice of expressions for $x_{\mathcal{P}}$ and $y_{\mathcal{P}}$ in terms of κ .

Now every $x \in K^*$ gives a point $Q_x = (x, \sqrt[3]{m_x}) \in C(K(\sqrt[3]{m_x}))$ with $m_x = P(x)/4x^2$. These Q_x lie in infinitely many distinct extensions $K(\sqrt[3]{m})/K$, for otherwise the compositum $F = K(\{\sqrt[3]{m_x}\}_{x \in K^*})$ would be a number field with C(F) infinite, contradicting Faltings' theorem. Finally, if $m_x \notin K^{*3}$, then the point $\phi(Q_x)$ is in $E(K(\sqrt[3]{m_x}))$ but not in E(K).

It remains to note that the same construction works when a = 0, except that the equation of C has to be divided by k^2 , in which case C has geometric genus 4 rather than 7.

358

REMARK 2. For $K = \mathbb{Q}$, a related result due to Fearnley and Kisilevsky ([3, Thm. 1a]) is that for any E/\mathbb{Q} , the set of *abelian* cubic extensions L/\mathbb{Q} for which $\operatorname{rk} E(L) > \operatorname{rk} E(\mathbb{Q})$ is either empty or infinite. (Note also the appearance of the polynomial P(x) in Prop. 3 of [3].)

REMARK 3. Call a prime v of K anomalous for E[p] if E has good reduction at v, and the reduced curve \tilde{E} has non-trivial p-torsion over the residue field k_v ; so p is anomalous for E/\mathbb{Q} as defined by Mazur in [6] if it is anomalous for E[p] in this terminology.

Suppose that P(x) is irreducible over K, so that it is a minimal polynomial for κ . Then for all but finitely many primes v of K, P(x) has a root modulo v if and only if v is anomalous for E[3]. It follows easily that apart from finitely many exceptions, every extension $K(\sqrt[3]{m})/K$ produced in the proof of the theorem is ramified at some anomalous prime for E[3]. The appearance of anomalous primes in the construction is not coincidental, and has possibly a deep connection to Iwasawa theory. We illustrate this with one example.

EXAMPLE 4. Take $E = X_1(11)$ of conductor 11 over $K = \mathbb{Q}$,

$$E: y^2 = x^3 - \frac{1}{3}x + \frac{19}{108}.$$

If m > 1 is a cube-free integer, then the analytic rank of $E/\mathbb{Q}(\sqrt[3]{m})$ is odd if and only if $11 \mid m$. Let us look at the even rank case.

Define $M = \mathbb{Q}(\mu_3)$. From 3-descents for E/\mathbb{Q} and E_{-3}/\mathbb{Q} , one obtains $E(M) \cong \mathbb{Z}/5\mathbb{Z}$ and $\operatorname{III}(E/M)[3] = 1$. It follows that the cyclotomic Euler characteristic $\chi_{\operatorname{cyc}}(E/M)$ is 1, as it is the 3-part of the quantity

(†)
$$|\mathrm{III}(E/M)[3^{\infty}]| \cdot \prod_{v|3} |\widetilde{E}(k_v)|^2 \cdot \prod_v c_v \cdot |E(M)|^{-2},$$

and all of the terms are 3-adic units.

Now let $F_m = M(\sqrt[3]{m})$ for some cube-free m which is prime to 11. This is an abelian cubic extension of M, and an application of a formula by Hachimori and Matsuno for the λ -invariant in p-power Galois extensions shows that the following conditions are equivalent (cf. [5, Thm. 3.1] and [1, Cor. 3.20, 3.24]):

- (i) either $\operatorname{rk} E(F_m) > 0$, or $\operatorname{rk} E(F_m) = 0$ and $\chi_{\operatorname{cyc}}(E/F_m) \neq 1$,
- (ii) $v \mid m$ for some prime v of M such that $E(k_v)[3] \neq 0$.

Moreover, the expression for $\chi_{\text{cyc}}(E/F_m)$ as in (†) shows that (i) actually reads "either rk $E(F_m) > 0$ or $|\text{III}(E/F_m)[3]| \neq 0$ ", because the other terms stay prime to 3.

As for (ii), a prime v of M with $v \mid l \ (l \neq 3, 11)$ is anomalous for the 3-torsion of E/M if and only if l is anomalous for the 3-torsion of E/\mathbb{Q} . This is clear if l splits in M, and for l inert this follows by inspection of the possible conjugacy classes of Frobenius of $l \equiv 2 \pmod{3}$ in $\operatorname{Gal}(\mathbb{Q}(E[3])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{F}_3)$. To be precise, it is not hard to see that the possible degrees of the irreducible factors of

$$P(x) = x^8 - 6x^4 + 19x^2 - 3$$

modulo such l are (1, 1, 2, 2, 2) and (8), so P(x) has a linear factor over \mathbb{F}_l if and only if it has one over \mathbb{F}_{l^2} .

For $E = X_1(11)$, the above equivalence shows that anomalous primes are responsible for either the rank of E or III[3] going up in cubic extensions. Incidentally, this proves that $\operatorname{rk} E(\mathbb{Q}(\sqrt[3]{m}))$ is zero for infinitely many m(those not divisible by 11 or anomalous primes), but does not say whether it is the rank or III[3] that goes up otherwise. On the other hand, the construction in Theorem 1 implies the following:

LEMMA 5. For $E = X_1(11)$, we have $\operatorname{rk} E(\mathbb{Q}(\sqrt[3]{m})) > 0$ for infinitely many distinct cube-free integers m > 1 that are prime to 11, and infinitely many of those with $11 \parallel m$.

Proof. It is easy to see that every $x \in \mathbb{Q}^*$ which is an 11-adic unit and satisfies $x \equiv \pm 1 \mod 11$ (resp. $x \not\equiv \pm 1 \mod 11$) gives a point $\phi(Q_x)$ of $E(\mathbb{Q}(\sqrt[3]{m}))$ with $11 \parallel m$ (resp. $11 \nmid m$).

Acknowledgements. The author would like to thank J. Coates, V. Dokchitser, A. J. Scholl and J. Top for discussions of this problem.

References

- [1] T. Dokchitser and V. Dokchitser, *Computations in non-commutative Iwasawa theory*, with an appendix by J. Coates and R. Sujatha, Proc. London Math. Soc., to appear.
- [2] V. Dokchitser, Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3) 91 (2005), 300–324.
- [3] J. Fearnley and H. Kisilevsky, Vanishing and non-vanishing Dirichlet twists of Lfunctions of elliptic curves, preprint, 2004.
- [4] D. Goldfeld, Conjectures on elliptic curves over quadratic fields, in: Number Theory (Carbondale, IL, 1979), Lecture Notes in Math. 751, Springer, 1979, 108–118.
- [5] Y. Hachimori and K. Matsuno, An analogue of Kida's formula for Selmer groups of elliptic curves, J. Algebraic Geom. 8 (1999), 581–601.
- B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266.
- D. Rohrlich, Galois theory, elliptic curves, and root numbers, Compositio Math. 100 (1996), 311–349.
- [8] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, 1986.

Robinson College Cambridge, CB3 9AN, United Kingdom E-mail: t.dokchitser@dpmms.cam.ac.uk

> Received on 10.11.2005 and in revised form on 4.11.2006