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On density modulo 1 of some expressions
containing algebraic integers

by

RoMAN URBAN (Wroctaw)

1. Introduction. It is a very well known result in the theory of distri-
bution modulo 1 that for every irrational £ the sequence {n§ : n € N} is
dense modulo 1 (and even uniformly distributed modulo 1) [13].

Let S be a multiplicative semigroup of integers. The semigroup S is said
to be lacunary if the members {s € S : s > 0} are of the form sk, k € N,
so € N*. Otherwise, S is non-lacunary. In 1967, in his seminal paper [7],
Furstenberg proved that if S is a non-lacunary semigroup of integers and &
is an irrational number, then the orbit S¢ is dense modulo 1. In other words,
we have the following

THEOREM 1.1 (Furstenberg, [7]). If p,q > 1 are rationally independent
integers (i.e., they are not both integer powers of the same integer) then for
every irrational & the set

(1.2) {p"q"€¢ :n,m € N}
15 dense modulo 1.

In particular, the result of Furstenberg can be considered as a general-
ization of a theorem of Hardy and Littlewood [10], which asserts that if r is
a positive integer and & is an irrational number, then the set {¢"¢ : ¢ € N}
is dense modulo 1. Furstenberg’s proof is based on a fundamental idea of
disjointness of dynamical systems, which he introduced in the same paper
[7] (see also [17], where Furstenberg’s original proof is outlined). In 1994
Boshernitzan gave an elementary proof of Furstenberg’s theorem in [6].
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One possible direction of generalizations is to consider p and ¢ in Theo-
rem 1.1 not necessarily integer. This was done by Berend in [4]. Let us state
his result precisely.

Let K be a real algebraic number field (i.e., a finite extension of Q)
and S a subsemigroup of its multiplicative group K*. According to [4], the
semigroup S is said to be DM; if S¢ is dense modulo 1 for every & # 0,
and almost DM if S¢ is dense modulo 1 for every £ ¢ K. We say that two
numbers A and u are rationally dependent if there are integers m and n,
not both 0, such that \"* = u”, and rationally independent otherwise. The
semigroup S is said to be one-parameter if all its elements are integer powers
of a single number; weakly one-parameter if any two of its elements are
rationally dependent, and multi-parameter otherwise. If [K : Q] = m, we
denote by PS(K) the semigroup consisting of all Pisot or Salem numbers of
degree m (see Section 2 for the definition). For a subset A C K, we denote
by Q(A) the subfield of K obtained by adjoining A to Q. Then we have the
following

THEOREM 1.3 (Berend, [4]). Let K be a real algebraic number field and
S a multi-parameter subsemigroup of K* N [—1,1]¢ with Q(S) = K. Then S
is almost DMy. If, moreover, S ¢ PS(K), then S is DMj;.

An interesting generalization of Furstenberg’s result is the following

THEOREM 1.4 (Kra, [12]). Suppose that the pairs p;,q; € N, with 1 <

Di < qi fOT'i = 17"’7ka k S N) (pufh) 7& (pj7qj) fori ?é.]v andpl S e Spkﬂ
are rationally independent. Then for distinct &1, ...,&; € [0,1] with at least

one & € Q the set N
{Zp?qim& in,m € N}
i=1

1s dense modulo 1.

(See the paper of Meiri [14] for an alternative proof of part of Kra’s result
via measure-theoretic methods.)

Inspired by Kra’s theorem we state the following conjecture generalizing
Berend’s Theorem 1.3.

CONJECTURE 1.5. Let k € N be fized, and let N\, u;, for 1 < i < k,
be real algebraic numbers with absolute values greater than 1. Assume that,
for i =1,... k, the pairs \;, u; are rationally independent, and (\;, u;) #
(Aj, 5) for i # j. Then for any real numbers &1,...,&; with at least one

& & @(Ule{)\i,,ui}) the set

{i)\?,ug”& in,m € N}

i=1
1s dense modulo 1.
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The aim of this paper is to make a first step toward a proof of Conjec-
ture 1.5. Namely, using some topological dynamics methods in the spirit of
Berend [4] and Kra [12], we prove the following

THEOREM 1.6. Let Ai, 1 and Ao, po be two distinct pairs of rationally
independent real algebraic integers of degree 2, with absolute values greater
than 1, such that the absolute values of their conjugates A1, i1, A2, fio are also
greater than 1. Let

p = g1(A1)  for some g1 € Zlz],
w2 = g2(A2)  for some g2 € Z[x].

Assume that at least one element in each pair \;, p; has all non-negative
powers irrational. Assume further that there exist k, 1, k', I' € N such that

(1.7) min{| Al o', [Nol¥|fiz|'} > masc{ | Ay || |, [N || 7|}

and

(18)  mind | ) ¥ [l > mas{o|¥ sl el 2"}
Then for any real numbers &1, & with at least one &; # 0 the set

(1.9) {A BT €1 + Agpy'€a - n,m € N}

1s dense modulo 1.

To have in mind a simple example illustrating Theorem 1.6 consider the
following expression:

(1.10) (V23 4+ 1)"(V23 + 2)"¢&; + (V61 + 1) (V61 — 6)™&.

It is easy to verify that the density modulo 1 of the expressions of the form
(1.10) with m,n € N follows from Theorem 1.6, provided that at least one
of the &’s is non-zero. Actually, (1.10) is a special case of a general situation
when assumptions (1.7) and (1.8) of Theorem 1.6 hold, namely, when

(1.11) o] > Do > [M| > A1 > 1 and || > |fin] > |p2| > 2] > 1.

It is easy to check that (1.11) implies (1.7) and (1.8).

As a corollary from the proof of Theorem 1.6 we will get the following
strengthening of Theorem 1.6 which gives density modulo 1 of (1.9) in the
case when not all of \;, u; are of degree 2:

COROLLARY 1.12. Let A1, u1 and Ao, o be two distinct pairs of rationally
independent real algebraic integers of degree 1 or 2, with absolute values
greater than 1, such that the absolute values of their conjugates A1, i1, A2, jio
are also greater than 1 (for an algebraic integer A of degree 1 we define A to
be N). Assume that for each i, if \; or p; has degree 2, then at least one of
them has all non-negative powers irrational. Assume further that if \; and p;
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are both of degree 2 then
wi = gi(Ni)  for some g; € Z[z].

Assume also that there exist k,1, k'l € N such that (1.7) and (1.8) hold,
and &; s irrational if A;, p; € Q. Then the conclusion of Theorem 1.6 holds.

As an example illustrating the above corollary consider
(1.13) (34 V/3)"2™ 4 577 Ey/2.

Another kind of generalization of Furstenberg’s Theorem 1.1, which we
are going to use in the proof of our result, is to consider higher-dimensional
analogues. Notice that, in terms of dynamical systems, Furstenberg’s theo-
rem says that the orbits of the semigroup generated by p and ¢ and acting
on T = R/Z are finite or dense, or equivalently (see [9] for details), the only
infinite closed p- and g-invariant subset of T = R/Z is T itself. Clearly, there
are many closed infinite p-invariant (or g-invariant) proper subsets of T.
Hence, Furstenberg’s theorem gives a remarkable rigidity property of the
joint p- and g-action on the one-dimensional torus.

A generalization of this rigidity property to a commutative semigroup of
non-singular d x d matrices with integer coeflicients acting by endomorphisms
on the d-dimensional torus T¢ = R?/Z? and to the action of commutative
semigroups of endomorphisms acting on other compact abelian groups, was
given by Berend in [2] and [3], respectively. Recently some generalizations
for non-commutative semigroups of endomorphisms acting on T¢ have been
obtained in [8, 9, 16].

The structure of the paper is as follows. In Section 2 we recall some el-
ementary definitions. Then in Section 3, following Berend [2, 3|, we recall
the definition of an ID-semigroup of endomorphisms of the d-dimensional
torus T? and state Berend’s theorem, [2], which gives conditions that guar-
antee that a given semigroup of endomorphisms of T¢ is an ID-semigroup.
In Section 4 we consider two commutative semigroups X and X5 of endo-
morphisms of the 2-dimensional torus and study the closed invariant sets
for the corresponding action of X; x X5 on the product T? x T2. Finally in
Section 5 we prove the main result of the paper.

Acknowledgements. The author is grateful to Yves Guivarc’h for his
helpful remarks concerning the content of this paper. The author also wishes
to thank the referee for a series of essential remarks that improved the overall
presentation of the result.

2. Some definitions. We say that P € Z[x] is monic if the leading co-
efficient of P is one, and reduced if its coefficients are relatively prime. A real
algebraic integer is any real root of a monic polynomial P € Z|[x], whereas an
algebraic number is any root (real or complex) of a (not necessarily monic)
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non-constant polynomial P € Z[z]|. The minimal polynomial of an algebraic
number 6 is the reduced element @ of Z[x] of the least degree such that
Q(0) = 0. If 4 is an algebraic number, the roots of its minimal polynomial
are simple. The degree of an algebraic number is the degree of its minimal
polynomial.

Let 6 be an algebraic integer of degree n and let P € Z[x] be the minimal
polynomial of §. The n — 1 other distinct (real or complex) roots 6s,..., 0,
of P are called conjugates of 0.

A Pisot number is a real algebraic integer 6 greater than 1 whose conju-
gates O, ..., 0, satisfy the inequalities |62| < 1,...,]6,] < 1.

A Salem number is a real algebraic integer 0 greater than 1 whose con-
jugates 6o, ..., 0, satisfy the inequalities |0;| < 1, 2 < j < n, with equality
for at least one j.

If 0 is a Salem number of degree n, then n is an even integer, n = 2m, and
the conjugates of 6 are 1/6 and n — 2 pairwise-conjugate complex numbers
of absolute value 1, ((1,(y),- -+, (Gn_1,Cm_1) (see [15]).

For more about Pisot and Salem numbers see [15, 5.

3. ID-semigroups of endomorphisms acting on T¢. Following [2, 3],
we say that the semigroup X of continuous endomorphisms of a compact
group G has the ID-property (or simply that X is an ID-semigroup) if the
only infinite closed Y-invariant subset of G is G itself. (ID-property stands
for infinite invariant is dense.)

Berend in [2| gave necessary and sufficient conditions in arithmetical
terms for a commutative semigroup Y of endomorphisms of the r-dimen-
sional torus T¢ = R? /Zd to have the ID-property. Namely, he proved the
following.

THEOREM 3.1 (Berend, [2, Theorem 2.1]). A commutative semigroup X
of endomorphisms of T has the ID-property if and only if the following hold:

(i) There exists an endomorphism o € X such that the characteristic
polynomial fon of o™ is irreducible over Z for every positive inte-
ger n.

(ii) For every common eigenvector v of X there exists an endomorphism
oy € X whose eigenvalue in the direction of v is of norm greater
than 1.

(iii) X' contains a pair of rationally independent endomorphisms.

We say, exactly as in the case of real numbers, that two endomorphisms
o and 7 are rationally dependent if there are integers m and n, not both 0,
such that ¢ = 7™, and rationally independent otherwise.
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REMARK 3.2. Let X be a commutative ID-semigroup of endomorphisms
of T. Then the Y-orbit of the point x € T¢ is finite if and only if z is a
rational element, i.e., z = 7/q, r € Z%, q € N (see [2]).

4. A semigroup M acting on the product T? x T?. Let o1, 7 and
09, T2 be two pairs of rationally independent and commuting endomorphisms
of T2 (given by non-singular 2 x 2-matrices with integer coefficients). We
assume that for ¢ = 1,2 the semigroups Y; = (0, 7;) generated by o; and 7;
satisfy the conditions of Theorem 3.1. Let M, = (‘61 ;)2) and M, = (701 702)
We consider the actions of M, and M, on the product T? x T?. We denote
by M the semigroup of endomorphisms of T2 x T? generated by M, and M.

We start with the following

LEMMA 4.1. Let o be an invertible d X d-matriz with integer entries. Let
r=x/qec T zecZ qecN, bearational element such that the denominator
q s relatively prime to det o. Then there exists k € N such that

ofr =r (mod Z%).

Proof. We observe that o acts naturally on the finite set (Z/qZ)?. Denote
by @ the corresponding endomorphism of the module (Z/qZ)¢ over the finite
ring Z/qZ. Thus we have an action of the semigroup N on (Z/qZ)?, given by
kox=c"z,keN,z¢€ (Z/qZ)d. Clearly, det @ is the congruence class of det o
in Z/qZ. Since q is relatively prime to det o, we conclude that deta # 0,
hence & € GL(d, Z/qZ). Thus {G* : k € N} is a semigroup contained in the
finite group GL(d, Z/qZ); it follows that {z* : k € N} is a group. Thus there
exists k such that @ = Id and the lemma is proved. =

For a given subset A C T? x T? and x € T2, we define
A, ={teT?: (t,x) € A}.

The next three lemmas generalize Lemmas 3.1-3.3 from [12], where diag-
onal 2 X 2-matrices with integer entries acting on T x T were considered,
to our higher dimensional situation. Berend’s Theorem 3.1, together with
Lemma 4.1 above, allows us to extend the results from [12] to the action
of M on T? x T?. For clarity of exposition, we give detailed proofs.

LEMMA 4.2. Let A be a non-empty, M- and M -invariant closed subset
of T2 x T?. Then the set P = {t € T? : A, # 0} is either the whole T? or
a finite set of rational elements in T?. Furthermore, if ¢ € T? is a rational
element whose denominator is relatively prime to det oo and det 7o, then A,
is either empty, a finite set of rational elements, or the whole T?.

Proof. Clearly, P is non-empty (since A is) and closed in T2. Moreover,
since A is M,- and M -invariant it follows that P is o9- and m»-invariant.
Hence, by our assumption that the semigroup X'> generated by o9, 75 satisfies
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the conditions of Theorem 3.1, we infer that P is either a finite set of rational
elements, or the whole T2.

Next, given a rational element ¢ whose denominator is relatively prime to
det o3 and det 75, and with A; # 0, by Lemma 4.1 we can find k1, k2 € N such

that aglq = ¢ (modZ?) and 7'2]€2q = ¢ (modZ?). Thus 4, is a non-empty,
closed, 051— and Té”—invariant subset of T2. By Theorem 3.1, it is either a
finite set of rational elements, or the whole T2. w

LEMMA 4.3. Let A be a closed, M,- and M, -invariant subset of T? x T?.
If all rational elements of A are isolated in A, then A is finite.

Proof. Consider A’, the set A with all rational elements removed. If A’
is empty there is nothing to do. If A’ is non-empty, then it is also closed and
M,- and M -invariant. By Lemma 4.2, A’ must contain a rational element.
Thus A is a closed set consisting of isolated points in the compact space
T? x T2. Hence A is finite. m

LEMMA 4.4. Let A be a closed, M,- and M, -invariant subset of T? x T?.
Let q1 and qo be rational elements of T? such that (q1,q2) € A. Assume that
the denominator of q; is relatively prime to det o;, detr; for i = 1,2. Then
there exist n,m € N such that the set A—(q1,q2) = {(z—q1,y—q2) : (z,y) €
A} is M- and M™-invariant.

Proof. By Lemma 4.1 we can find n, m € N such that
otq = ¢ (modZ?), 7q1 = q1 (modZ?),
o%qr = @2 (modZ?), 7'y = g2 (mod Z?).

Now, the point (g1, g2) is fixed under M} and M. As A is obviously M- and
M"-invariant, we conclude that A— (g1, g2) is also M- and M"-invariant. m

5. Proof of Theorem 1.6 and Corollary 1.12. Let A > 1 be a real
algebraic integer of degree 2 with minimal (monic) polynomial Py € Z[z],
P,\(:v) = IL’2 + c1x + ¢p.

With A\ we associate the companion matriz of Py,

(5.1) o\ = ( 0 ! ) .
—Cop —C1

REMARK 5.2. We can think of o) as the matrix of multiplication by A
in the basis of the algebraic number field Q(A) consisting of 1 and A, that
is, if 2 has coordinates o = (g, 1) in the basis consisting of 1, A\, then Az
has coordinates ao).

Let i = g(X), where g € Z[z], and define the matrix 7, = g(o).
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Denote by X the semigroup of endomorphisms of T? generated by oy
and 7,. The vector v = (1,\)" is an eigenvector of o) with eigenvalue A,
that is, oyv = Av. Since Y is a commutative semigroup, v is a common
eigenvector of X, in particular 7,v = g(ox)v = g(A)v = pw.

Let A1,pu1 > 1 and Ao, uo > 1 be two pairs of rationally independent
algebraic integers of degree 2. Moreover, assume that p; = ¢;(\;), g; € Zx].
We assume that the absolute values of the conjugates Xi, 1; of \; and p;
are also greater than one. Now, we associate with A;, y; the matrices o; =
O, Ti = Ty, as described above. For i = 1,2, we denote by X; = (0, 7;) the
semigroups generated by o; and ;.

Clearly, 01,7 and o3, are rationally independent endomorphisms of
T? and for ¢ = 1,2, the characteristic polynomial of o' or 7;* is irreducible
over Z for every n € N. Furthermore, since XZ-, 1 > 1, it follows that for the
semigroups Y; condition (ii) of Theorem 3.1 is also satisfied. Thus X; and X
are ID-semigroups of endomorphisms of T?. Hence, if we define M, = (‘701 ;)2 )

and M, = (78 702 ), we can apply the results of Section 4 to the semigroup

M = (M,, M) of endomorphisms of T? x T2,
For a = (ay,az) € T? x T?, define

(5.3) X, = {(o7 1", o8 an) € T? x T? : n,m € N},

which is the orbit of o under the action of the semigroup M generated by
M, and M;. Let X3¢ denote the set of accumulation points of X,. Clearly,
Xo and X5° are M-invariant. Furthermore, X3¢ is closed.

The following simple lemma will be used in the proof of the next proposi-
tion. (A more general version for d x d-matrices is given in [16, Lemma 6.4].)

LEMMA 5.4. Let A be a real invertible 2 x 2-matriz with two different
real eigenvalues ny,n2 such that |ni| > |n2| > 1. Let v, = (Tpn,Yn), Tn # 0,
yn # 0, be a sequence of vectors in R? tending to (0,0). Then there exists a
subsequence vy, and an increasing subsequence {jn, } of N such that
(5.5) klim Ak, =w#0  with ||w| < 1.

— 00

Proof. We can assume that [|v,| < 1. By the assumption on the eigen-
values it follows that A is an expanding map, and thus for every n, there
exists the smallest natural number j, such that

/) A|l < [|[A7 o] < 1.

Hence, by compactness, we can choose a subsequence {n;} C N such that
(5.5) holds. =

We will also need the following
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LEMMA 5.6. Let A : R* — R? be a linear map. For every § > 0 there
eists a norm || - ||5 in R? such that

[Alls < r(A)+4,

where r(A) is the spectral radius of A (i.e., the mazimal absolute value of an
eigenvalue of A).

Proof. See Proposition 1.2.2 in [11]. =

PROPOSITION 5.7. With the same assumptions as in Theorem 1.6, if
(0,0) € X2° then one of the following holds:

(1) The point (0,0) is isolated in X3°.
(2) The set X2¢ contains T? x {0} or {0} x T2.

Proof. Consider a general element m of the semigroup M = (M, M),

k.l 0
(5.8) m=m(k,1) = MFM! = oLm Ll for some k,1 € N.
0 o575

Denote the diagonal elements of m, which are non-singular 2 x 2-matrices,
by mi1 and meo. That is, m; = a’fo and mo = 0575. Let 01 > 0} (02 > 0},
resp.) denote the absolute values of the eigenvalues of m; (mg, resp.). Since
o; (7, resp.) has eigenvalues \;, Py (i, 117, Tesp.), we see that
oi = max{ | X" |ils Nal*lial' Y, g = mind | Xal* il Al * [l

Suppose that k and [ are fixed (we will choose them appropriately later) and
consider m = (”81 ngz) acting on V; x V5 := R2 x R2.

It follows from Lemma 5.6 that for every § > 0 there exist norms || - ||; 5
in V; such that, for every y € V;,

(59) Imvllis < (o +8) s

Furthermore, there exist norms || - ||; in V; such that

(5.10) Imiylli > oillylls

for every y € V;. In fact, let T € GL(2,R) be such that TAT~! = (% ;/_),

and define ||y||; = ||Ty||, where ||y|| = \/y] + v3.

By Lemma 4.2, we can assume that the intersection of X2 with {0} x T?
(with T? x {0}, resp.) either contains finitely many rational points, or equals
{0} x T? (T? x {0}, resp.). Assume that X2° contains neither {0} x T2 nor
T2 x {0}. Then, removing finitely many rational isolated points from {0} x T2
and T? x {0}, by applying the matrix (‘hold qQOId) to X3¢, where q1 (g2, resp.) is
a common denominator of the finite set of rational points of (T? x {0})N X2¢
({0} x T2) N X2°, resp.), we can assume that the intersection of X2¢ with
the “x and y axes” is empty, that is,

(5.11) XN ({0} x T>UT? x {0}) = 0.
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Suppose that (0,0) is not isolated in X3¢. Thus there exists a sequence
{(zn,yn)} C X2 tending to (0,0), with x,,y, # 0 by (5.11). Choosing an
appropriate subsequence, we can assume that

(512) lim M =o€ [0,—|—OO) or lim HynH — foo,

=00 ||| =00 ||z

where || - || stands for an arbitrary norm in R2.

First we consider the case when a # 0 or the limit in (5.12) is infinite.
By the assumption (1.7) there are k,I € N such that m = m(k,[) has the
property that
(5.13) 05 > 01.

By (5.9) and (5.10) we get, for every j € N,
J ! J
Imizalie — \e1+0/ llznllis

Now, by Lemma 5.4, we can choose a subsequence v,, = (Zn,,Yyn,) and
{Jn.} C N tending to infinity such that

(5.15) lim Mo g =1 % 0.

By (5.13) we can take § > 0 in (5.9) so that ¢, > g1 + 0. Hence, by (5.14)
and our assumption that ||yn,|l2/]|Zn,|l1,s tends to o # 0 or to infinity as
k — oo,

J
Iyl _

(5.16)
k=00 |y

Now (5.15) and (5.16) imply that mjln’“xnk — 0. Thus we have constructed

the sequence {(m]"* zp, , m) " yn, )} C X2 such that (m]™z,,, my™*yn,) —

(0,y) € T? x T?, with y # 0. This contradicts (5.11).

Finally, we consider the case when a = 0 in (5.12). By assumption (1.8)
there are k/,1" € N such that the corresponding element m = m(k’,l') in
(5.8) satisfies o] > p2. By (5.9) and (5.10),

||m{$n||1 >< 0 >] |25 |1
Imdynllas ~ \e2+06/) llynll2s

Now we proceed analogously to the previous case exchanging the roles of z,,

and y, to get a sequence {(min’€ :Enk,mén’“ Yn,, )} C X2 such that, as k — oo,
(M) @y, 0y yn, ) — (2,0) € T2 x T2, with z # 0. This again contradicts
(5.11). =

COROLLARY 5.17. With the same assumptions as in Theorem 1.6, either
(0,0) is isolated in X2¢, or {x +y: (z,y) € X2} = T2

o )
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Proof. Straightforward from Proposition 5.7. =

The following lemma will also be used. Its proof is analogous to the
classical case of one endomorphism of T? (see for example [11] or [1]). In this
lemma ¥ C Min(d,Z) := GL(d,R) N M(d,Z), where M(d,Z) is the set of
d x d matrices with integer entries, is a semigroup of endomorphisms of the
d-dimensional torus T?. The torus T¢ is endowed with its normalized Haar
measure m, which is X-invariant.

LEMMA 5.18. Assume A C T¢ is measurable, has positive measure and
satisfies XA C A. Then, if any character x # 1d has unbounded X*-orbit,
then A has measure 1; in particular X is ergodic on T¢.

Finally, we are ready to give

Proof of Theorem 1.6. Consider the set X,, a = (a1, a2), defined in
(5.3), with oy = & (1, A\1)! and as = & (1, \2)? being common eigenvectors
of the semigroups X and X, respectively. We can assume that both & and
&y are non-zero; if one of them is zero then the conclusion of Theorem 1.6
follows from Theorem 1.3. Thus,

(5.19)  Xo = {(ATp &, AP 60, Ao, Ay T o) = m,m € N

We have noticed, before Lemma 5.4, that the semigroup ¥ = (o1, 71)
satisfies the conditions of Theorem 3.1, and so is an ID-semigroup. Therefore,
since a is not a rational point (see Remark 3.2), for every z € T? there exist
sequences {n;} and {my}, tending to infinity, such that o{*7"* a1 — =z as
k — oo. Since T? is compact, we can assume, choosing a subsequence, that
oy* 1y g — y for some y € T2. Therefore, for every z € T? there exists
y € T? so that (x,y) € X2°. In particular, X2 is infinite.

By Lemma 4.3 there is a non-isolated rational point (¢, ¢g2) in X32¢. For
Kyt € NU{0}, define

g _ (deterta 0 " (detmid 0\
o 0 det oId 0 det oId )

Let k,¢ be chosen so that, for (%) = jm(g;), the denominator of ¢; is
relatively prime to deto;, detr; for i = 1,2. Applying Lemma 4.4 to the
set )?273 = J., X2 we can assume that (0,0) is non-isolated in ngc It
is clear that Proposition 5.7 and Corollary 5.17 are valid for )?g? instead
of X3¢ with no changes in their proofs. Thus, by Corollary 5.17, the set
S:={z+y: (z,y) € X2} is equal to the whole T2. So its projection 1 (S)

of S on the first coordinate equals T. But 71(S) = (det o1)"(det 71 ) 71 (S),
where S ={z +y: (z,y) € X2°}. Thus we have

T = (det oy )" (det 71)'m1 (S).
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Hence, a closed Xj-invariant subset 71 (S) of T has positive Haar measure
(greater than 1/(detoq)”(det)"). By Remark 5.2 and the condition on
the eigenvalues of o1 and 7, any character ¥ # Id has unbounded X'-
orbit. Hence, by Lemma 5.18, the semigroup X is ergodic. Thus m1(.S) has
measure 1. Since it is closed, we have 71(S) = T.

Now comparing this with the first and third coordinate of X, in T? x T?
(see (5.19)) we obtain the result. m

Proof of Corollary 1.12. We slightly modify the proof of Theorem 1.6.
The only difference is that when, say, \; is of degree 1, that is when \; is an
integer, we cannot define o), as in (5.1). Instead, if the corresponding p; is

of degree 2, we define
Ai 0O
o\ = ,
Moo

whereas if y1; is of degree 1, we define o), and 7, as the 1 x 1 matrices,
ox = (Ni) and 7 = ().
For example, if we consider an expression as in (1.13), we have to deal with

0 10 5 00
M,=|-6 6 0 and M,=1|0 5 0
0 0 2 00 7

acting on T? x T.

It is clear that Proposition 5.7 and Corollary 5.17, with obvious changes
in their conclusions and some cosmetic changes in the proofs, work in this
situation as well. In particular, in this example, Proposition 5.7 gives that,
if (0,0) is non-isolated in X2¢ then X2¢ contains T2 x {0}, where 0 € T, or
{0} x T, where 0 € T2. As in Corollary 5.17 we conclude that {ZT+v : (z,y) €
)/(\g?} = T, where T is the projection of x € T? on the first coordinate. =
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