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1. Introduction. Let F be a number field generated by a zero ̺ of a
monic irreducible polynomial f ∈ Z[x]. Let nF be the degree of F and rF

the unit rank of F . The computation of the unit group of an order of F can
be done by several methods like the Voronoi algorithm (rF ≤ 2), successive
minima and other geometric methods using parallelotopes and ellipsoids.
If f defines a parametric family of polynomials it is a problem to give a
fundamental system of units of F in a parametric form, in particular for
increasing degree nF and rank rF .

In this article we only consider parametric families of quartic fields. In
the case nF = 4 Stender ([16], [17]) has obtained families with unit rank 2.
Some families with unit rank 3 are described in the biquadratic case ([15],
[1], [3], [18]). In the non-biquadratic case such families have been published
in several articles, for example Washington ([19]), Lecacheux ([5], [4]), Lettl
and Pethö ([7]), Nakamula ([10]) and Niklasch and Smart ([11]). These fam-
ilies are different from the three presented here: In [19] and [7] cyclic num-
ber fields are studied, and the families in [5] are also abelian with Galois
group C4 or V4. The polynomials in [11] have Galois group S4, and the
generated number fields have unit rank 2 while in [4] the generating poly-
nomials have Galois group D4, and the generated number fields are totally
real with unit rank 3. In [10] there are three parametric polynomials with
Galois group D4 considered: one family of number fields with unit rank 1,
one with unit rank 2 and the last has unit rank 3. The second family gen-
erates, for almost all choices of the parameter, number fields with signature
(2, 1), but the polynomials with Galois group D4 of our first family have for
different choices of the parameter infinitely often signature (2, 1) and (4, 0).
The other two families presented here have Galois group S4 and signature
(4, 0).
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In Section 2 of this article we compute parametric units for a family
of number fields presented in [6]. There we have constructed polynomials
Fn(x) of degree n by using elliptic curves with rational points of order n.
The polynomials have Galois group either the dihedral group Dn of order
2n, or the cyclic group Cn of order n. Here we consider the case nF = 4,
and we compute parametric units which form a fundamental system of units
under some conditions. In [14] the case nF = 5 is examined.

In the last two sections, we present two new families of totally real quartic
number fields and compute parametric fundamental systems of units. The
first family arises from the same idea as the families in [10] but is not included
there.

2. Family with Galois group D4 or C4. For n ∈ Z we consider
polynomials

Fb(x) := x4 − nx3 + b(n − 1)x2 + 2b2x − b3.

These polynomials were already considered in [6] for other purposes. They
have discriminants

db = d(Fb) = (4(n − 4b) + 1)(n2 + 4b)2.

To compute parametric units of the number fields F generated by Fb we
consider only b = ±1. Furthermore we assume from now on that (b, n) ∈
{(−1,±2), (1, 0), (1, 4)}, hence the polynomials Fb are irreducible.

Theorem 2.1. The polynomial F1 has signature (2, 1) for n ≤ 3 and

(4, 0) for n ≥ 4. The polynomial F−1 has signature (2, 1) for n ≤ −5, (0, 2)
for n ∈ {−4,−3,−1, 0, 1} and (4, 0) for n ≥ 3.

For n ≤ 3 the discriminant d1 is negative, for n ≥ 4 it is positive. Because
of F1(0) = −1 the polynomial F1 has at least one real zero, hence all zeros
are real.

The discriminant d−1 is negative for n ≤ −5, and positive for n ≥ −4.
For n ≥ 3 we have F−1(1) = 1 − n + (1 − n) + 2 + 1 = 5 − 2n < 0 so that
F−1 again has at least one and therefore four real zeros. In the remaining
cases n ∈ {−4,−3,−1,−0, 1} one easily checks that the signature is (0, 2).

We want the polynomials Fb to generate quartic fields containing exactly
one quadratic subfield. A candidate for the discriminant of (an order of) such
a quadratic field is clearly n2 ± 4. Therefore we make

First Assumption: n2 +4b is not a square. Clearly, this is tantamount
to (n, b) 6= (0, 1).

Theorem 2.2. Ωb := Q(
√

n2 + 4b) is a quadratic number field. The

polynomial Fb splits over this field as

Fb(x) = (x2 + εx − εb)(x2 + εx − εb)
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with a unit ε = 1
2(−n +

√
n2 + 4b) ∈ Ωb of norm −b. (The bar denotes the

non-trivial automorphism of the quadratic field.)

The proof is by a straightforward calculation.

Remark. It is well known [9] that n2 ± 4 is square-free for infinitely
many n ∈ Z, hence ε is the fundamental unit of Ωb in those cases, except
for n = 3, b = −1, where ε is the cube of the fundamental unit.

Remark. If Fb is irreducible with Galois group V4 then 4(n− 4b) + 1 is
a square.

Theorem 2.3. If 4(n−4b)+1 is not a square in Z then the polynomial

Fb has Galois group D4 or C4.

The polynomial Fb is irreducible over Q if and only if the polynomial

x2 + εx − εb

is irreducible in Ωb[x]. That polynomial is reducible if and only if α :=
ε2+4εb is a square in Ωb. But in that case N(α) = N(ε(ε+4b)) = 4n+1−16b
is a square in Q, which contradicts our premises. Together with the preceding
remark we obtain the theorem.

We note that 4n + 1 − 16b is a square if and only if n = u2 + u + 4b for
some u ∈ Z.

Because of Theorem 2.3 and because we want to have Galois group D4

or C4 we make

Second Assumption: 4(n − 4b) + 1 is not a square in Z.

Theorem 2.4. The polynomial Fb generates a Galois extension over Q

(with Galois group C4) if and only if for α := ε2 +4εb the quotient α/α is a

square in Ωb. The latter is tantamount to 4(n−4b)+1 being a square in Ωb.

At this stage we know that a root ̺ of Fb generates a quartic extension
of Q. Hence, the square-roots of α = ε2 + 4εb and of α generate quadratic
extensions of Ωb. If and only if these extensions coincide, either of them will
be a cyclic extension of Q. In that case, we have

√
α = µ + ν

√
α with some

µ, ν ∈ Ωb. Squaring this equation leads to µν = 0, hence µ = 0. Therefore
α/α must be a square in Ωb. Because of

α

α
=

N(α)

(α)2

and N(α) = 4n + 1 − 16b the theorem follows.

As mentioned in Theorem 2.4 the polynomial Fb has Galois group C4

if and only if 4n + 1 − 16b is a square in Ωb. The latter is tantamount to
v2(1 + 4n − 16b) = n2 + 4b with n, v ∈ Q.
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Theorem 2.5. The polynomial Fb generates a Galois extension over Q

with Galois group C4 only for (b, n) ∈ {(1, 8), (−1,−3), (−1, 7)}.
To prove this we first consider b = 1. That means we want to solve

v2(4n− 15) = n2 +4, which implies n1/2 = 2v2 ±
√

4v4 − 15v2 − 4. We have

n ∈ Q if 4v4−15v2−4 is a square in Q, in other words if the elliptic curve E1

of equation y2 = 4v4 − 15v2 − 4 has at least one rational point (v, y) ∈ Q2.

The Weierstraß form of E1 is

z2 = t3 − 11t − 890.

Computations with the computer algebra system Magma [8] show that
E1(Q) ≃ Z/4Z = {O, P1, P2, P3}, with

z t y v

P1 136 27 ∞ ∞
P2 0 10 0 −2

P3 −136 27 ∞ ∞

That means in the case b = 1 we get the Galois group C4 only for n = 8
corresponding to the polynomial x4 − 8x3 + 7x2 + 2x − 1.

For the second case, b = −1, the same considerations show that n1/2 =

2v2 ±
√

4v4 + 17v2 + 4 has to be a rational number, which implies the exis-
tence of rational points on the elliptic curve E−1 of Weierstraß equation

z2 = t3 − 12987t − 263466.

Computations show that E−1(Q) ≃ Z/8Z = {O, P1, P2, . . . , P7}, where

t z v y

P1 −21 0 ∞ ∞
P2 −102 0 0 2

P3 −57 −540 −1 5

P4 −57 540 1 5

P5 303 4860 1 −5

P6 123 0 ∞ ∞
P7 303 −4860 −1 −5

Hence in the case b = −1 we get the Galois group C4 only for n = −3, 7,
which corresponds to the polynomials x4 +3x3 +4x2 +2x+1 and x4−7x3−
6x2 + 2x + 1.

From now on we assume that Eb is a quartic number field generated by
a root ̺ of Fb over Q, and Fb has Galois group D4. Our construction imme-
diately leads to two independent units of Eb, namely ̺ itself and the unit
ε of Ωb. We will further restrict our considerations to fields Eb of signature
(2, 1). In that case those two units form a maximal independent set of units
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of Eb. For the signature (4, 0) our efforts to find a third independent unit in
parametric form were unsuccessful.

In the remainder of this section we show that ̺ and ε form a fundamental
set of units for the order Z[̺]. This also means that they form a fundamental
system of units for the field Q(̺) whenever n2 + 4b and 4(n − 4b) + 1 are
square-free and coprime.

Remark. From 16(n2+4b) = (4n+(16b−1))(4n−(16b−1))+(16b+1)2

we conclude that a common factor of n2 + 4b and 4(n − 4b) + 1 necessarily
divides (16b + 1)2.

We use a lower regulator bound of Nakamula [10]. Proposition 3 of his
article states that the quotient of the regulators of Eb and Ωb is bounded
from below by

L :=
1

2
log

(

3

√

|4(n − 4b) + 1| (n2 + 4b)2

4
+

(

317

27

)3

− 290

27

)

.

We need to give a lower estimate for L. We start with the radicand of the
cubic root. For n ≤ −10 it is of the form

|n|5(1 + λ)

with

λ >















15

4|n| +
8

n2
+ 0.048 for b = 1,

− 17

4|n| −
8

n2
+ 0.051 for b = −1.

From this we conclude

L >
1

2
log

(

|n|5/3

(

1 +
λ

3
− λ2

6

)

− 290

27

)

resulting in

L >
2

3
log |n|.

Next we compute an upper estimate for the regulator REb
of the inde-

pendent units ̺ and ε. We choose the first two conjugates ̺(1) and ̺(2) of ̺
for this purpose, and get

REb
=

∣

∣

∣

∣

∣

det

(

log |̺(1)| log |̺(2)|
log |ε| log |ε|

)∣

∣

∣

∣

∣

= |log |ε| |
∣

∣

∣

∣

log
|̺(1)|
|̺(2)|

∣

∣

∣

∣

.

We begin by estimating the quotient |̺(1)/̺(2)|. We have

̺(1)

̺(2)
=

−ε +
√

ε2 + 4bε

−ε −
√

ε2 + 4bε
.
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We easily compute

µ := ε2 + 4bε = (n2 − 4bn + 2b − (n − 4b)
√

n2 + 4b)/2.

One obtains the estimates
Lε < ε < Uε,

where
Lε := |n| + b/|n| − 2/n3, Uε := |n| + b/|n|,

and
Lµ <

√
µ < Uµ

where
Lµ := |n| + 2b + (b − 4)/|n| − 2/n2 − (8b + 2)/|n|3 − 4b/n4,

Uµ := |n| + 2b + b/|n| + 2/n2.

By considering the cases b = ±1 separately, one obtains
∣

∣

∣

∣

̺(1)

̺(2)

∣

∣

∣

∣

< C =
|n| + 1.11

0.779

for |n| ≥ 10.
If the unit group U := 〈−1, ̺, ε〉 is a proper subgroup of the full unit

group UZ[̺] of Z[̺], then the regulator of Eb divided by the regulator of
Ωb is ≤ log(C)/2. Showing log(C)/2 < L therefore proves that ̺, ε are a
fundamental set of units for Z[̺]. Again, it is easy to see that

1

2
log

|n| + 1.11

0.779
<

2

3
log |n|

is tantamount to
|n| + 1.11

0.779|n|4/3
< 1

and the latter is satisfied for all n < −5.

Theorem 2.6. If the field Eb = Q(̺) is generated by Fb with dihedral

Galois group, then ̺ and ε are fundamental units of the order Z[̺]. They

are even fundamental units of Eb when 4(n − 4b) + 1 and n2 + 4b are both

square-free and coprime.

The estimates above prove the theorem for n ≤ −10. For larger values of
n the proof is by directly calculating the unit group of Eb with KANT [2].

3. A parametric family of number fields of degree 4. In this part
we consider the parametric family of polynomials of degree 4 defined by
f(x) = x4 + ax3 − 2x2 + (1 − a)x + 1. This family arises by the same idea
of construction as the families in [10], but there only the cases with Galois
group D4 are presented. The constructive idea is the assumption that ̺, ̺+1
and ̺−1 are units of the number fields generated by x4 +ax3 + bx2 + cx+1
(with ̺ a zero). In this way one gets three families, two of them are studied in
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[10] (x4+ax3−bx2−ax+1 with b ∈ {1, 3}), the third family f(x) is presented
here. By straightforward calculation it is easily seen that these polynomials
are irreducible and have (for a ≥ 3) four real roots. They generate for
a ∈ N, a ≥ 3 number fields F = Q[̺] of signature (4, 0) with rank rF = 3.
For a ∈ {±1, 0, 2} the number fields have signature (2, 1). And for k ∈ Z the
polynomial f generates the same number field F for a = k and a = 1 − k,
hence there is no need to consider a < −1.

In the following we therefore only consider the case a ≥ 3.

Remark. Examples suggest that for infinitely many a the discriminant
df = 4a6 − 12a5 + 28a4 − 36a3 − 56a2 + 72a− 283 of f has no quadratic fac-
tors, which implies that the order Z[̺] is maximal, the discriminant DF of F
equals df , and the polynomials f generate infinitely many number fields.

Theorem 3.1. The index of Z[̺] in the maximal order of the number

field F generated by f is not divisible by 5 or 13 for all a ≥ 3.

For a ≡ 3 (mod5) (and only for those a) we have df ≡ 0 (mod25) but
df 6≡ 0 (mod53). The Dedekind test shows that in this case (and therefore in
all cases) the order Z[̺] is already 5-maximal. Similarly for a ≡ 7 (mod13)
(and only for those a) we have df ≡ 0 (mod132) but df 6≡ 0 (mod133). Again
Z[̺] is already 13-maximal. Thus this order is maximal if the discriminant
is divisible by only the quadratic factors 25 and/or 169.

Remark. Computations show that for 3 ≤ a ≤ 2000 there are only 26
number fields with non-maximal order Z[̺]: a ∈ {80, 143, 326, 380, 406, 425,
450, 537, 609, 620, 699, 979, 984, 1044, 1049, 1106, 1138, 1235, 1386, 1498,
1508, 1540, 1667, 1695, 1825, 1906}. These fields are partly described with
k ∈ N by a = (3 + k · 23) · 23 + 11 (we find a = 80, 609, 1138, 1667 in the set
above) where df is divisible by 232, and by a = (19+k ·23) ·23+13 (we find
a = 450, 979, 1508) where df is again divisible by 232. The discriminant df

is divisible by 292 for a = (4 + k · 29) · 29 + 27 (we find a = 143, 984, 1825)
or a = (24 + k · 29) · 29 + 3 (we find a = 699, 1540). Or df is divisible
by 312 and we have a = (13 + k · 31) · 31 + 22 (we find a = 425, 1386) or
a = (17 + k · 31) · 31 + 10 (we find a = 537, 1498). On the other hand, for
a in any of these sets of parametric natural numbers, df is always divisible
by the corresponding square.

Theorem 3.2. The four zeros of f lie in the following four intervals:

̺1 ∈ [−a − 1/a − 1/a2,−a], ̺3 ∈ [1/a, 1/a + 1/a2],

̺2 ∈ [−1 + 1/a2,−1 + 1/a], ̺4 ∈ [1 − 2/3a, 1 − 1/2a].

For a ≥ 4, one shows that f(xmin)f(xmax) < 0, where (xmin, xmax) ∈
{(−a−1/a−1/a2,−a), (−1+1/a2,−1+1/a), (1/a, 1/a+1/a2), (1−2/3a, 1−
1/2a)}. This proves the theorem.
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Remark. Because ̺3 < 1/a + 1/a2 < 1/2 < 1 − 2/3a < ̺4 we get the
following inequalities for the zeros of f :

−a − 1 < ̺1 < −a < −1 < ̺2 < 0 < ̺3 < 1/2 < ̺4 < 1.

Theorem 3.3. The polynomial f has Galois group S4.

To show this we first look at the cubic resolvent rf of f . As in [13],
we get rf (x) = x3 + 4x2 + a(1 − a)x + 1 with discriminant d(rf ) = df =
−4α3 + 16α2 + 72α− 283 with α = a(1− a). The resolvent rf is irreducible
and we observe that d(rf ) > 0 for a ≥ 3. Moreover the discriminant is not
a square in Q because y2 = d(rf ) defines an elliptic curve which has no
rational point except ∞. This implies that rf has Galois group S4 and the
theorem follows.

Let ̺ be a zero of f . In the number field Q(̺) the element ̺ is obviously
a unit. Moreover, by definition of f the elements ̺+1, ̺−1 ∈ Z[̺] are units
as well, and (̺ + 1)−1 = ̺3 + (a − 1)̺2 − (a + 1)̺ + 2, and (̺ − 1)−1 =
−̺(̺2 + (a + 1)̺ + (a − 1)).

Since ̺ − 1 and ̺ are units, so is their quotient ϑ := (̺ − 1)/̺.

Theorem 3.4. The three units {̺, ̺+1, 1−1/̺} form a system of inde-

pendent units of the order Z[̺]. Moreover this set is a fundamental system

of units for a ≥ 3.

To show this, we first assume (̺ + 1)k = ±̺l with k ∈ N, l ∈ Z. This
implies that |̺+1|k = |̺|l. Let k > 0. Because 1 < ̺4+1 < 2 and 0 < ̺4 < 1
we get l < 0; from a − 1 < |̺1 + 1| < a < |̺1| < a + 1 we get l > 0, which
yields a contradiction.

The pairwise independence for the other two cases is shown in a similar
way with the help of the sequence of inequalities for ϑ (for a > 3):

2 − a < ϑ3 < 1 − a < −1 < −1

a
< ϑ4 < − 1

2a
< 0 < 1 < ϑ1 <

3

2
< ϑ2 < 3.

Now we assume that ϑk = ±̺l(̺ + 1)m where k, l, m ∈ Z. Without loss of
generality let k > 0. If l, m > 0 then the image of the canonical embedding
ϕ2 with ̺ 7→ ̺2 yields |ϑ2|k = |̺2|l|̺2 + 1|m, which is impossible because
the left hand side is > 1 and the right is < 1. The consideration of the
other canonical embeddings ϕ1, ϕ3 and ϕ4 leads also to contradictions in
the remaining cases.

Thus we have shown that the three units ̺, ̺ + 1 and ϑ are a maximally
independent set of units of Q(̺).

A lower bound for the regulator R of the unit group of the maximal
order of Q(̺) is given in [12]:

R ≥

√

(

(log(|DF |/16))2

20

)3 1

8
.
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(In general we have DF = c2df for some constant c ∈ N, but in infinitely
many cases (see the first Remark of this section) the order Z[̺] seems to be
already maximal, so c = 1 as assumed. The inequality holds in general for
Z[̺] with DF replaced by df .)

Since df > 64
17a6 for a ≥ 49 we get the lower bound Rlow of the regulator:

1√
64000

(

log

(

df

16

))3

≥ 1

253

(

6 log(a) + log

(

4

17

))3

≥ (6 log(a) − 1.5)3

253
=: Rlow.

The regulator R̺ for a system of independent units {̺, ̺ + 1, ϑ} of Z[̺] is
defined by

R̺ =

∣

∣

∣

∣

∣

∣

∣

det







log(|̺1 + 1|) log(|̺1|) log(|ϑ1|)
log(|̺3 + 1|) log(|̺3|) log(|ϑ3|)
log(|̺4 + 1|) log(|̺4|) log(|ϑ4|)







∣

∣

∣

∣

∣

∣

∣

.

Computing the determinant and taking into account the size of the argu-
ments of the logarithms, respectively the signs of the values of the loga-
rithms, we can estimate R̺ from above:

R̺ ≤ log(|̺1 + 1|) log

(

1

|̺3|

)

log

(

1

|ϑ4|

)

+ log(|̺1|) log(|ϑ3|) log(|̺4 + 1|)

+ log(|̺4 + 1|) log

(

1

|̺3|

)

log(|ϑ1|) + log

(

1

|̺4|

)

log(|ϑ3|) log(|̺1 + 1|)

+ log

(

1

|ϑ4|

)

log(|̺3 + 1|) log(|̺1|).

Now all factors are positive. Using the approximations of ̺ and ϑ and the
inequalities log(2) < 0.7, log(1 + 1/a) < 0.02 and log(1 + 1/a + 1/a2) <
log(1 + 1/a + 1/a2 + 1/a3) < 0.021, one shows that for a ≥ 50,

R̺ ≤ log(a)3 + 1.461 · log(a)2 + 0.05822 · log(a) + 0.00042 =: Rup.

Finally, we obtain

1 <
R

Rlow
<

Rup

Rlow
< 2,

where the last inequality holds for a > 44. This comes from the inequality
Rup

Rlow
(log(44)) < 2 and because the quotient is decreasing for a > 44. So the

index of the unit system {̺, ̺ + 1, ϑ} in a fundamental system of units is
lower than 2, which implies that for a > 50 the units {̺, ̺ + 1, 1− 1/̺} are
fundamental units of Z[̺].

The remaining cases 3 ≤ a ≤ 44 are proved by direct calculations with
KANT [2].
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4. A second family of number fields of degree 4. In an analogous
way as in Section 3 we show that for the family of polynomials fa(x) =
x4−(a2+a+1)x2+(a2+a)x−1 the set {̺, ̺−1, ̺−a} forms a fundamental
system of units of the number field generated by a root of fa.

Calculations show that the fa(x) are irreducible and have four real roots
for a 6∈ {0,±1,−2}. Computations of examples suggest that for a ∈ Z≥2 the
fa generate infinitely many number fields of signature (4, 0) with unit rank 3.
For a ∈ {0,±1,−2} the number fields have signature (2, 1). Moreover fa and
f−a−1 generate the same number field, hence there is no need to consider
a < −2.

In the following we therefore only consider the case a ≥ 2.

The discriminant of fa is df = 4a10 +20a9 +9a8 −84a7 −74a6 +156a5 +
169a4−60a3−396a2−320a−400. Computations show that df ≡ 0 (mod24)
but df 6≡ 0 (mod25) for any a ∈ Z, and df ≡ 0 (mod52) for a ≡ 0, 4 (mod5)
but df 6≡ 0 (mod53) for any a ≡ 0, 4 (mod5). Using the Dedekind test for
the maximality of an order we get:

Theorem 4.1. The index of Z[̺] in the maximal order of the number

field generated by fa is not divisible by 2 or 5 for all a ≥ 2.

Numerical approximations of the roots of fa lead to:

Theorem 4.2. The four roots of fa lie in the four intervals:

̺1 ∈ [−a − 2,−a − 1], ̺3 ∈ [1 − 1/a2, 1 − 1/a3],

̺2 ∈ [1/a3, 1/a2], ̺4 ∈ [a + 1/a4, a + 1/a3].

As in Section 3 we compute the Galois group of fa with the cubic resol-
vent rfa

= x3 + 2(a2 + a + 1)x2 + ((a2 + a + 1)2 + 4)x + a2(a + 1)2 to be S4.
The roots of fa are units and we have:

Theorem 4.3. The three units {̺, ̺− 1, ̺−a} are independent units of

the order Z[̺]. They form a fundamental system of units for a ≥ 2.

To prove this theorem the following proposition is helpful:

Proposition 4.4. The three units {̺, ̺ − 1, ̺ − a} are independent if

and only if {̺, (̺ − 1)/̺, ̺(̺ − a)} are independent.

The independence of {̺, (̺ − 1)/̺, ̺(̺−a)} is proved similarly to Theo-
rem 3.4. The fundamentality of the set of Theorem 4.3 is proved by approx-
imations of the regulator as in 3.4:

Rlow =
(10 log a + log(1/4) + log(1 + 5/a))3√

64000

and

Rup = 8.07 log3 a + 3 log2 a,
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which implies
Rup

Rlow
< 3

for a ≥ 150. Finally, we have to show that any unit of the form θ =
±̺m1(̺ − 1)m2(̺ − a)m3 with mi ∈ {0, 1} is not a square in the order Z[̺].
For (m1, m2, m3)∈{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)} there
exists for all a ∈ Z a negative conjugate of θ, which implies that θ can-
not be a square. In the remaining case (m1, m2, m3) = (0, 1, 1) the unit
(̺ − 1)(̺ − a) = ̺2 − (a + 1)̺ + a cannot be a square either for a ≡ 0
(mod2): consider α ∈ Z[̺] with α2 = ̺2 − (a + 1)̺ + a; this implies for
every choice of a ∈ Z a contradiction concerning the coefficients of α2 and
̺2 − (a + 1)̺ + a modulo 2. For a 6≡ 1, 7 (mod8) the unit considered cannot
be a square either for the same reasons modulo 8. (Even for other choices of
the parameter a computations show that {̺, ̺− 1, ̺− a} are fundamental.)
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L-1511 Luxembourg
E-mail: Franck.Leprevost@univ.lu

Fakultät II–Mathematik MA 8-1
Technische Universität Berlin

Strasse des 17. Juni 136
D-10623 Berlin, Germany

E-mail: pohst@math.tu-berlin.de
schoepp@math.tu-berlin.de

Received on 14.6.2004

and in revised form on 24.1.2007 (4788)


