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1. Introduction. Let p be a prime number, and I'" = I, the cyclic group
of order p; I' = )}, where )" is the additive group of the finite field F,, of
p elements. We say that a number field F' satisfies condition (A,) if for any
tame I'-extension N/F, Oy is cyclic over the group ring OrI". Here, OF is
the ring of integers of F'. It is well known by work of Hilbert and Speiser that
the rationals Q satisfy (Ap) for all primes p. In [6, Theorem 1], Greither et
al. gave a necessary condition for a number field F to satisfy (A,) in terms of
(a subgroup of) the ray class group of F' defined modulo p, using a theorem
of McCulloh [20, 21]. Applying that condition, they proved that F' # Q does
not satisfy (A,) for infinitely many primes p ([6, Theorem 2]). Thus, it is
of interest to determine which number fields F' satisfy (Aj,). Several authors
[3, 4, 11-13] obtained some results on the problem using the above men-
tioned condition (and some other results such as a theorem of Gémez Ayala
[5, Theorem 2.1]). For instance, it was shown by Carter [3, Corollary 3]
that an imaginary quadratic field F = Q(v/—d) with d > 0 square free
satisfies (As) if and only if d = 1, 3 or 7. Further, all quadratic fields satisfy-
ing (As) were determined independently in [3, Corollary 5] and [12, Propo-
sition]. There are exactly four imaginary and eight real ones satisfying (As).
The purpose of this paper is to determine all imaginary quadratic fields
satisfying (Ap) for p =5, 7 or 11. The result is as follows:

THEOREM 1. An imaginary quadratic field F = Q(v/—d) with a square
free positive integer d satisfies the condition (As) if and only if d =1 or 3.
It satisfies (A7) if and only if d = 3. No imaginary quadratic field satis-
ﬁes (AH).

As in [6], the above mentioned theorem of McCulloh plays an important
role in proving Theorem 1. In Section 2, we recall McCulloh’s theorem and
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several of its consequences including the above mentioned condition for (A,)
in [6]. In Section 3, we give some conditions for an imaginary quadratic field
to satisfy (A,) and prove Theorem 1. In Section 4, we review some topics
on subfields of the p-cyclotomic field Q((,) satisfying (A,).

2. Consequences of McCulloh’s theorem. In this section, we recall
a theorem of McCulloh [20, 21] and several of its consequences. Let F' be
a number field. For an integer a € Op, let Clp(a) be the ray class group
of F' defined modulo the ideal aOpr. We simply write Clp = Clp(1), the
absolute class group of F. Let Cl(OpI") be the locally free class group of
the group ring OpI, and let CI°(OpI") be the kernel of the homomorphism
Cl(OpI') — Clp induced from the augmentation Opl" — Op. The class
group CI°(OpI") is known to be a quotient of some copies of the ray class
group Clp(c,)(p), but it is a quite complicated object in general. Let R(OpI")
be the subset of CI(OpI") consisting of the locally free classes [On] for
all tame I'-extensions N/F. It follows that F' satisfies (A4,) if and only if
R(OpI") = {0}. It is known that R(OpI") C CI°(OpI'). Let G = F) be the
multiplicative group of F,,. Through the natural action of G on I" = IF;; , the
group ring ZG acts on CI(OfrI’). Let S¢ be the classical Stickelberger ideal
of the group ring ZG. For the definition, see Washington [26, Chapter 6].

THEOREM 2 ([21]). Under the above setting, we have
R(OpT") = CI°(OpI)5e,

Let OF be the group of units of a number field F'. For an integer a € Op,
let [Of]q be the subgroup of the multiplicative group (Op/a)* consisting
of the classes containing a unit of F'. The quotient (Or/a)* /[Of]a is a sub-
group of the ray class group Clg(a). Greither et al. [6] proved the following
relation between condition (A,) and Clp(p) from Theorem 2 by studying a
canonical subgroup of Cl(OpI"), called the Swan subgroup.

PROPOSITION 1 ([6, Theorem 1]). Assume that a number field F' satisfies
condition (Ap). Then the exponent of the quotient (Op/p)*/|Ox], divides
(p—1)%/2 when p > 3, and (Or/p)* = [Of], when p = 2.

The following is obtained from Proposition 1 and [5, Theorem 2.1].

PROPOSITION 2 ([11, Proposition 2]). A number field F satisfies condi-
tion (Az) if and only if the ray class group Clp(2) is trivial.

Similar conditions for (Az) are also given in [3, Theorem 2] and in Her-
reng [9, Theorem 2.1]. In view of Proposition 2, we let p > 3 in the following.
To give another consequence of Theorem 2, we need to recall a “Stickelberger
ideal” associated to a subgroup of G. Let H be a subgroup of G. For an el-
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ement a € ZG, let
ag = Z a0 € ZH with o= Z ay0.
ceH oceG
In other words, ay is the H-part of . In [14], we defined the Stickelberger
ideal Sg of ZH by
Sy ={ag|aeSg} CZH.

Several properties of the ideal Sy are studied in [14, 15, 17, 18]. For an
integer i € Z, let i be the class in F, = Z/p containing 4. It is known that
the ideal Sy is generated over Z by the Stickelberger elements

& T H ez
p p
for all integers r € Z. Here, i runs over the integers with 1 <7 <p—1 and
i € H, and for a real number z, [z] is the largest integer < z. Let Ny be
the norm element of ZH. It follows that
Ny = _HH,—l € Sy.
Letting o be a generator of H, put
S {1+Q+~"+QH/2_1 if |H| is even,
=1 if [H| is odd.
As is easily seen, the ideal (ng) = nygZH does not depend on the choice of .
It is known that Sy C (ng) ([18, Lemma 1]) and that the quotient (ng)/Sy
is a finite abelian group whose order divides the relative class number &, of
the p-cyclotomic field Q(¢,) ([18, Theorem 2]):
(2) () + Sl | By
Let F' be a number field, and K = F((,). We naturally identify the
Galois group Gal(K/F') with a subgroup H of G through the Galois action
on (p. Then the group ring ZH acts on several objects associated to K/F.

Let m = (;, — 1. The following assertion was obtained from Theorem 2 and
Proposition 1.

PrOPOSITION 3 ([13, Theorem 5]). Let F be a number field, and let
K =F(¢p) and H = Gal(K/F) C G. If F satisfies (Ap), then

Clg(m)% = {0} and Clg(p)°" NClx(p)? = {0}.
Here, Clg(p)" is the Galois invariant part.

It is known that the converse of this assertion holds when p = 3 ([12,
Theorem 2]). The following is a consequence of Proposition 3.

PROPOSITION 4. Let F and K be as in Proposition 3. Assume that
F satisfies (Ap) and that the norm map Clx — Clp is surjective. Then
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the natural map Clp — Clg is trivial. In particular, the exponent of Clp
divides [K : F.
Proof. By the assumption, any ideal class ¢ € Clp is of the form ¢ = dV#

for some d € Clk. However, when F satisfies (A,), the class dV is trivial
in Clg by Proposition 3 and Ny € S7. =

When F/Q is unramified at p, the Galois group Gal(K/F') is naturally
identified with G = F; through the Galois action on (,. The following is a
consequence of Theorem 2.

PROPOSITION 5. Assume that F/Q is unramified at p, and let K =
F((y). Then F satisfies condition (Ap) if and only if the Stickelberger ideal
Sa annihilates the ray class group Clg ().

Proof. Brinkhuis [2, Proposition (2.2)] proved that the ZG-module
CI%(OFI) is naturally isomorphic to the ray class group Clx (7) when F/Q
is unramified at p. Hence, the assertion follows immediately from Theo-
rem 2. m

Though the following assertion is irrelevant to the proof of Theorem 1,
it might be of some interest to the reader. For a CM-field K, let Cl, be
the kernel of the norm map Clxg — Clg+ where KT is the maximal real
subfield of K.

PROPOSITION 6. Let F be a totally real number field, and K = F((p).
If F satisfies (Ap), then the exponent of Cly divides 2h,, .

Proof. Let H = Gal(K/F) C G, and let g be a generator of H. As F
is totally real, |H| is even and J = ol#l/2 is the complex conjugation in H.
We easily see that (1 — o)ny =1 — J, and that nyh, € Sy by (2). Hence,
(1 —J)h, € Sg. Assume that I satisfies (A4p). Then, by Proposition 3,
(1 — J)h, annihilates Clf. The assertion follows from this. u

3. Imaginary quadratic fields. In this section, let p > 3 be an odd
prime number, and F' = Q(1/—d) an imaginary quadratic field with a square
free positive integer d.

LEMMA 1. When p is ramified in F/Q, F satisfies (Ap) if and only if
p=3 and F =Q(+/-3).
Proof. The “only if” part is an easy consequence of Proposition 1 since

(Op/p)* is cyclic of order p(p — 1) when p ramifies in F. The “if” part is
due to [5, p. 110]. =

LEMMA 2.

(I) Let p=3 or 5. If F # Q(v/—1),Q(+v/—3) and p is inert in F, then
F does not satisfy (Ap).
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(IT) Let p> 7. If p is inert in F, then F does not satisfy (Ap).

Proof. This is an easy consequence of Proposition 1 since (Op/p)* is
cyclic of order p? — 1 when p is inert in F. =

In all what follows, we exclude the case where p = 3 and F' = Q(v/—3),
and we let K = F'((,). Hence, by Lemma 1, if F' satisfies (A,), then F/Q is
unramified at p and the Galois group Gal(K/F') is naturally identified with
G=Fx.

p

LEMMA 3. If F satisfies (Ap), then the exponent of the class group Clp
divides 2.

Proof. We use a standard argument in [26, pp. 289-290]. Assume that
F satisfies (A4,). As F/Q is unramified at p, K/F is totally ramified at the
primes over p. Hence, the natural map Clp — Clg is trivial by Propo-
sition 4. Let 2 be an arbitrary ideal of F' relatively prime to p. We have
A0k = aOf for some oo € K*. Let p be a generator of G, and J a gen-
erator of Gal(F/Q) = Gal(K/K™") where K+ is the maximal real subfield
of K. As 2 is an ideal of F', we have o' ¢ = ¢ € Oj. On the other hand,
A+ = BOp for some B € Q. Hence, o™’ = g for some unit n € OF. It
follows that

I+ — (I HTy1me — pl-e
as 3 € Q*. Putting oy = a?/n, we have

(3) O = A0k

Let

(4) er=a =2yl c OF.
Then

It o—201+0) p(1=0)(1+J)
1

€ n =1
Hence, €1 is a root of unity in K by a theorem on units of a CM-field (cf.

[26, Theorem 4.12]). Let p, be the group of pth roots of unity in K. We
consider separately the cases when €1 € p, or not.

(1=7)(o-1).

The case €1 € pyp. Since the map o — 1 : pp — pp is an isomorphism,
we can write 1 = (2! for some ¢ € p,. Hence, it follows from (4) that
(a1/¢)? = a1 /¢ and a1 /¢ € F*. Therefore, by (3), A% is a principal ideal
of F.

The case €1 & pp. As the class groups of Q(v/—1) and Q(v/—3) are
trivial, we may well assume that F' # Q(y/—1), Q(v/—3). Then the condition
€1 & pp implies that —e; € puyp, and hence, —e1 = (27! for some ¢ € p,,. On
the other hand, we have —1 = (\/p*)¢~! where p* = p if p = 1 mod 4 and
p* = —p otherwise. Therefore, 1 = (v/p*¢)¢~ L. Hence, it follows from (4)
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that
(a1/v/P* ()¢ = a1 /y/p*¢ and  ai//p*¢ € F*.

This implies that p is ramified in F' as 2 is relatively prime to p. This is a
contradiction. m

Lemma 3 asserts that if the exponent of Clr is greater than 2, then F
does not satisfy (A,) for any prime p. All imaginary quadratic fields F' with
Cl% = {0} were determined by Weinberger [27, Theorem 1] with possibly
one exception. A table of such F’s is given in Miyada [22, p. 539]. There are
exactly 65 (or possibly 66) such F'. In particular, we obtain the following:

PROPOSITION 7. For each prime number p, there exist at most 65 (or
possibly 66) imaginary quadratic fields satisfying condition (Ap).

LEMMA 4. Let p = 5, and E = F(/5). If F satisfies (As), then the
natural map Clp — Clg is trivial.

Proof. Assume that F' satisfies (As). Let o be a generator of G =
Gal(K/F). We have S¢ = (14 ¢) by hy = 1 and (2). By the assump-
tion and Proposition 3 or 5, ¢'7¢ = 1 for any ¢ € Clg. As the norm
map Clxg — Clg is surjective, this relation holds for any ¢ € Clg. As
the norm map Clgp — Clp is surjective, any class d € Clp is of the form
d= Ng/p(c) = ctre for some ¢ € Clg. Therefore, we obtain the assertion. m

LEMMA 5. Let p be a prime number with p=3 mod 4, and E = F(/—p).
If F satisfies (Ap), then the natural map Clyp — Clg is trivial.

Proof. Assume that F satisfies (A,). Let 2 be an ideal of F'. By Propo-
sition 4, AOg = aOk for some o € K*. Hence, AKE O = 30g with
B = Ng,g(a). This implies that AOp is a principal ideal since [K : E] is
odd by the assumption on p, and ? is principal in F by Lemma 3. =

LEMMA 6. Let p be a prime number with p = 3mod 4 orp=5. If F
satisfies (Ap), then Cly is isomorphic to the abelian group (Z/2)®F with
R <2.

Proof. Let H}Q)/ F be the maximal unramified abelian extension of ex-
ponent 2, and let E be as in Lemmas 4 and 5. Assume that F' satisfies (Ap).
Then [H? : F] = [HPE : E] since E/F is totally ramified at the primes
over p. Let ¢ be the number of prime numbers which ramify in F. Let
Ay .oy Ap (TESD. i1, ..., pis) be all the odd prime numbers which ramify in F'
and are congruent to 1 (resp. 3) modulo 4. The 2-rank of Clp equals ¢ — 1
by a well known theorem on quadratic fields (cf. Hecke [8, Theorem 132]).
Hence, by Lemma 3, it suffices to show that ¢ < 3 since we are assuming
that F' satisfies (Ap). It is well known and easy to show that

HY = F(V/ i, /-1 |1<i<r 1< <s).
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Let ¢ be any one of the prime numbers A\; and p;, and let £ be the prime
ideal of F' over £. By Lemmas 4 and 5, the ideal £OF is principal. This
implies that ¢ = e2? for some unit € € O and x € E*. Therefore,

HYE C E(JE|e€0}).
Now, from the above, it follows that
21— [HP . F|= [HPE:E|=1,2 or 4
since the group O is generated by two elements. Therefore, ¢ < 3. u

For a number field N and a prime number ¢, let Cly][g] be the Sylow
g-subgroup of the class group Cly.

LEMMA 7. Let p > 7 be a prime number with p = 3mod 4. Let
K =F((p), and let N be an intermediate field of K/F with 21 [K : NJ|. If
the 2-part Cly|2] is nontrivial and cyclic as an abelian group, then F does
not satisfy (Ap).

Proof. Assume that Cly[2] is nontrivial and cyclic, but F satisfies (Ap).
Let ¢ be a generator of the cyclic group Cly[2]. Then

(5) ¢ = c¢mod 2C1y|[2]

for all 0 € G. As [K : N] is odd, the natural map Cly[2] — Clg is injective.
Let ¢ and Cly[2] be the images of ¢ and Cly[2] under this injection. As
F satisfies (Ap), the Stickelberger element 6 o kills €. We easily see that
the augmentation ZG — Z maps the element 0g 2 to (p — 1)/2 from the
definition (1). Therefore, it follows from (5) that

1 =cb2 =cP=1/2 mod 20Ty [2].

This implies that ¢?~1/2 € 2CIy[2] as Cly[2] — Clk is injective. Hence,
c €2CIy[2] as (p — 1)/2 is odd. This is a contradiction. =

For a number field IV, let Ay be the class number of V.

LEMMA 8. Let p be a prime number with p =3 mod 4 and p <19, and
let E = F(\/—p). If the class number hg is divisible by an odd prime number
q relatively prime to (p — 1)/2, then F does not satisfy (Ap).

Proof. As qisrelatively prime to (p—1)/2, the natural map Clg|[q] — Clx
is injective. Let ¢ be a class in Clg of order ¢, and € its lift to K. The class
¢ is nontrivial. Let p be a generator of G = Gal(K/F). Assume that F
satisfies (4,). Then ¢ = ¢~! since hp is a power of 2 by Lemma 3. Hence,

(6) ce=¢
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The condition p < 19 is equivalent to h, = 1 (cf. [26, Corollary 11.18]).
Hence, by (2), the Stickelberger ideal S is generated by ng. Since F satisfies
(Ap), we see that ng annihilates Clx by Proposition 3 or 5. As (p —1)/2 is
odd, we see from (6) that

1 = g6 — il I (=D} _ &

This is a contradiction. m

LEMMA 9. Let F be a quadratic field not necessarily imaginary, and let p
be a prime number splitting in F. Let P1 and Po be the prime ideals of K =
F(¢p) over p. Then the Stickelberger ideal Si annihilates (O /m)* /[Ox]x
if and only if there exists a unit € € O satisfying

(7) e=1modP; and &= —1mod Po.
Proof. For brevity, put X = (Og/7)*/[Of]x. We have
(Ok/m)* = (O /P1)" & (Ok/PB2)* =F; & F.
The Galois group G = Gal(K/F) fixes the prime ideal J;, and it acts
trivially on (O /%B;)*. The augmentation t¢ : ZG — Z maps both ng and
0c 2 to (p—1)/2. Hence, we see from (2) that t¢ maps the ideal S¢ C ZG onto

the ideal of Z generated by (p — 1)/2. Therefore, the condition X5¢ = {0}
is equivalent to

(OK/ﬂ')X(p_l)/Q C [le(]ﬂ_
From this, we obtain the assertion. m

LEMMA 10. Let F = Q(v/—d) be an imaginary quadratic field with a
square free positive integer d, and let p be a prime number splitting in F.
There exists a unit € € O satisfying (7) in the following two cases:

M d=1,
(I1) d is a prime number with d # 1 mod 4, and p = 3 mod 4.

Proof. We first show the assertion in case (II). Let £ = F(y/—p). It is
well known that the unit index Qg of the imaginary abelian field E equals 2
by Hasse [7, p. 76]. We apply the classical argument used to show Qr = 2.
Let BT = Q(y/pd) be the maximal real subfield of E. Let Q4 be the prime
ideal of E over the prime d; (d) = Q2. From the conditions on d and p, we
see that the class number of ET is odd by genus theory. Hence, there exist
u,v € Z such that u? — v?’pd = +4d. It follows that u = u/d for some v’ € Z
and 1 = (u/v/—d + vy/—p)/2 is a unit of Op. Let Py and Pz be the prime
ideals of K over p. Let a € Z be an integer such that vV—d = a mod Bi.
We see that v/—d = —a mod B by taking the conjugate over Q. Therefore,
17 = b mod P; and n = —b mod Py for some integer b with 1 < b < p—1. Let
0p =14+Cp+-- -4+ 1 be a cyclotomic unit in K. Then, since &, = b mod ,

P
the unit € = 7/d, satisfies (7).
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In case (I), we can similarly show the assertion by taking ¢ = v/—1 times
a suitable cyclotomic unit of K. m

Proof of Theorem 1. By Lemma 6, we do not need the conditional result
of Weinberger [27] mentioned before. The imaginary quadratic fields F' with
hr =1 were determined by Stark [24]. Those with hr = 2 were determined
independently by Stark [25] and Montgomery and Weinberger [23], and those
with hp = 4 by Arno [1]. By genus theory, we can easily pick out those with
Clp = (Z/2)®? from Arno’s result. Using these results and Lemmas 1 and 2,
we obtain the following lists.

LEMMA 11. Animaginary quadratic field F' = Q(v/—d) may satisfy (As)
only when d is one of the following:

(i) 1, 3,11, 19; (i) 6, 51, 91;  (iii) 21.

LEMMA 12. An imaginary quadratic field F = Q(v/—d) may satisfy (A7)
only when d is one of the following:

(i) 3,19; (i) 5, 6, 10, 13, 115, 187;  (iii) 33, 195.

LEMMA 13. An imaginary quadratic field F' = Q(v/—d) may satisfy (A11)
only when d is one of the following:

(1) 2, 7,19, 43; (i) 6, 10, 13, 35, 51, 123, 403;
(iii) 21, 30, 57, 85, 195, 435, 483.

In the above lists, those I or d in the first groups satisfy hp = 1, those in
the second groups have hp = 2, and those in the last groups, Clp = (Z/2)%2.
In the following, let K = F((p) and E be the intermediate field of K/F with
[E : F| = 2. Let g be a generator of G = Gal(K/F). By (2), Sg is generated
by

ng=1l4+o+ -+ Q(P—l)/Q—l.
All the following calculations were done using KASH.

The case p = 5. We checked that the natural map Clp — Clg is not
trivial when d = 6,51, 91 or 21. Hence, by Lemma 4, F' does not satisfy (As)
for these d. When d = 1 or 3, we have Clxy = {0}. When d = 1, we
see that Clg(7)%¢ = {0} by Lemmas 9 and 10. When d = 3, we checked
Clg(m)5¢ = {0} by explicitly finding a system of fundamental units of K.
Hence, by Proposition 5, F' satisfies (As) for d = 1 or 3. When d = 11
(resp. 19), we see that Clx = Z/2 (resp. Z/4) and Cl}g{G = {0}. We chose
an ideal 2 of K such that the class [] generates the cyclic group Clg. We
checked that a generator « of the principal ideal 2+ is not congruent to a
unit modulo 7. Hence, by Proposition 5, F' does not satisfy (As) for d = 11
or 19.
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The case p = 7. We checked that the natural map Clp — Clg is not
trivial when d = 6,33, 195. Hence, by Lemma 5, F' does not satisfy (A7) for
these d. For d = 5,10, 115,187, the 2-part of Cllx is nontrivial and cyclic,
and hence F does not satisfy (A7) by Lemma 7. When d = 13, we found that
Clg = 7./2%9 @ Z/3 and Cl}g{G # {0}, and hence F' does not satisfy (Ay).
When d = 19, we found that Clg = Z/3 and C’lf(c = {0}. We checked
that F' does not satisfy (A7) in this case similarly to the case where p =5
and d = 11,19. Finally, when d = 3, we found that Clx = {0}, and that
Cly(7)%¢ = {0} by Lemmas 9 and 10. Hence, F' satisfies (A7) for d = 3.

The case p = 11. For d = 10, 35,21, 30,57, 85,195,435 or 483, we found
that the natural map Clp — Clg is not trivial. Hence, by Lemma 5, F' does
not satisfy (Aq1) for these d. For d = 6,13,51,123 or 403, we have hp = 2.
Hence, by Lemma 7, F' does not satisfy (Aj1) for these d. For d = 43, we
have hp = 3, and F does not satisfy (A11) by Lemma 8. Let us deal with the
remaining cases where d = 2,7 or 19. In these cases, we have hgy = 1. Instead
of the field K = F((11), we use the subfield N = F(cos2xr/11). We have
hy =5ford=2or 7, and hy = 55 for d = 19. Let 2 be an ideal of N. If I
satisfies (A11), then A" O = aOk for some o € K* congruent modulo 7
to a unit of K. Taking the norm to N, it follows that A?"¢ = 30y. Here,
p = Ni/na and is congruent to a unit of N modulo 7. For these three d, we
chose a nontrivial ideal 2 of N and checked that %" is a principal ideal of
Op and that its generator is not congruent to a unit of N modulo 7 after
computing a system of fundamental units of N. Therefore, there exists no
imaginary quadratic field satisfying (A411). =

OBSERVATION/QUESTION. Let p be a prime number. As usual, we put
p = 4 (resp. p) when p = 2 (resp. p > 3). We have seen that for the first five p,
the number of imaginary quadratic fields F satisfying (A,) is 4, 3,2,1 and 0,
respectively. What is the next term or a general term of this (arithmetic!)
progression?

REMARK 1. We can generalize Lemma 3 as follows. For a number field F,
let 1 be the group of roots of unity in F, and p}. the subgroup of elements
of odd order. Let K/F be a finite cyclic extension with both K and F
CM-fields. Assume that the following three conditions are satisfied:

(i) 2¢ || [K : F] for some e > 1,
(i) o = (Cor),
(iii) there exists a prime ideal p of F' over an odd prime number p such
that p is totally ramified at the intermediate field E of K/F with
[E: F)| =2°.
By the last condition, we can write E = F(a'/?") for some a € F* with
ordy(a) = 1. Then we can show that the exponent of the kernel of the
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natural map Cl; — Clj divides 2 by an argument exactly similar to the
proof of Lemma 3 using u}( and a/2° in place of tp and /p*.

REMARK 2. If all imaginary abelian fields K of degree 2(p—1) for which

Clih; = {0} were determined, it would be possible to determine all real
quadratic fields satisfying (A,) for small primes p by Proposition 6.

4. Subfields of the p-cyclotomic field. In this section, we deal with
subfields of the p-cyclotomic field Q((p). The following is an immediate con-
sequence of Proposition 1. A more general statement is given in [9, Propo-
sition 3.4].

PROPOSITION 8. Let p be an odd prime number. An imaginary subfield
F of Q(¢p) satisfies (Ap) if and only if p=3 and F = Q((3).

In the following, we summarize what is known or conjectured for the
real case. Let O = Op[1/p] be the ring of p-integers of F. We say that I’
satisfies condition (Aj) if for any I'-extension N/F, Ol is cyclic over the
group ring O%I". Tt is known that if F' satisfies (A4,) then it satisfies (4},).
Condition (Aj) is easier to handle than (4,), and many results on (A7)
are already obtained in [14, 16, 17, 18]. Let K = F({p). For instance, it is
known that I satisfies (4}) if b}, = 1, where h is the class number of the
Dedekind domain O.

Let K = Q((p), and h;, the class number of K. As the unique prime
ideal of Ok over p is principal, we have h, = h/;. It is well known that
hy, =1 if and only if p < 19 (cf. [26, Theorem 11.1]). Hence, when p < 19,
any subfield F' of K = Q((p) satisfies (A},). When p > 23, we proposed the
following conjecture in [18].

CONJECTURE 1. Let p be a prime number with p > 23, and F' a subfield
of Q(¢p) with F'# Q. If [F: Q] > 2 or p = 1 mod 4, then F' does not satisfy
condition (Aj;) except when p =29 and [F': Q] =2 or 7.

We have seen in [18, Proposition 4] that the conjecture is valid when
23 < p <499 and when [K : F] < 4 or = 6. A reason that the case p = 29
is exceptional is that h, is a power of 2 if and only if p < 19 or p = 29
by Horie [10]. When p = 29 and [F' : Q] = 2 or 7, it is known that F
satisfies (4;,) ([18, Proposition 4(IT)]). In [16, Theorem 1], we determined
all imaginary subfields F' of Q((,) satisfying (A7), and gave an affirmative
answer to the conjecture for the imaginary case. In [17], we showed the
following assertion for the real case.

PROPOSITION 9 ([17, Proposition 1]). Let p > 23. Assume that q || h,
for some odd prime number q. Then any real subfield F of Q((p) with F # Q
does not satisfy (A}). (Hence, it does not satisfy (Ap).)
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The assumption in this assertion is satisfied for all primes p with 23 <
p < 210 except p = 29,31,41 by the tables in [26], Lehmer and Masley [19]
and Yamamura [28].

Now, we have enough reasons to propose the following:

CONJECTURE 2. A real subfield F' of Q((,) with F' # Q does not satisfy
(Ap) except when p <19, or p=29 and [F : Q] =2, 7.

Among the exceptional cases in Conjecture 2, we have checked that
Q(v/5) satisfies (A5) and that Q(cos27/7) does not satisfy (A7) by a com-
puter calculation based upon Theorem 2. The difficult point is that the
locally free class group C1°(OpI) is very complicated when F/Q is ramified
at p.
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