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1. Introduction. Let p be an odd prime and ̺ : GQ → PGL2(Fp)
be a representation of the absolute Galois group of Q. One says that a
Q-curve E realizes ̺ if this representation is isomorphic to the odd projective
representation of GQ arising from the p-torsion subgroup of E, as explained
in [8], [11] or [9].

The moduli problem classifying the Q-curves that realize ̺ splits into two
different cases, cyclotomic and non-cyclotomic, according to the determinant
of ̺. For a given integer N > 1 prime to p, let us consider the non-CM
Q-curves realizing ̺ which are defined over a quadratic field and have a cyclic
isogeny of degree N to its Galois conjugate. In this case, the cyclotomic
condition amounts to asking that N be a square mod p. Moreover, such
Q-curves are given by the rational points on either a twist of a certain
modular curve X(N, p) in the non-cyclotomic case, or on two twists of a
degree-two quotient X+(N, p) in the cyclotomic case (cf. [9]).

The octahedral cases X(5, 3) and X+(7, 3) cover all genus-three instances
for the moduli problem under consideration. Slightly different arguments to
those employed in [10] for the non-cyclotomic case X(5, 3) enable us here
to deal with the cyclotomic case X+(7, 3), and yet this second case presents
new important features. Indeed, X+(7, 3) has an unramified double cover
isomorphic to the modular curve X0(63). The structure of the automor-
phism group of this curve was suggested by Kenku and Momose in [16] and
then established by Elkies in [7]. Here we give an explicit description for
this automorphism group; as an application, we show that the two twisted
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curves admit the same model X+(7, 3)̺ over Q. With the aim of finding
the rational points on this curve, we construct a genus-one quotient E̺ de-
fined over a cubic field. Furthermore, the existence of an unramified double
cover X(7, 3)̺ allows us to translate our problem into finding the rational
points on a finite number of explicit twists X(7, 3)̺,m. This configuration is
dealt with in general in [5]. However, in this particular setting, it turns out

that X(7, 3)̺,m actually covers a genus-two curve C̺̃,m. We can then use for
our purposes a wide variety of methods to determine the rational points on
curves of genus two.

The plan of the paper is as follows. Section 2 summarizes the construc-
tion of the modular curves X(N, p), X+(N, p) and their twists by ̺ in the
cyclotomic case. In Section 3 we obtain a rational model for X0(63) as an
unramified double cover of X0(63)/〈w7〉, and provide a description for the
automorphism groups of these curves. In Section 4 we make explicit X+(7, 3)
as a cover of the modular curve X+(7) = X0(7)/〈w7〉, which is needed later
on to exhibit the quadratic Q-curves of degree 7 realizing a given surjec-
tive representation ̺ : GQ → PGL2(F3). The study of the twisted curve
X+(7, 3)̺ is accomplished in Section 5. We develop a method to retrieve,
from a degree-four polynomial in Z[X] having the same splitting field as ̺,
a plane quartic model for X+(7, 3)̺ along with a rational model for its
double cover X(7, 3)̺. We also determine morphisms X+(7, 3)̺ → E̺ and

X(7, 3)̺ → C̺̃, where E̺ and C̺̃ are curves of genus one and two, respec-
tively. This allows us to use a combination of covers and Chabauty methods
to determine all rational points on X+(7, 3)̺ and, therefore, all Q-curves of
degree 7 realizing ̺. In Section 6 we present two complete examples where
these methods do apply.

2. Twisting the modular curves X(N, p) and X+(N, p). Let N > 1
be an integer prime to p. We denote by X(N, p) the normalization of the
fiber product over X(1) of the modular curves X0(N) and X(p). We take
for X0(N) its canonical model over Q. As for X(p), we fix the rational
model attached to a matrix V in PGL2(Fp) \ PSL2(Fp) of order 2, as a
particular case of a general procedure that can be found in Section II.3
of [17] or Section 2 of [19]. Its Q-isomorphism class does not depend on
the choice of such a matrix. Let also X+(N) be the quotient of X0(N) by
the Atkin–Lehner involution wN . We recall that the non-cuspidal non-CM
rational points on X+(N) parametrize the isomorphism classes of quadratic

Q-curves of degree N . By this term we mean, for simplicity, the GQ-stable
pairs of non-CM elliptic curves related by a cyclic isogeny of degree N .

From now on, we assume N to be a square mod p. The automorphism
group of the cover X(N, p) → X+(N) is then seen to be canonically iso-
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morphic to PSL2(Fp) × Z/2Z. Put w for the involution of X(N, p) corre-
sponding to the non-trivial element in the center of this group, and denote
by X+(N, p) the quotient curve. The automorphism group, call it G(N, p),
of the cover

X+(N, p) → X+(N)

is thus canonically isomorphic to PSL2(Fp). Through the identification of
the automorphisms of this group with the elements in PGL2(Fp), the Galois
action on G(N, p) is given by the morphism

ε : GQ → F∗
p/F∗

p
2 ≃ 〈V 〉

obtained from the mod p cyclotomic character GQ → F∗
p.

Suppose that we are now given a surjective Galois representation

̺ : GQ → PGL2(Fp)

with cyclotomic determinant. For the moduli classification of quadratic
Q-curves of degree N realizing ̺, we produce two twists of X+(N, p) from
certain elements in the cohomology set H1(GQ,G(N, p)). Specifically, we
consider the 1-cocycles ξ = ̺ε and ξ′ = V ξV , where we use the identifica-
tion of PSL2(Fp) with G(N, p). For the two twists of X(N, p) attached to ξ
and ξ′, respectively, we fix rational models X+(N, p)̺ and X+(N, p)′̺ along
with isomorphisms

Ψ : X+(N, p)̺ → X+(N, p), Ψ ′ : X+(N, p)′̺ → X+(N, p)

satisfying Ψ = ξσ
σΨ and Ψ ′ = ξ′σ

σΨ ′ for every σ in GQ. We note that the
Q-isomorphism class of each of these twists only depends on the splitting
field of ̺.

Theorem 2.1 ([9]). There exists a quadratic Q-curve of degree N real-

izing ̺ if and only if the set of non-cuspidal non-CM rational points on the

curves X+(N, p)̺ and X+(N, p)′̺ is not empty. In this case, the composi-

tions

X+(N, p)̺
Ψ→ X+(N, p) → X+(N), X+(N, p)′̺

Ψ ′

→ X+(N, p) → X+(N)

define a one-to-one correspondence between this set of rational points and

the set of isomorphism classes of quadratic Q-curves of degree N realizing ̺.

Through the embedding G(N, p) →֒ Aut(X(N, p)), the 1-cocycle ξ defin-
ing X+(N, p)̺ extends to a 1-cocycle of GQ with values in Aut(X(N, p)).
Denote by X(N, p)̺ the corresponding twist of X(N, p). We have a commu-
tative diagram

X(N, p)̺

��

Ψ // X(N, p)

��

X+(N, p)̺
Ψ // X+(N, p)



364 N. Bruin et al.

where the vertical arrows are Q-rational double covers; the left one corre-
sponds to the quotient by the involution Ψ−1wΨ , which is defined over Q.

For a non-square integer m, let X(N, p)̺,m denote the quadratic twist
of X(N, p)̺ defined by the 1-cocycle

χm : GQ → Gal(Q(
√

m)/Q) ≃ 〈Ψ−1wΨ〉.
We then have a Q-rational double cover

X(N, p)̺,m
ϕm−→ X(N, p)̺ → X+(N, p)̺,

where the isomorphism ϕm is defined over Q(
√

m) and is sent by the Galois
conjugation of this quadratic field to Ψ−1wΨϕm.

Attached to the 1-cocycle ξ′, one has analogous twisted curves X(N, p)′̺
and X(N, p)′̺,m. Theorem 2.1 can then be refined in the following way.

Theorem 2.2 ([9]). The isomorphism classes of quadratic Q-curves of

degree N realizing ̺ and with field of moduli Q(
√

m) are in bijection with the

non-cuspidal non-CM rational points on X+(N, p)̺ and X+(N, p)′̺ lifting

to rational points on X(N, p)̺,m and X(N, p)′̺,m, respectively.

Proposition 2.1. The genus of X+(N, p) is never one or two. The

genus is three only for N = 7 and p = 3.

Proof. The involution w restricts to the Atkin–Lehner involution wN on
X0(pN), thus inducing a cover X+(N, p) → X0(pN)/〈wN 〉, whose degree is
p(p − 1)/2. This map ramifies with index p above ⌈ν∞/2⌉ cusps, where ν∞
is the number of cusps of X0(N). So the Hurwitz formula yields

2(g+ − 1) ≥ p(p − 1)(g − 1) +

⌈
ν∞
2

⌉
(p − 1)2

2
,

where g+ and g stand for the genera of X+(N, p) and X0(pN)/〈wN 〉, re-
spectively. If g+ is at most three, it follows that either g = 0 or p = 3 and
g = 1. Now, the only pairs (N, p), with N prime to p and square mod p,
satisfying one of these two conditions are (4, 3), (4, 5) and (7, 3). Indeed, it
suffices to compute g for the modular curves X0(pN) which have genus ≤ 1
or are hyperelliptic [20] or bielliptic [3]. The curves X+(4, 3) and X+(4, 5)
have genera zero and four, respectively (see Proposition 5.7 in [9]). As for
X+(7, 3), the genus can be obtained from the Hurwitz formula applied to
the degree-twelve Galois cover X+(7, 3) → X+(7), whose ramification points
are those lying above the cusp, the elliptic point with j-invariant 0 and the
two points of X0(7) fixed by w7.

From now on, we assume p = 3. The function field of X(N, 3) over
Q can be taken to be the field of modular functions for Γ0(N) ∩ Γ (3) with
rational Fourier coefficients, so that the automorphism of the complex upper
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half-plane given by τ 7→ τ/3 induces an isomorphism

Φ : X(N, 3) → X0(9N)

defined over Q. Moreover, the above involution w corresponds through Φ
to the Atkin–Lehner involution wN of X0(9N), so that we have an induced
isomorphism

Φ : X+(N, 3) → X0(9N)/〈wN〉.
The following result highlights the special behaviour of the automorphism
group of this curve for N = 7, thus complementing Proposition 2.1. Note
that there is an isomorphism between PGL2(F3) and the symmetric group S4

unique up to conjugation; in particular, the cover group G(N, 3) is isomor-
phic to the alternating group A4.

Proposition 2.2. For a prime N ≡ 1 (mod 3) different from 7,

Aut(X(N, 3)) = G(N, 3) × 〈w〉 ≃ A4 × Z/2Z,

whereas Aut(X(7, 3)) ≃ S4 × 〈w〉.
Proof. Let us first note that, under the hypotheses in the statement, the

modular curve X0(9N) has genus greater than one. Its automorphism group
has no other elements outside the normalizer B(9N) of Γ0(9N) in PSL2(R)
unless N = 7 (cf. [16], where two possibilities were given for this case).
Moreover, the group B(9N) is generated by the Atkin–Lehner involutions
w9, wN and the automorphism S whose action on the complex upper half-
plane is given by τ 7→ τ +1/3. Since N ≡ 1 (mod 3), an easy checking shows
that w9 and S generate a subgroup isomorphic to A4 and commute with wN .
As for X0(63), the actual structure of its automorphism group was settled
in [7] (cf. Section 3 below).

3. The modular curve X0(63) and its quotient by w7. In this sec-
tion we give a rational model for the genus-three quotient curve X0(63)/〈w7〉
and for its genus-five double cover X0(63). We also study the automorphism
group of both curves. For future use, let us fix a basis {ω1, . . . , ω5} for the
vector space of regular differentials Ω1(X0(63)) in the following way. Take

ωi = fi(q)
dq

q
,

where f1 is the normalized newform of level 21, f2(q) = f1(q
3) and f3, f4, f5

are the normalized newforms of level 63:

f1 = q − q2 + q3 − q4 − 2q5 − q6 − q7 + 3q8 + q9 − 2q10

+ 4q11 − q12 − 2q13 + q14 − 2q15 − q16 + 6q17 + · · · ,

f2 = q3 − q6 + q9 − q12 − 2q15 − q18 − q21

+ 3q24 + q27 − 2q30 + 4q33 − q36 + · · · ,
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f3 = q + q2 − q4 + 2q5 − q7 − 3q8

+ 2q10 − 4q11 − 2q13 − q14 − q16 + 6q17 + · · · ,

f4 = q +
√

3 q2 + q4 − 2
√

3 q5 + q7 −
√

3 q8 − 6q10 + 2
√

3 q11

+ 2q13 +
√

3 q14 − 5q16 + 2
√

3 q17 + · · · ,

f5 = q −
√

3 q2 + q4 + 2
√

3 q5 + q7 +
√

3 q8 − 6q10 − 2
√

3 q11

+ 2q13 −
√

3 q14 − 5q16 − 2
√

3 q17 + · · · .

Note that ω1, ω2, ω3 are defined over Q, while ω4, ω5 are Galois conjugates
defined over Q(

√
3).

3.1. A rational plane quartic model for X0(63)/〈w7〉. We start by ob-
serving that the pullback of the differentials Ω1

Q(X0(63)/〈w7〉) by the projec-

tion X0(63) → X0(63)/〈w7〉 is the vector subspace of Ω1
Q(X0(63)) invariant

under w7, so that it is generated by the differential forms ω1, ω2, ω3. In par-
ticular, the Jacobian of X0(63)/〈w7〉 is Q-isogenous to E2

21×E63, where E21

and E63 are elliptic curves over Q of conductors 21 and 63, respectively.

Proposition 3.1. The genus-three curve X0(63)/〈w7〉 is non-hyperel-

liptic and admits an affine quartic model over Q given by

(1) x4 − 8x3y + 46x2y2 − 72xy3 + 81y4 − 2x2 − 8xy − 18y2 + 1 = 0,

where x = ω1/ω3 and y = ω2/ω3. In particular , Q(X0(63)/〈w7〉) = Q(x, y).

Proof. Let X/C be a curve of genus at least two and φ : X0(M) → X be a
non-constant morphism unramified at the cusp ∞. With the same arguments
as in Proposition 6.5 of [1], it can be proved that X is hyperelliptic if and
only if part (3) of that proposition is satisfied for the vector subspace S2(A)
of S2(Γ0(M)) such that S2(A)dq/q is the pullback of Ω1(X) by φ. In our
case, the cover X0(63) → X0(63)/〈w7〉 is unramified and part (3) fails for
〈f1, f2, f3〉, so the first assertion follows.

In view of this, the image of X0(63)/〈w7〉 under the canonical embedding
is the zero locus of a homogeneous polynomial P in Q[X, Y, Z] of degree four.
Such a polynomial is unique up to non-zero rational multiples and satisfies
P (ω1, ω2, ω3) = 0. It can be explicitly determined using the first seventeen
Fourier coefficients of each ωi (cf. Section 2 of [1]). This yields the equation
in the statement.

3.2. A rational model for the cover X0(63) → X0(63)/〈w7〉. In order to
make explicit the unramified cover X0(63) → X0(63)/〈w7〉, let us take for
Ω1

Q(X0(63)) the basis {ω1, ω2, ω3, ν4, ν5}, where

ν4 = (ω4 + ω5)/2, ν5 = (ω4 − ω5)/(2
√

3).

The involution w7 scales ν4 and ν5 by −1, so that ν2
4 , ν4ν5, ν

2
5 belong to the

tensor product of the vector space Ω1
Q(X0(63)/〈w7〉) by itself. Using Fourier
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expansions, we obtain

ν2
4 = Q1(ω1, ω2, ω3), ν4ν5 = Q2(ω1, ω2, ω3), ν2

5 = Q3(ω1, ω2, ω3),

where

Q1(X, Y, Z) = (X2 + 9Y 2 − 10XY + 2XZ + 6Y Z + Z2)/4,

Q2(X, Y, Z) = −(X2 + 9Y 2 − 2XY − Z2)/4,

Q3(X, Y, Z) = −(X2 + 9Y 2 − 10XY − 2XZ − 6Y Z + Z2)/12.

Note that the relation

Q1(x, y, 1)Q3(x, y, 1) − Q2(x, y, 1)2 = 0

is exactly equation (1).

Consider now the functions r = ν4/ω3 and s = ν5/ω3 on X0(63). Since
they are not fixed by w7, one has

Q(X0(63)) = Q(x, y, r) = Q(x, y, s),

and we can think of the above equalities as a rational model for the double
cover X0(63) → X0(63)/〈w7〉, namely

(2) r2 = Q1(x, y, 1), rs = Q2(x, y, 1), s2 = Q3(x, y, 1).

3.3. The automorphism groups of X0(63) and X0(63)/〈w7〉. As noted
in the previous section, the automorphism group of X0(63) is isomorphic to
S4 × Z/2Z. This was conjectured in [16], and then settled in [7] by proving
the existence of an involution which is not in the normalizer B(63). An
explicit description for this extra involution is obtained in this section.

We begin by recalling that the automorphism subgroup B(63) is gen-
erated by the Atkin–Lehner involutions w7, w9 and the order-three auto-
morphism S in the proof of Proposition 2.2. The action of these gener-
ators on the regular differentials of X0(63) is displayed in the following
table:

w7 w9 S

ω1 ω1 −3ω2 −ω1/2 + 3ω2/2 +
√

−3 ω3/2

ω2 ω2 −ω1/3 ω2

ω3 ω3 −ω3

√

−3 ω1/2 −

√

−3 ω2/2 − ω3/2

ω4 −ω4 ω4 −ω4/2 +
√

−3 ω5/2

ω5 −ω5 ω5

√

−3 ω4/2 − ω5/2

In particular, w7 commutes with w9 and S, and one gets the relation
(w9S)3 = 1. So B(63) is indeed isomorphic to A4 × Z/2Z.
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Let us now turn to the quotient X0(63)/〈w7〉. The automorphisms in-
duced on this curve by w9 and S can be denoted in the same way:

A4 ≃ 〈S, w9〉 →֒ Aut(X0(63)/〈w7〉).
Now, equation (1) yields an involution W on X0(63)/〈w7〉 which acts sending
an affine point (x, y) to (−x,−y) and which does not come from B(63).
From the Hurwitz formula, it follows that the quotient of the curve by 〈W 〉
has genus one, so the matrix of the action of W on Ω1

Q(X0(63)/〈w7〉) with
respect to the basis {ω1, ω2, ω3} is




−1 0 0

0 −1 0

0 0 1


 .

One can then check that W commutes with w7 while WSW = S2. This
explicitly yields S4 as a subgroup of Aut(X0(63)/〈w7〉), which can be the-
oretically deduced from [7] together with the observation that 〈w7〉 is the
center of Aut(X0(63)):

S4 ≃ Aut(X0(63))/〈w7〉 →֒ Aut(X0(63)/〈w7〉).
To conclude that this embedding is actually surjective, we note that the
isomorphism given by

(X, Y ) =

( −2
√
−3 x/3 + 2

√
−3 y

−
√
−3x/3 −

√
−3 y + 1

,

√
−3 x/3 +

√
−3 y + 1

−
√
−3x/3 −

√
−3 y + 1

)

transforms (1) into the simpler equation

X4 + Y 4 + 1 +
2

7
(X2 + Y 2 + X2Y 2) = 0.

From the classification in [6], the automorphism group of this plane quartic
is isomorphic to S4. So we have

Aut(X0(63)/〈w7〉) = 〈W, S, w9〉 ≃ S4.

Remark 3.1. The determinant of every automorphism of X0(63)/〈w7〉
acting on the regular differentials is trivial. This implies that the quotient
of this curve by any subgroup of automorphisms has genus at most one. In
particular, the quotient by an involution always has genus one.

Lastly, the automorphism W lifts to two involutions on X0(63) which
differ by multiplication by w7. From equations (2) and the action of W
on X0(63)/〈w7〉, it follows that these liftings send the regular differentials
ν4 and ν5 to ±

√
−3 ν5 and ∓

√
−3 ν4/3, respectively. In particular, both

involutions are defined over the quadratic field Q(
√
−3), whereas W is

defined over Q. Notice also that they send ω4 and ω5 to ∓
√
−1 ω5 and
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±
√
−1 ω4, respectively. The choice of one of these two liftings fixes an iden-

tification

Aut(X0(63)) = Aut(X0(63)/〈w7〉) × 〈w7〉.

4. The modular curve X+(7, 3) as a cover of X+(7). Let us now
resume Section 2 in the particular case N = 7, p = 3. Our goal is to describe
explicitly the modular cover X+(7, 3) → X+(7). This is needed in the next
sections to recover the Q-curves of degree 7 realizing a given octahedral Ga-
lois representation ̺ once the rational points on the twisted curves X+(7, 3)̺

and X+(7, 3)′̺ have been found.

Recall that we have a commutative diagram

X(7, 3)
Φ //

��

X0(63)

��

X+(7, 3)
Φ // X0(63)/〈w7〉

where the horizontal arrows are isomorphisms induced by the automorphism
τ 7→ τ/3 of the complex upper half-plane.

From now on, we use the following notation: for a function F in
Q(X0(63)), a regular differential ω in Ω1(X0(63)) or an automorphism A
in Aut(X0(63)), we put F = Φ∗(F ), ω = Φ∗(ω) and A = ΦAΦ−1 for the cor-
responding function, differential and automorphism of X(7, 3). Through the
isomorphism Φ, equations (1) and (2) in the previous section yield rational
models for X+(7, 3) and X(7, 3), respectively, and we have

Q(X+(7, 3)) = Q(x, y), Q(X(7, 3)) = Q(x, y, r) = Q(x, y, s),

Ω1
Q(X+(7, 3)) = 〈ω1, ω2, ω3〉Q, Ω1

Q(X(7, 3)) = 〈ω1, ω2, ω3, ν4, ν5〉Q.

Analogously,

S4 ≃ 〈W, S, w9〉 = Aut(X+(7, 3)) →֒ Aut(X(7, 3)),

and the involution w defining X+(7, 3) as a quotient of X(7, 3) is pre-
cisely w7.

Remark 4.1. The automorphism group of X+(N) is trivial when the
genus of this curve is at least three and N is prime (cf. [2]). Thus, for any such
level N , the curve X+(N, 3) has no involutions W with 〈W, S, w9〉≃S4. This
reinforces the exceptionality of the case N = 7 exhibited in Proposition 2.2.

Consider the following diagram of function fields, where the horizontal
arrows are isomorphisms induced by Φ while the vertical ones are inclu-
sions:
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Q(X(7, 3)) Q(X0(63))
Φ∗

oo

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

Q(X+(7, 3)) Q(X0(63)/〈w7〉)Φ∗

oo

Φ∗(Q(X0(21)/〈w7〉)) Q(X0(21)/〈w7〉)≃oo

jjjjjjjjjjjjjjj
Q(X0(7))

eeeeeeeeeeeeeeeeeeeeeeeeeeeee

Q(X+(7)) = Q(t(τ)) Q(t(3τ))
≃oo

We now dissect the left column of the diagram by proceeding in several
steps.

The function field of X+(7). For this function field, we take the following
generator over Q:

t(τ) =

(
η(τ)

η(7τ)

)4

+ 72

(
η(7τ)

η(τ)

)4

=
1

q
− 4 + 51q − 204q2 + · · ·

where η denotes the Dedekind function on the complex upper half-plane.
Let us also recall, for future use, that Q(X0(7)) is generated over Q(X+(7))
by the elliptic modular function j. The relation between the functions j and
t can be computed using the procedure described in [13]:

j2 − (13 + t)(−96 + 5t + t2)(−1371 − 1710t − 170t2 + 10t3 + t4)j

+ (13 + t)2(3529 + 250t + t2)3 = 0.

A non-CM rational value of t gives rise to a quadratic Q-curve of degree 7
with j-invariant such that Q(j) = Q(

√
t2 − 196).

The function field of X0(21)/〈w7〉. Using Proposition 3 of [12], we obtain
a rational function u0 on X0(21) with divisor 2(1/3)−2(∞) and normalized
Fourier expansion, namely

u0 =
η(3τ)3η(7τ)

η(τ)η(21τ)3
=

1

q2
+

1

q
+ 2 + 2q2 + · · · .

Moreover, the involution w7 sends u0 to 7/u0. Then the functions

u = u0 +
7

u0
=

1

q2
+

1

q
+ 2 + 9q2 − 6q3 + · · · ,

v =
du

2ω1
=

1

q3
+

3

2q2
+

1

2q
− 6q + · · ·

generate Q(X0(21)/〈w7〉) over Q and satisfy the equation

(3) v2 = u3 − (23/4)u2 − 28u + 161.
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This is the elliptic curve of conductor 21 with label A3 in Cremona’s nota-
tion, while the label of X0(21) is A1.

The extension of function fields Q(X+(7, 3))/Φ∗(Q(X0(21)/〈w7〉)). This
extension corresponds through Φ to Q(x, y)/Q(u, v). So all we need is to
express u and v as rational functions in x and y. We first observe that
the degree-three rational cover X0(63) → X0(63)/〈w9Sw9〉 is actually the
forgetful map X0(63) → X0(21), since the pullback of the regular differ-
entials is 〈ω1〉. Thus, the functions on X0(21)/〈w7〉 are exactly those on
X0(63)/〈w7〉 which are invariant under the automorphism w9Sw9. The func-
tions

(4) U =
(−3 + x − 9y)(3 + x − 9y)

x2
, V =

(−3 + x − 9y)3

x3

satisfy this. Since [Q(x, y) : Q(U, V )] = 3, these functions generate the func-
tion field of X0(21)/〈w7〉 over Q, that is, Q(u, v). Using the q-expansions of
x, y, u and v, we obtain the equalities

u = 4
−144 − 348U + 26U2 + 42V + 17UV + 2V 2

(24 + 2U + V )2
,

v = 9
432(48+16U−5U2)−V (2880−2208U+40U2−132V +22UV +V 2)

(24 + 2U + V )3
,

which combined with (4) give the desired expressions.

The function field Φ∗(Q(X0(21)/〈w7〉)) as an extension of Q(X+(7)).
What remains to be done is to express t as a rational function in u and v.
As t(τ) = t(3τ), this is equivalent to giving t(3τ) as a rational function in
u and v. The function t(3τ), viewed on X0(21)/〈w7〉, has exactly a pole of
order 3 at each cusp. Since the function

R(τ) =
η(τ)3η(7τ)3

η(3τ)3η(21τ)3
=

1

q2
− 3

q
− 8q + · · ·

has divisor 2(0)+2(1/7)−2(1/3)−2(∞) on X0(21) and is sent to −R by w7

(cf. [12]), its square lies in Q(X0(21)/〈w7〉). More precisely, we get

R2 = u2 − 8v + 16u − 120.

Analogously, the function R2(τ)t(3τ) has a unique pole (of order 7) at the
cusp ∞ of X0(21)/〈w7〉, so it must also be a polynomial in u and v. Using
again the q-expansions of u and v, we finally obtain

(5) t =
−1624 + 742u + 25u2 − 19u3 − 168v + 58u v + 2u2v

2(u2 − 8v + 16u − 120)
.

To finish this section, we note that the Prym variety associated with
the cover X(7, 3) → X+(7, 3) is isomorphic over Q to the modular Abelian
variety Af4

attached to the newform f4 by Shimura [21] as a subvariety of
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the Jacobian J0(63) of X0(63). This Abelian surface is the Jacobian of the
curve (cf. [5])

(6) Ĉ : ŷ2 = − 1

27
x̂6 − 2x̂3 + 1.

Note that this genus-two curve is the one given for the Abelian surface S63,B

in the tables of [15], where it was computed by analytical means.

There also exists a genus-two curve C̃ over Q which is dominated by
X(7, 3) and whose Jacobian is isogenous to Af4

over Q. Specifically,

(7) C̃ : ỹ2 = x̃6 − 26x̃3 − 27,

where x̃ = ν4/ν5 = r/s and ỹ = dx̃/ν5. The non-constant morphism

X(7, 3) → C̃ sending (x, y, r, s) to (x̃, ỹ) has degree four, so it is unram-

ified, and is defined over Q. The curve C̃ is labeled C63 in Table 1 of [14].

It turns out that the above curve Ĉ is not isomorphic to C̃, so it is not
dominated by X(7, 3).

5. The twisted curves X+(7, 3)̺ and X(7, 3)̺,m. Let us now twist
the modular curve X+(7, 3) following the general recipe given in Section 2.
We start from a fixed representation ̺ : GQ → PGL2(F3) with cyclotomic
determinant, and denote by L its splitting field. We take ̺ to be surjective,
so that it is determined by L up to conjugation in PGL2(F3). Since this
group is isomorphic to the symmetric group S4, we can actually take as
input data a degree-four polynomial f ∈ Z[X] with splitting field L. Note
that the condition on the determinant amounts to saying that L contains√
−3 or, equivalently, that the discriminant of f is −3 up to a rational

square.

We identify Gal(L/Q) with S4 by fixing an order of the roots of f .
For convenience, we take as generators for this Galois group the following
permutations:

σ1 = (1, 2, 3), σ2 = (1, 2)(3, 4), σ3 = (1, 2).

Note that Q(
√
−3) is the fixed field for 〈σ1, σ2〉. So the (conjugacy class of the)

representation ̺ translates into the isomorphism Gal(L/Q) ≃ Aut(X+(7, 3))
sending σ1, σ2, σ3 to S2, w9, W , respectively. This isomorphism identifies the
conjugacy class in PGL2(F3) of the matrix V fixed in Section 2 with the
conjugacy class in Aut(X+(7, 3)) of the automorphismW . Thus, the 1-cocycle
attached to ̺ can be given as follows:

ξσ1
= S

−1
, ξσ2

= w9, ξσ3
= 1.

5.1. The isomorphism between X+(7, 3)̺ and X+(7, 3)′̺. The 1-cocycles

ξ and ξ′ are related by the formula ξ′ = WξW , hence are cohomologous. It



Rational points on twists of X0(63) 373

follows that the composition

X+(7, 3)′̺
Ψ ′

→ X+(7, 3)
W→ X+(7, 3)

Ψ−1

→ X+(7, 3)̺

is defined over Q, where Ψ and Ψ ′ are the isomorphisms in Theorem 2.1.
The set of isomorphism classes of quadratic Q-curves of degree 7 realiz-
ing ̺ is in bijection with the union of the disjoint sets Ψ(X+(7, 3)̺(Q)) and

Ψ ′(X+(7, 3)′̺(Q)). Since one set is the image of the other under W , to get
all such Q-curves it suffices to determine just one of the two sets and then
use the next result.

Proposition 5.1. The automorphism W induces a non-trivial involu-

tion on X+(7) given by

t 7→ (−196 − 13t)/(13 + t).

Proof. The automorphism group of the cover X+(7, 3) → X+(7) is
〈S, w9〉. Since W normalizes this group, it induces a non-trivial automor-
phism on X+(7), whose action on t comes from the expression of this Haupt-
modul as an element in Q(X+(7, 3)), given in Section 4, together with the
action of W on this function field, given in Section 3.

A corollary follows, which is reproved in Subsection 5.6 below.

Corollary 5.1. Fix a non-zero integer m. Among the isomorphism

classes of quadratic Q-curves of degre 7 realizing ̺, those with field of mod-

uli Q(
√

m) are the same in number as those with field of moduli Q(
√
−3m).

Proof. A non-cuspidal value t ∈ Q provides a quadratic Q-curve of de-
gree 7 with j-invariant in Q(

√
t2 − 196). Then the value (−196−13t)/(13+t)

obtained from Proposition 5.1 provides a Q-curve with j-invariant lying in
Q(

√
−3(t2 − 196)).

5.2. A plane quartic model for X+(7, 3)̺. In this subsection we provide
a method to produce a plane quartic rational model for X+(7, 3)̺. The
background strategy is as in [10]: such a model can be obtained from a basis
of the 3-dimensional Q-vector space Ω1

Q(X+(7, 3)̺).

Consider on Ω1
Q
(X+(7, 3)) = Ω1

Q(X+(7, 3))⊗Q the Galois action twisted

by the 1-cocycle ξ. It is defined by

(ω ⊗ γ)σ
ξ := (σωξ−1

σ ) ⊗ σ(γ)

for ω ∈ Ω1
Q(X+(7, 3)), γ ∈ Q and σ ∈ GQ. This action factors through

Gal(L/Q), and the regular differentials on X+(7, 3)̺ defined over Q can be
identified with the fixed elements in Ω1

L(X+(7, 3)), that is,

Ω1
Q(X+(7, 3)̺) = (Ω1

Q(X+(7, 3)) ⊗ L)
Gal(L/Q)
ξ .
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We fix a basis {ωi ⊗ θj}i,j for Ω1
Q(X+(7, 3)) ⊗ L, where ω1, ω2, ω3 are

the forms in Ω1
Q(X0(63)/〈w7〉) introduced in Section 3, ω1, ω2, ω3 are the

corresponding forms in Ω1
Q(X+(7, 3)), and {θ1, . . . , θ24} is an integral basis

of L.
The action of the Galois generators σ1, σ2, σ3 on this basis is given by

three 72 × 72 matrices with rational entries. We call them W1, W2, W3,
respectively. The computation of these matrices is straightforward from the
table in Subsection 3.3 and from the definition of the 1-cocycle ξ.

We must now look for three elements in Ω1
Q(X+(7, 3)) ⊗ L which are

linearly independent over Q and invariant under the above Galois action. In
other words, we compute a basis {X̺, Y̺, Z̺} for the 3-dimensional vector
subspace of Ω1

Q(X+(7, 3)) ⊗ L corresponding to

3⋂

k=1

ker(Wk − Id72) ⊆ Q72.

Writing X̺, Y̺, Z̺ as linear combinations of ω1, ω2, ω3, we get the 3× 3
matrix Θ with entries in L giving the basis change

(ω1, ω2, ω3) = (X̺, Y̺, Z̺)Θ.

Plugging ω1, ω2, ω3 in the homogenization of equation (1), then replacing
X̺, Y̺, Z̺ by projective variables X, Y, Z and finally factoring out, one gets
a plane quartic equation F (X, Y, Z) = 0 for the twist X+(7, 3)̺ over Q.
Then the isomorphism Ψ : X+(7, 3)̺ → X+(7, 3) in Theorem 2.1 is given by

(X : Y : Z) 7→ (X : Y : Z)Θ.

Remark 5.1. Actually Ψ is defined over the fixed field L〈σ3〉, so the
above matrix Θ has all its entries in this degree-twelve extension. Moreover,
detΘ ∈ Q. Indeed, one has

X̺ ∧ Y̺ ∧ Z̺ = detΘ−1ω1 ∧ ω2 ∧ ω3

in
∧3 Ω1(X+(7, 3)). Then, for any σ in GQ,

(X̺∧Y̺∧Z̺)
σ
ξ = σ(detΘ−1)

∧

i=1,2,3

(ωiξ
−1
σ ) = σ(detΘ−1) det ξ−1

σ (ω1∧ω2∧ω3),

where ξσ is seen as an automorphism in Ω1(X+(7, 3)). So the assertion
follows from the facts that X̺∧Y̺∧Z̺ is invariant under the twisted action
of GQ and det ξσ = 1 for all σ (see Remark 3.1).

5.3. Genus-one quotients of X+(7, 3)̺. Recall that every quotient of
X+(7, 3)̺ by an involution has genus one (see Remark 3.1); we now make
explicit two such quotients. In order to do that, we begin by introducing the
cubic and quartic fields

L3 = L〈σ2,σ3,σ2

1
σ2σ1〉, L4 = L〈σ3,σ2σ1σ2〉.
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Note that L4 is generated by a root of the polynomial f , whereas L3 cor-
responds to its cubic resolvent. Since the discriminant of L is −3 up to
squares,

L3 = Q(α)

for some α satisfying α3 ∈ Q. Replacing α by 1/α if necessary, we can further
assume that σ1(α) = ζα, where ζ = (−1 +

√
−3)/2.

Firstly, let us consider the involution w̺ = Ψ−1w9Ψ in Aut(X+(7, 3)̺).
A straightforward computation shows that w̺ is defined over L3. Let us
denote by E̺ the genus-one curve X+(7, 3)̺/〈w̺〉. In Remark 5.2 below
we shall give a procedure to get a model for the cover X+(7, 3)̺ → E̺.
Assume E̺ is elliptic over L3, otherwise X+(7, 3)̺(Q) is empty. The Weil
restriction ResL3/Q E̺ is Q-isogenous to the Jacobian of X+(7, 3)̺ and, in
particular,

rankQ Jac(X+(7, 3)̺) = rankL3
E̺.

When this rank is at most two, we are able to apply an elliptic-Chabauty
method to determine all rational points of X+(7, 3)̺. Notice that E̺ is iso-
morphic to the elliptic curve of conductor 21 with label A1 in Cremona’s
notation, that is, the modular curve X0(21).

A second genus-one quotient is constructed as follows. From the equal-
ity

{τ ∈ Gal(L/Q) : τΨΨ−1 ∈ 〈w9S w9〉} = 〈σ3, σ2σ1σ2〉
it follows that the composition

X+(7, 3)̺
Ψ−→ X+(7, 3) → X+(7, 3)/〈w9S w9〉 ≃ X0(21)/〈w7〉

is defined over L4. Let us denote by ES the elliptic curve X+(7, 3)/〈w9S w9〉,
for which a model over Q is given by equation (3). If rankL4

ES = 0, then it
is unnecessary to compute an equation for X+(7, 3)̺. Indeed, in this case the
values t ∈ X+(7)(Q) obtained from the torsion points in ES(L4) using (5)
provide a finite set of candidate Q-curves E, and it suffices to check for each
E whether it realizes ̺ or not. We also notice that

rankQ Jac(X+(7, 3)̺) = rankL4
ES ,

since the Weil restriction ResL4/Q ES is isogenous to ES × Jac(X+(7, 3)̺)
over Q and rankQ ES = 0.

5.4. The unramified double cover X(7, 3)̺ → X+(7, 3)̺. Recall that we
have a commutative diagram

X(7, 3)̺

��

Ψ // X(7, 3)

��

X+(7, 3)̺
Ψ // X+(7, 3)
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where the vertical arrows are rational unramified double covers. We next
show how to obtain equations for the left cover from the rational model

ν2
4 = Q1(ω1, ω2, ω3), ν4ν5 = Q2(ω1, ω2, ω3), ν2

5 = Q3(ω1, ω2, ω3)

corresponding to the right cover (cf. Subsection 3.2). Recall also that

Ω1
Q(X+(7, 3)̺) = Ψ∗(〈X̺, Y̺, Z̺〉Q),

where (ω1, ω2, ω3) = (X̺, Y̺, Z̺)Θ.

Proposition 5.2. Let α be as in Subsection 5.3. The regular differentials

on X(7, 3)̺ corresponding through the isomorphism Ψ to

R̺ = (1/α)ν4 and S̺ = αν5

are defined over Q. In particular , a rational projective model for the double

cover X(7, 3)̺ → X+(7, 3)̺ is given by the relations

R2
̺ = Q1,̺(X̺, Y̺, Z̺), R̺S̺ = Q2,̺(X̺, Y̺, Z̺), S2

̺ = Q3,̺(X̺, Y̺, Z̺),

where
Q1,̺(X, Y, Z) = (1/α2)Q1((X, Y, Z)Θ),

Q2,̺(X, Y, Z) = Q2((X, Y, Z)Θ),

Q3,̺(X, Y, Z) = α2Q3((X, Y, Z)Θ).

Proof. The statement follows from the definition of the 1-cocycle ξ defin-
ing the twisted curve X(7, 3)̺ together with the observation that the invo-
lution w9 acts trivially on ν4 and ν5 while S∗ν4 = ζν4 and S∗ν5 = ζ2ν5.

Remark 5.2. For an eigenvector ω ∈ Ω1
C(X+(7, 3)) of w9 with eigen-

value −1, it can be checked that

C(X+(7, 3)/〈w9〉) = C(Q1(ω1, ω2, ω3)/Q2(ω1, ω2, ω3), ω
2/Q2(ω1, ω2, ω3))

if and only if ω is not a multiple of ω1 +3ω2±
√
−3 ω3. Now, for the projec-

tive model for X+(7, 3)̺ given by

Q1,̺(X, Y, Z)Q3,̺(X, Y, Z) − Q2,̺(X, Y, Z)2 = 0,

the involution w̺ in Subsection 5.3 is defined over L3 = Q(α). So for any
non-trivial element Ψ∗(aX̺ + bY̺ + cZ̺) in the two-dimensional vector sub-
space of Ω1

L3
(X+(7, 3)̺) consisting of the eigenvectors of w̺ with eigen-

value −1, the morphism φ̺ : X+(7, 3)̺ → P2 given by

(X : Y : Z) 7→ (u : v : w) = (Q1,̺(X, Y, Z) : Q2,̺(X, Y, Z) : (aX+bY +cZ)2)

is defined over L3 and its image is the genus-one curve E̺.

5.5. Genus-two curves attached to X(7, 3)̺. Let us now twist by ̺ the

genus-two curves Ĉ and C̃ at the end of Section 4. Keep the notation in
Proposition 5.2.
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The Prym variety associated with the cover X(7, 3)̺ → X+(7, 3)̺ is the
Jacobian of the genus-two curve

Ĉ̺ : ŷ2
̺ = − 1

27
d4x̂6

̺ − 2d2x̂3
̺ + 1,

where d = α3. Indeed, since d and detΘ lie in Q (cf. Remark 5.1), an
equation for such a curve is given by

ŷ2
̺ = −

(
d

detΘ

)2

det(Q1,̺ + 2x̺̂Q2,̺ + x̂2
̺Q3,̺),

where we regard each Qi,̺ as the symmetric 3 × 3 matrix corresponding to
the quadratic form that it represents. Since

Q1,̺ =
1

α2
ΘQ1Θ

t, Q2,̺ = ΘQ2Θ
t, Q3,̺ = α2ΘQ1Θ

t,

the claim follows from the equality

det(Q1,̺ + 2x̺̂Q2,̺ + x̂2
̺Q3,̺) =

detΘ2

α6
det(Q1 + 2x̺̂α

2Q2 + x̂2
̺α

4Q3)

together with equation (6) and the relation

−det(Q1 + 2x̂Q2 + x̂2Q3) = − 1

27
x̂6 − 2x̂3 + 1.

Whenever rankQ Jac Ĉ̺ is at most one, one can use the Abel–Prym em-

bedding X+(7, 3)̺ → Jac Ĉ̺ (or twice that, which turns out to be easier
to compute), and apply Chabauty’s method to bound the cardinality of
X+(7, 3)̺(Q). This is described in general in [5]. However, in our particu-

lar setting, the rational cover X(7, 3)̺ → C̺̃ in the following proposition is
more useful.

Proposition 5.3. The functions x̺̃ =Ψ∗(R̺/S̺) and ỹ̺ =α3dx̺̃/Ψ∗(S̺)
lie in Q(X(7, 3)̺) and generate over Q the function field of the genus-two

curve

C̺̃ : ỹ2
̺ = d4x̃6

̺ − 26d2x̃3
̺ − 27,

where d = α3.

Proof. It suffices to use Proposition 5.2 and equation (7) along with the
equalities x̺̃ = Ψ∗(x̃)/α2 and ỹ̺ = Ψ∗(ỹ).

With the notation in Remark 5.2, we have the following commutative
diagram, where the morphism degrees are displayed:
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X(7, 3)̺

2
��

4

  A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

X+(7, 3)̺

φ̺2

��

E̺

u/v2

��

C̺̃

x̺̃

2

vvnnnnnnnnnnnnnnnn

P1

5.6. The twisted curves X(7, 3)̺,m. With the notation in Proposition 5.2,
a rational projective model for the double cover

X(7, 3)̺,m
ϕm−→ X(7, 3)̺ → X+(7, 3)̺

introduced in Section 2 is given by

R2
̺,m = mQ1,̺(X̺, Y̺, Z̺), R̺,mS̺,m = mQ2,̺(X̺, Y̺, Z̺),

S2
̺,m = mQ3,̺(X̺, Y̺, Z̺),

where R̺,m =
√

m R̺ and S̺,m =
√

m S̺. Multiplying by non-zero rational
squares if necessary, we can assume each polynomial Qi,̺(x̺, y̺, 1) is in
Z[x̺, y̺]. Let S be the set of integers dividing the squarefree part of the
greatest common divisor of the three resultants

Resx̺
(Resy̺

(Qi,̺(x̺, y̺, 1), Qj,̺(x̺, y̺, 1)),

Resy̺
(Qi,̺(x̺, y̺, 1), Qk,̺(x̺, y̺, 1)))

obtained for 1 ≤ i, j, k ≤ 3 and i 6= j 6= k. Then there are no rational points
on X(7, 3)̺,m when the squarefree part of m is not in S.

We now have a rational map onto a genus-two curve

X(7, 3)̺,m → C̺̃,m, C̺̃,m : mỹ2
̺,m = d4x̃6

̺,m − 26d2x̃3
̺,m − 27,

where

x̺̃,m = Ψ∗(R̺,m/S̺,m) = x̺̃, ỹ̺,m = α3dx̺̃,m/Ψ∗(S̺,m) = ỹ̺/
√

m

and d = α3 (cf. Proposition 5.3). Thus, to get the rational points on

X(7, 3)̺,m we only need to determine C̺̃,m(Q) and then use the following
remark.

Remark 5.3. The diagram in Subsection 5.5 still commutes if we replace
X(7, 3)̺ and C̺̃ by X(7, 3)̺,m and C̺̃,m, respectively. Given a lifting to
X(7, 3)̺,m of a point (X0 : Y0 : Z0) in X+(7, 3)̺, denote by (x̃0, ỹ0) its image
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in C̺̃,m. Then the liftings to X(7, 3)̺,m of any other point in X+(7, 3)̺ map
to (x̃0,±ỹ0) if and only if this point is a zero of the function R̺/S̺ − x̃0,
that is, if and only if it also lies in the conic

(8) Q1,̺(X, Y, Z)/Q2,̺(X, Y, Z) = Q1,̺(X0, Y0, Z0)/Q2,̺(X0, Y0, Z0).

This is used in the second example of next section.

Finally, note that the composition

X(7, 3)′̺,m
Ψ ′ϕm

// X(7, 3)
W // X(7, 3)

(Ψϕ−3m)−1

// X(7, 3)̺,−3m

is defined over Q, where we use any lifting to X(7, 3) of the automor-
phism W . Thus, to get all quadratic Q-curves of degree 7 realizing ̺ and
with field of moduli Q(

√
m), it suffices to compute the t-values obtained

from both the rational points on X(7, 3)̺,m and the image under W of the
rational points on X(7, 3)̺,−3m. Proposition 5.1, which can be useful for
this computation, then yields the t-values of quadratic Q-curves of degree 7
realizing ̺ and with field of moduli Q(

√
−3m).

6. Two examples. The computations involved in the following exam-
ples have been performed with the computer algebra system Magma v2.11
(see [18]). The first example uses a genus-one strategy following Subsection
5.3, while the second one uses a genus-two strategy following Subsection 5.6.

Example 1. Consider the surjective representation ̺ : GQ → PGL2(F3)
defined up to conjugation by the splitting field of the irreducible polynomial

f(X) = X4 + 2X3 − 3X2 + 2X + 7.

The discriminant of f equals −2637. A projective model for the cover
X(7, 3)̺ → X+(7, 3)̺ is given by

R2 = Q1,̺(X, Y, Z), S2 = Q3,̺(X, Y, Z), RS = Q2,̺(X, Y, Z),

where

Q1,̺ = 2(X2 + 2XY + 4XZ + 8Y 2 + 2Z2),

Q3,̺ = −6(26X2 + 50XY + 24XZ + 11Y 2 + 24Y Z + 6Z2),

Q2,̺ = 3(15X2 − 4XY + 20XZ − 11Y 2 + 4Y Z + 6Z2).

Theorem 6.1 below proves that (−5 : 1 : 5) is the only rational point
on X+(7, 3)̺. The t-values corresponding to this point are t1 = −10 and
t2 = −22, and the corresponding j-invariants for the associated quadratic
Q-curves of degree 7 are

j1 = 3(−23 ± 10
√
−6)3, j2 = −9(139 ± 102

√
2)3.

Theorem 6.1. With the above notations, X+(7, 3)̺(Q) = {(−5 : 1 : 5)}.
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Proof. For this case, it turns out that L3 = Q(α), with α3 = −3. We
consider the following morphism (cf. Remark 5.2):

X+(7, 3)̺
φ̺−→ P2,

(x : y : z) 7→ (u : v : w)=(Q1,̺ : Q2,̺ : (1609x+(−12α2+147α+1015)z)2).

Using the rational point φ̺(−5:1 :5), the genus-one curve E̺ =φ̺(X
+(7, 3)̺)

can be shown to be isomorphic to

E̺ : Y 2 = X3 + (−2α2 + 2α − 2)X2 + (−189α2 + 315α − 441)X.

The equation for E̺ and the map X+(7, 3)̺ → E̺ are both too horrible to
reproduce here, but the information above is sufficient to recover them using
a computer algebra system. We find that

u

v
=

(2α2 − 6α + 2)Y − X2 + (−8α2 + 4α − 8)X − 9α2 − 9α − 45

3(X2 + (−14α2 + 22α − 30)X + (15α2 − 9α − 45))
.

We have the following commutative diagram:

X+(7, 3)̺

Q1,̺/Q2,̺

��

φ̺

$$I
II

II
II

II
I

E̺

u/v
zztttttttttt

oo ∼ // E̺,

P1

where Q1,̺/Q2,̺ : X+(7, 3)̺ → P1 is defined over Q and all other maps are
defined over L3. It follows that

X+(7, 3)̺(Q) ⊆ (Q1,̺/Q2,̺)
−1(P1(Q) ∩ (u/v)(E̺(L3))).

We can then use Chabauty-type methods as developed in [4] to compute the
intersection P1(Q) ∩ (u/v)(E̺(L3)).

First note that a full 2-descent on the curve

E ′
̺ : y2 = x3 + (4α2 − 4α + 4)x2 + (768α2 − 1280α + 1792)x,

which is isogenous to E̺ over L3, shows that E ′
̺(L3) is of rank at most one,

and therefore E̺(L3) is as well. In fact, one can check that

E̺(L3) ≃ Z/2 × Z/2 × Z,

where

t1 = (0, 0) and t2 = (−7α2 + 7α − 7, 0)

generate the 2-torsion and

g = ((−3α2 + 18α − 27)/4, (111α2 − 243α + 360)/8)

is a non-torsion point in E̺(L3).
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We consider the rank-one module E̺(L3) that E̺(L3) generates over Z5

inside E̺(L3 ⊗ Q5), viewed as a three-dimensional compact algebraic group
A over Q5. The inverse image of P1(Q5) under u/v yields a one-dimensional
subvariety R over A. The points we are interested in lie in the intersection
E̺(L3) ∩ R, which is an intersection of two one-dimensional 5-adic analytic
varieties inside a compact three-dimensional ambient space A. One would
expect only finitely many points in this intersection, and this is indeed the
case.

In fact, one can check that, from the fact that 〈t1, t2, g〉 ⊂ E̺(L3) is

5-saturated, it follows that 〈t1, t2, g〉 generates E̺(L3). By making 5-adic
power series expansions locally for 〈t1, t2, g〉 ∩ R, one can verify that all
points P ∈ E̺(L3) mapping to P1(Q5) under u/v have (u/v)(P ) = −1/3.
There are routines available in Magma to verify these computations.

Finally, it is easily checked that the only rational point on X+(7, 3)̺

satisfying Q1,̺/Q2,̺ = −1/3 is (−5 : 1 : 5), which proves our claim.

Example 2. Consider the surjective representation ̺ : GQ → PGL2(F3)
defined up to conjugation by the splitting field of the irreducible polynomial

f(X) = X4 − X3 − 6X2 + 10X − 10.

The discriminant of f equals −223352112. A model for X(7, 3)̺ → X+(7, 3)̺

is given by

R2 = 11Q1,̺(X, Y, Z), S2 = 11Q3,̺(X, Y, Z), RS = 11Q2,̺(X, Y, Z),

where

Q1,̺ = 495(19X2 − 180XY − 6XZ + 412Y 2 + 4Y Z + 3Z2),

Q3,̺ = 660(−23X2 + 172XY − 6XZ − 508Y 2 + 60Y Z + Z2),

Q2,̺ = 990(−X2 + 68XY − 8XZ − 244Y 2 + 16Y Z + Z2).

The curve X+(7, 3)̺ has (at least) the rational points (0 : 0 : 1) and
(5 : 1 : 1). The t-values corresponding to these points are t1 = 19, t2 = 41,
t3 = −27/2 and t4 = −443/32, and the corresponding j-invariants for the
associated quadratic Q-curves of degree 7 are

j1 = 4(360 ± 24
√

165)
3
, j3 = (1/27)((−75 ± 17

√
−55)/2)

3
,

j2 = 2(2685 ± 207
√

165)
3
, j4 = (1/235)((−81195 ± 7641

√
−55)/2)

3
.

We now find that L3 = Q(α), where α3 = 2, and that E̺ is isomorphic
to the quadratic twist of X0(21) by 7α2 + 16α + 13. As it turns out, E̺(L3)
is of rank three, so an argument along the line of the proof of Theorem 6.1
does not work.

Instead, we pass to the unramified double covers X(7, 3)̺,m. Recall that
any rational point on X+(7, 3)̺ lifts to X(7, 3)̺,m for some m. Local ar-



382 N. Bruin et al.

guments show that X(7, 3)̺,m(Q) is empty if m is not equivalent to −55
or 165. In fact, (5 : 1 : 1) and (0 : 0 : 1) give rise to m = −55 and m = 165,

respectively. The corresponding genus-two quotients C̺̃,m admit models

C̺,−55 : y2 = −220(x3 − 1/2)(x3 + 27/2),

C̺,165 : y2 = 660(x3 − 1/2)(x3 + 27/2).

In the two lemmata below, we prove that each of these curves has exactly two
rational points, sharing the same x-coordinate. Moreover, for (X0 : Y0 : Z0)
equal to (5 : 1 : 1) or (0 : 0 : 1), the only rational point on X+(7, 3)̺ satis-
fying equation (8) is (X0 : Y0 : Z0). The following result is a consequence:

Theorem 6.2. With the above notations, we have

X+(7, 3)̺(Q) = {(5 : 1 : 1), (0 : 0 : 1)}.
Lemma 6.1. The genus-two curve C̺,−55 has

C̺,−55(Q) = {(3/4,±495/32)}.
Proof. We write α = 3

√
2 and C = C̺,−55. It is easily checked that the

non-singular projective closure of C does not have rational points above
x = ∞. We note that, for any rational point (x, y) ∈ C(Q), there exist
δ, y1, y2 ∈ Q(α) such that





δy2
1 =

(
x2 − 3

2α2x + 9
2α

)
,

−220Norm(δ)δy2
2 =

(
x − 1

2α2
)(

x + 3
2α2

)(
x2 + 1

2α2x + 1
2α

)
.

In fact, local considerations show that, without loss of generality, we can
assume δ = 4α2 + 6α + 9. Hence, the question is reduced to proving that
x = 3/4 is the only rational value such that

D : y2
2 = (4α2 + 6α + 9)

(
x4 +

3α2

2
x3 − 1

2
x − 3α2

4

)

has a solution with y2 ∈ Q(α). We find that the curve D is isomorphic to

V 2 = (−10α2 − 5)
(
U3 + 2U2 + 7

3U
)
.

A 2-descent on this elliptic curve gives a rank bound of three, but a 2-descent
on the 2-isogenous curve shows that the rank of this curve over Q(α) is
actually one. A maximal rank subgroup is generated by

(U, V ) = (0, 0),

((−72α2 − 96α − 123)/5, (2872α2 + 3616α + 4548)/5).

Using this, it is straightforward to verify using a Chabauty-type argument
locally at 31 that there are only two points in D(Q(α)) with Q-rational
x-coordinate.
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Lemma 6.2. The genus-two curve C̺,165 has C̺,165(Q) = {(−3,±495)}.
Proof. We proceed similarly to the proof of Lemma 6.1. We use two

factorizations, however. When we find a point (x, y) ∈ C(Q(α)) with x ∈ Q,
then there exist y1, y2, y3, y4, ǫ, δ ∈ Q(α) such that





δy2
1 =

(
x2 − 3

2α2x + 9
2α

)
,

660Norm(δ)δy2
2 =

(
x − 1

2α2
)(

x + 3
2α2

)(
x2 + 1

2α2x + 1
2α

)
,

ǫy2
3 =

(
x2 + 1

2α2x + 1
2α

)
,

660Norm(ǫ)ǫy2
4 =

(
x − 1

2α2
)(

x + 3
2α2

)(
x2 − 3

2α2x + 9
2α

)
.

In fact, using local arguments, we can limit ourselves to the cases

(δ, ǫ) ∈ {(9α2 − 3α + 1, α2 + α + 1), (4α2 + 6α + 9,−α2 + 2α + 1),

(α2 + α + 1, 9α2 − 3α + 1)}.
For δ = 9α2 − 3α + 1, we find that the corresponding quartic is isomor-

phic to

V 2 = (3α + 1)
(
U3 + 2U2 + 7

3U
)
,

that its Mordell–Weil group is of rank two and that a subgroup of index
prime to 12 is generated by

(U, V ) = (0, 0),

((8α2 + 4α − 13)/15, (4α2 − 8α + 36)/15),

((589α2 − 805α + 184)/198, (2084α2 − 5080α + 2489)/198).

A simple combinatorial argument mod 43 shows that none of the Q(α)-points
has Q-rational x-coordinate.

For δ = 4α2 + 6α + 9, we find that the corresponding quartic is isomor-
phic to

V 2 = (−10α + 15)
(
U3 + 2U2 + 7

3U
)
.

A 2-isogeny descent on this curve yields a rank bound of three, but a fur-
ther second descent on the homogeneous spaces resulting from the 2-isogeny
descent show that the rank is really one. A maximal rank subgroup of index
prime to 2 is generated by

(U, V ) = (0, 0),

((−7α2 + 28α − 7)/15, (−7α2 + 168α − 140)/15).

Again, a simple combinatorial argument mod 43 shows that none of the
Q(α)-points has Q-rational x-coordinate.

For the third case, we were unable to find sufficient generators for the
Mordell–Weil group of the quartic involving δ. Therefore, we use the curve
associated with the corresponding value of ǫ, for which we were able to find
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all generators. We find that the quartic corresponding to ǫ = 9α2 − 3α + 1
is isomorphic to

V 2 = (−8α2 − 11α − 15)
(
U3 + 2U2 + 7

3U
)
,

with a Mordell–Weil group of rank two. A maximal rank subgroup of index
prime to 2 and to 127 is generated by

(U, V ) = (0, 0),

(−4α2 − 4α − 7, (−304α2 − 380α − 484)/3),

((−865α2−2645α+2990)/594, (40825α2−21565α+5575)/1782).

A Chabauty-type argument at 127, along with combinatorial information
mod 31 and 43, shows that x = −3 is the only rational x-coordinate occur-
ring for points on the above elliptic curve which are defined over Q(α). This
completes the proof.
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Universitat Politècnica de Catalunya
Edifici Omega (Campus Nord)
c. Jordi Girona 1-3
08034 Barcelona, Spain
E-mail: joan.carles.lario@upc.edu

Departament de Matemàtica Aplicada 4
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