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On the elements of prime power order

in K2 of a number field

by

Kejian Xu (Qingdao)

1. Introduction. Let F be a field and K2(F ) be the Milnor K2-group
of F (see [4]). It is an important problem to write down explicitly the ele-
ments of a given order in K2(F ). Tate [8] proved that if F is a global field
containing ζn, a primitive nth root of unity, then every element of order n in
K2(F ) can be written in the form of {ζn, a}, a ∈ F ∗. Suslin [7] generalized
Tate’s result to any field containing ζn. It is natural to generalize this result
further to a field possibly not containing ζn. In [1], Browkin considered ele-
ments of small orders in K2(F ). Let Φn(x) be the nth cyclotomic polynomial
and

Gn(F ) = {{a, Φn(a)} ∈ K2(F ) | a, Φn(a) ∈ F ∗}.

Browkin proved in [1] that for any a ∈ F ∗, {a, Φn(a)}n = 1 and that for
every field F 6= F2 and n = 1, 2, 3, 4 or 6, Gn(F ) is a subgroup of K2(F ).
Then Browkin conjectured that for any integer n 6= 1, 2, 3, 4, 6 and any field
F , Gn(F ) is not a subgroup of K2(F ). In particular, he pointed out the case
of F = Q (the rational number field) and n = 5.

From [6], Gn(Q) is not a group if n = 5, 7, from [5], G2n(Q) is a group if
and only if n ≤ 2, and from [10], for n ≥ 2, G2n3m(Q) is a group if and only
if n = 2, m = 0. Furthermore, similar results are also true for some special
quadratic fields (see [11]). The idea behind the proofs is that the problem
can be reduced to some diophantine equations which have no nontrivial
solutions. But we think that this idea is too restricted. Actually, we found
that the problem could be reduced simply to some equations which could
have only finitely many solutions. Following this idea and using Faltings’
theorem on the Mordell conjecture, we proved in [12] that if p ≥ 5 is a prime
and n ≥ 2 a positive integer, then Gpn(Q) is not a subgroup of K2(Q).
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In this paper, it is proved that for a number field F and a prime number p,
if p ≥ 3 and n ≥ 2, or p = 2 and n ≥ 4, then Gpn(F ) is not a subgroup of
K2(F ).

2. Main theorem

Lemma 2.1 ([1]). If F is a field and a, Φn(a) ∈ F ∗, then {a, Φn(a)}n = 1
in K2(F ).

Theorem 2.2. Let F be a number field and p a prime number. If p ≥ 3
and n ≥ 2, or p = 2 and n ≥ 4, then Gpn(F ) is not a subgroup of K2(F ).

Proof. By the definition, if a, Φpn(a) ∈ F ∗, then {a, Φpn(a)} ∈ Gpn(F ).
We shall find a such that {a, Φpn(a)}p is not an element in Gpn(F ).

The proof will be divided into several steps.

1) Let S be a finite set of places of F containing all archimedean ones,
and all places above p and above the primes ramified in F . Moreover, we
assume that S is sufficiently large, so that the ring OF,S of S-integers is a
unique factorization domain.

By the Dirichlet–Hasse–Chevalley theorem (see [9]), the group of S-units
in OF,S is finitely generated: There are fundamental S-units ε1, . . . , εt such
that every S-unit u can be written uniquely in the form

u = ζrεk1

1
· · · εkt

t , where r, k1, . . . , kt ∈ Z.

Here ζ is a generator of the group of roots of unity in F and 0 ≤ r < ord ζ.

Let us consider the S-units of the form

(1) c = ζrεk1

1
· · · εkt

t , where 0 ≤ r < p, 0 ≤ kj < p for 1 ≤ j ≤ t.

The set of the S-units (1) is finite.
The equations

(2) Φp(x) = cyp for p > 3, Φ32(x) = cy3, Φ24(x) = cy2,

where c is of the form (1), define curves of genera > 1, by a formula of Hur-
witz ([3]). It follows from Faltings’ theorem ([2]) that each of the equations
(2) has only a finite number of solutions x, y ∈ F.

From the identity

Φpn(x) = Φpk(xpn−k

) for n ≥ k,

it follows that for every c given in (1), also the equation

(3) Φpn(x) = cyp

has only a finite number of solutions x, y ∈ F, where n ≥ 1 for p > 3, n ≥ 2
for p = 3 and n ≥ 4 for p = 2.

2) We state below some properties of cyclotomic polynomials Φk(x),
k > 1, used in what follows.
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Since Φk(0) = 1, we have Φk(u) ≡ 1 (modu) for every positive integer
u. In particular, Φk(u!) ≡ 1 (modu!), so every prime divisor of Φk(u!) is
greater than u.

Since Φk(x) does not have multiple roots, we have (Φk(x), Φ′

k(x)) = 1.

Hence

(4) f(x)Φk(x) + g(x)Φ′

k(x) = Dk

for some f, g ∈ Z[x] and Dk ∈ N. It follows that if a prime q > Dk divides
Φk(u) for some u ∈ Z, then q ∤ Φ′

k(u). Hence from

Φk(u + q) ≡ Φk(u) + qΦ′

k(x) (mod q2)

we deduce that

(5) q ‖Φk(u) or q ‖Φk(u + q)

for every prime q > Dk and u ∈ Z such that q |Φk(u).

3) Let m1 > max(p, Dpn), where Dk is defined in (4). We assume more-
over that m1 is greater than every prime number which has a divisor in S,
in particular, m1 is greater than every prime number ramified in F.

Let p1 be a prime divisor of Φpn(m1!). Then p1 > m1, and, by (5),

(6) p1 ‖Φpn(a1), where a1 = m1! or a1 = m1! + p1.

4) We claim that {a1, Φpn(a1)}
p 6= 1, where a1 is defined in (6).

Since p1 does not ramify in F , we have vp1
(r) = vp1

(r) for every prime
ideal p1 of F dividing p1 and every r ∈ Q. Therefore the corresponding tame
symbol τp1

satisfies

τp1
{a1, Φpn(a1)}

p ≡ a
p
1
≡ (m1!)

p (mod p1).

If (m1!)
p ≡ 1 (modp1), then

Φpn(a1) ≡ Φpn(m1!) ≡ Φpn(1) = p (mod p1).

This is impossible, since p1 | p1, p1 |Φpn(a1) and p < p1.

5) Next we proceed inductively. Fix m2 > Φpn(a1); then m2 > p1 and
m2 > a1 > m1.

Let p2 be a prime divisor of Φpn(m2!). Hence p2 > m2 and, by (5),

p2 ‖Φpn(a2), where a2 = m2! or a2 = m2! + p2.

Similarly to the previous considerations we prove that

τp2
{a2, Φpn(a2)}

p 6= 1, where p2 | p2.

Moreover

τp2
{a1, Φpn(a1)}

p = 1, since p2 > m2 > max(a1, Φpn(a1)).

Hence {a1, Φpn(a1)}
p 6= {a2, Φpn(a2)}

p.
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By induction, we get an infinite sequence a1 < a2 < · · · of positive
integers such that the elements

{ak, Φpn(ak)}
p ∈ K2(F ), k = 1, 2, . . . ,

are nontrivial and distinct.

6) Assume that for every ak defined above we have

(7) {ak, Φpn(ak)}
p = {bk, Φpn(bk)}

for some bk ∈ F ∗. Since for k = 1, 2, . . . the left hand sides of (7) are distinct,
and Φpn(x) takes every value only a finite number of times, it follows that
there are infinitely many distinct elements Φpn(bk). Therefore, by (3), there
is b = bk0

such that Φpn(b) 6= cyp for every c of the form (1) and every y ∈ F.

Then, by (7), for a = ak0
we get

(8) {a, Φpn(a)}p = {b, Φpn(b)}.

Since OF,S is a unique factorization domain, from Φpn(b) 6= cyp it follows
that there is a prime ideal q of OF,S such that

(9) p ∤ vq(Φpn(b)).

If vq(b) < 0, then vq(Φpn(b)) = deg Φpn · vq(b) = (p − 1)pn−1vq(b), where
n ≥ 2, hence p | vq(Φpn(b)), which contradicts (9); if vq(b) > 0, then Φpn(b) ≡
Φpn(0) = 1 (mod q), hence vq(Φpn(b)) = 0, which contradicts (9). Therefore
vq(b) = 0 and vq(Φpn(b)) =: r > 0, where p ∤ r. Hence q |Φpn(b).

Consider the element ξ := {b, Φpn(b)}pn−1

. By (8), we have

ξ = {a, Φpn(a)}pn

= 1,

in view of Lemma 2.1. Then taking the corresponding tame symbol τq we get

1 = τq{b, Φpn(b)}pn−1

≡ brpn−1

(mod q).

Since q |Φpn(b) and Φpn(x) |xpn

−1, we get bpn

≡ 1 (mod q). Hence the order

of b (mod q) is a power of p. Consequently, from brpn−1

≡ 1 (mod q) and p ∤ r

we conclude that bpn−1

≡ 1 (mod q). Hence

Φpn(b) = Φp(b
pn−1

) ≡ Φp(1) = p (mod q).

This is impossible, since q |Φpn(b) and p is an S-unit. This contradiction
proves the theorem.

Remark 2.3. For a number field F , whether or not G8(F ) is a subgroup
of K2(F ) is unknown.
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