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On density modulo 1 of some expressions
ontaining algebrai
 integersby
Roman Urban (Wro
ªaw)

1. Introdu
tion. It is a very well known result in the theory of distri-bution modulo 1 that for every irrational ξ the sequen
e {nξ : n ∈ N} isdense modulo 1 (and even uniformly distributed modulo 1) [13℄.Let S be a multipli
ative semigroup of integers. The semigroup S is saidto be la
unary if the members {s ∈ S : s > 0} are of the form sk
0 , k ∈ N,

s0 ∈ N∗. Otherwise, S is non-la
unary. In 1967, in his seminal paper [7℄,Furstenberg proved that if S is a non-la
unary semigroup of integers and ξis an irrational number, then the orbit Sξ is dense modulo 1. In other words,we have the followingTheorem 1.1 (Furstenberg, [7℄). If p, q > 1 are rationally independentintegers (i.e., they are not both integer powers of the same integer) then forevery irrational ξ the set(1.2) {pnqmξ : n, m ∈ N}is dense modulo 1.In parti
ular, the result of Furstenberg 
an be 
onsidered as a general-ization of a theorem of Hardy and Littlewood [10℄, whi
h asserts that if r isa positive integer and ξ is an irrational number, then the set {qrξ : q ∈ N}is dense modulo 1. Furstenberg's proof is based on a fundamental idea ofdisjointness of dynami
al systems, whi
h he introdu
ed in the same paper[7℄ (see also [17℄, where Furstenberg's original proof is outlined). In 1994Boshernitzan gave an elementary proof of Furstenberg's theorem in [6℄.2000 Mathemati
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218 R. UrbanOne possible dire
tion of generalizations is to 
onsider p and q in Theo-rem 1.1 not ne
essarily integer. This was done by Berend in [4℄. Let us statehis result pre
isely.Let K be a real algebrai
 number �eld (i.e., a �nite extension of Q)and S a subsemigroup of its multipli
ative group K∗. A

ording to [4℄, thesemigroup S is said to be DM1 if Sξ is dense modulo 1 for every ξ 6= 0,and almost DM1 if Sξ is dense modulo 1 for every ξ 6∈ K. We say that twonumbers λ and µ are rationally dependent if there are integers m and n,not both 0, su
h that λm = µn, and rationally independent otherwise. Thesemigroup S is said to be one-parameter if all its elements are integer powersof a single number; weakly one-parameter if any two of its elements arerationally dependent, and multi-parameter otherwise. If [K : Q] = m, wedenote by PS(K) the semigroup 
onsisting of all Pisot or Salem numbers ofdegree m (see Se
tion 2 for the de�nition). For a subset A ⊂ K, we denoteby Q(A) the sub�eld of K obtained by adjoining A to Q. Then we have thefollowingTheorem 1.3 (Berend, [4℄). Let K be a real algebrai
 number �eld and
S a multi-parameter subsemigroup of K∗ ∩ [−1, 1]c with Q(S) = K. Then Sis almost DM1. If , moreover , S 6⊂ PS(K), then S is DM1.An interesting generalization of Furstenberg's result is the followingTheorem 1.4 (Kra, [12℄). Suppose that the pairs pi, qi ∈ N, with 1 <
pi < qi for i = 1, . . . , k, k ∈ N, (pi, qi) 6= (pj , qj) for i 6= j, and p1 ≤ · · · ≤ pk,are rationally independent. Then for distin
t ξ1, . . . , ξk ∈ [0, 1] with at leastone ξi 6∈ Q the set { k∑

i=1

pn
i qm

i ξi : n, m ∈ N

}

is dense modulo 1.(See the paper of Meiri [14℄ for an alternative proof of part of Kra's resultvia measure-theoreti
 methods.)Inspired by Kra's theorem we state the following 
onje
ture generalizingBerend's Theorem 1.3.Conje
ture 1.5. Let k ∈ N be �xed , and let λi, µi, for 1 ≤ i ≤ k,be real algebrai
 numbers with absolute values greater than 1. Assume that ,for i = 1, . . . , k, the pairs λi, µi are rationally independent , and (λi, µi) 6=
(λj , µj) for i 6= j. Then for any real numbers ξ1, . . . , ξk with at least one
ξi 6∈ Q(

⋃k
i=1

{λi, µi}) the set
{ k∑

i=1

λn
i µm

i ξi : n, m ∈ N

}

is dense modulo 1.



Density modulo 1 of some expressions 219The aim of this paper is to make a �rst step toward a proof of Conje
-ture 1.5. Namely, using some topologi
al dynami
s methods in the spirit ofBerend [4℄ and Kra [12℄, we prove the followingTheorem 1.6. Let λ1, µ1 and λ2, µ2 be two distin
t pairs of rationallyindependent real algebrai
 integers of degree 2, with absolute values greaterthan 1, su
h that the absolute values of their 
onjugates λ̃1, µ̃1, λ̃2, µ̃2 are alsogreater than 1. Let
µ1 = g1(λ1) for some g1 ∈ Z[x],

µ2 = g2(λ2) for some g2 ∈ Z[x].Assume that at least one element in ea
h pair λi, µi has all non-negativepowers irrational. Assume further that there exist k, l, k′, l′ ∈ N su
h that(1.7) min{|λ2|k|µ2|l, |λ̃2|k|µ̃2|l} > max{|λ1|k|µ1|l, |λ̃1|k|µ̃1|l}and(1.8) min{|λ1|k
′ |µ1|l

′

, |λ̃1|k
′ |µ̃1|l

′} > max{|λ2|k
′ |µ2|l

′

, |λ̃2|k
′ |µ̃2|l

′}.Then for any real numbers ξ1, ξ2 with at least one ξi 6= 0 the set(1.9) {λn
1µm

1 ξ1 + λn
2µm

2 ξ2 : n, m ∈ N}is dense modulo 1.To have in mind a simple example illustrating Theorem 1.6 
onsider thefollowing expression:(1.10) (
√

23 + 1)n(
√

23 + 2)mξ1 + (
√

61 + 1)n(
√

61 − 6)mξ2.It is easy to verify that the density modulo 1 of the expressions of the form(1.10) with m, n ∈ N follows from Theorem 1.6, provided that at least oneof the ξi's is non-zero. A
tually, (1.10) is a spe
ial 
ase of a general situationwhen assumptions (1.7) and (1.8) of Theorem 1.6 hold, namely, when(1.11) |λ2| > |λ̃2| > |λ1| > |λ̃1| > 1 and |µ1| > |µ̃1| > |µ2| > |µ̃2| > 1.It is easy to 
he
k that (1.11) implies (1.7) and (1.8).As a 
orollary from the proof of Theorem 1.6 we will get the followingstrengthening of Theorem 1.6 whi
h gives density modulo 1 of (1.9) in the
ase when not all of λi, µi are of degree 2:Corollary 1.12. Let λ1, µ1 and λ2, µ2 be two distin
t pairs of rationallyindependent real algebrai
 integers of degree 1 or 2, with absolute valuesgreater than 1, su
h that the absolute values of their 
onjugates λ̃1, µ̃1, λ̃2, µ̃2are also greater than 1 (for an algebrai
 integer λ of degree 1 we de�ne λ̃ tobe λ). Assume that for ea
h i, if λi or µi has degree 2, then at least one ofthem has all non-negative powers irrational. Assume further that if λi and µi



220 R. Urbanare both of degree 2 then
µi = gi(λi) for some gi ∈ Z[x].Assume also that there exist k, l, k′, l′ ∈ N su
h that (1.7) and (1.8) hold ,and ξi is irrational if λi, µi ∈ Q. Then the 
on
lusion of Theorem 1.6 holds.As an example illustrating the above 
orollary 
onsider(1.13) (3 +

√
3)n2m + 5n7mξ2

√
2.Another kind of generalization of Furstenberg's Theorem 1.1, whi
h weare going to use in the proof of our result, is to 
onsider higher-dimensionalanalogues. Noti
e that, in terms of dynami
al systems, Furstenberg's theo-rem says that the orbits of the semigroup generated by p and q and a
tingon T = R/Z are �nite or dense, or equivalently (see [9℄ for details), the onlyin�nite 
losed p- and q-invariant subset of T = R/Z is T itself. Clearly, thereare many 
losed in�nite p-invariant (or q-invariant) proper subsets of T.Hen
e, Furstenberg's theorem gives a remarkable rigidity property of thejoint p- and q-a
tion on the one-dimensional torus.A generalization of this rigidity property to a 
ommutative semigroup ofnon-singular d×d matri
es with integer 
oe�
ients a
ting by endomorphismson the d-dimensional torus Td = Rd/Zd, and to the a
tion of 
ommutativesemigroups of endomorphisms a
ting on other 
ompa
t abelian groups, wasgiven by Berend in [2℄ and [3℄, respe
tively. Re
ently some generalizationsfor non-
ommutative semigroups of endomorphisms a
ting on Td have beenobtained in [8, 9, 16℄.The stru
ture of the paper is as follows. In Se
tion 2 we re
all some el-ementary de�nitions. Then in Se
tion 3, following Berend [2, 3℄, we re
allthe de�nition of an ID-semigroup of endomorphisms of the d-dimensionaltorus Td and state Berend's theorem, [2℄, whi
h gives 
onditions that guar-antee that a given semigroup of endomorphisms of Td is an ID-semigroup.In Se
tion 4 we 
onsider two 
ommutative semigroups Σ1 and Σ2 of endo-morphisms of the 2-dimensional torus and study the 
losed invariant setsfor the 
orresponding a
tion of Σ1 × Σ2 on the produ
t T2 × T2. Finally inSe
tion 5 we prove the main result of the paper.A
knowledgements. The author is grateful to Yves Guivar
'h for hishelpful remarks 
on
erning the 
ontent of this paper. The author also wishesto thank the referee for a series of essential remarks that improved the overallpresentation of the result.2. Some de�nitions. We say that P ∈ Z[x] is moni
 if the leading 
o-e�
ient of P is one, and redu
ed if its 
oe�
ients are relatively prime. A realalgebrai
 integer is any real root of a moni
 polynomial P ∈ Z[x], whereas analgebrai
 number is any root (real or 
omplex) of a (not ne
essarily moni
)
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onstant polynomial P ∈ Z[x]. The minimal polynomial of an algebrai
number θ is the redu
ed element Q of Z[x] of the least degree su
h that
Q(θ) = 0. If θ is an algebrai
 number, the roots of its minimal polynomialare simple. The degree of an algebrai
 number is the degree of its minimalpolynomial.Let θ be an algebrai
 integer of degree n and let P ∈ Z[x] be the minimalpolynomial of θ. The n − 1 other distin
t (real or 
omplex) roots θ2, . . . , θnof P are 
alled 
onjugates of θ.A Pisot number is a real algebrai
 integer θ greater than 1 whose 
onju-gates θ2, . . . , θn satisfy the inequalities |θ2| < 1, . . . , |θn| < 1.A Salem number is a real algebrai
 integer θ greater than 1 whose 
on-jugates θ2, . . . , θn satisfy the inequalities |θj| ≤ 1, 2 ≤ j ≤ n, with equalityfor at least one j.If θ is a Salem number of degree n, then n is an even integer, n = 2m, andthe 
onjugates of θ are 1/θ and n − 2 pairwise-
onjugate 
omplex numbersof absolute value 1, (ζ1, ζ1), . . . , (ζm−1, ζm−1) (see [15℄).For more about Pisot and Salem numbers see [15, 5℄.3. ID-semigroups of endomorphisms a
ting on Td. Following [2, 3℄,we say that the semigroup Σ of 
ontinuous endomorphisms of a 
ompa
tgroup G has the ID-property (or simply that Σ is an ID-semigroup) if theonly in�nite 
losed Σ-invariant subset of G is G itself. (ID-property standsfor in�nite invariant is dense.)Berend in [2℄ gave ne
essary and su�
ient 
onditions in arithmeti
alterms for a 
ommutative semigroup Σ of endomorphisms of the r-dimen-sional torus Td = Rd/Zd to have the ID-property. Namely, he proved thefollowing.Theorem 3.1 (Berend, [2, Theorem 2.1℄). A 
ommutative semigroup Σof endomorphisms of Td has the ID-property if and only if the following hold :(i) There exists an endomorphism σ ∈ Σ su
h that the 
hara
teristi
polynomial fσn of σn is irredu
ible over Z for every positive inte-ger n.(ii) For every 
ommon eigenve
tor v of Σ there exists an endomorphism

σv ∈ Σ whose eigenvalue in the dire
tion of v is of norm greaterthan 1.(iii) Σ 
ontains a pair of rationally independent endomorphisms.We say, exa
tly as in the 
ase of real numbers, that two endomorphisms
σ and τ are rationally dependent if there are integers m and n, not both 0,su
h that σm = τn, and rationally independent otherwise.



222 R. UrbanRemark 3.2. Let Σ be a 
ommutative ID-semigroup of endomorphismsof Td. Then the Σ-orbit of the point x ∈ Td is �nite if and only if x is arational element, i.e., x = r/q, r ∈ Zd, q ∈ N (see [2℄).4. A semigroup M a
ting on the produ
t T2 × T2. Let σ1, τ1 and
σ2, τ2 be two pairs of rationally independent and 
ommuting endomorphismsof T2 (given by non-singular 2 × 2-matri
es with integer 
oe�
ients). Weassume that for i = 1, 2 the semigroups Σi = 〈σi, τi〉 generated by σi and τisatisfy the 
onditions of Theorem 3.1. Let Mσ =

(
σ1 0
0 σ2

) and Mτ =
(

τ1 0
0 τ2

)
.We 
onsider the a
tions of Mσ and Mτ on the produ
t T2 × T2. We denoteby M the semigroup of endomorphisms of T2×T2 generated by Mσ and Mτ .We start with the followingLemma 4.1. Let σ be an invertible d× d-matrix with integer entries. Let

r = x/q ∈ Td, x ∈ Zd, q ∈ N, be a rational element su
h that the denominator
q is relatively prime to det σ. Then there exists k ∈ N su
h that

σkr ≡ r (mod Zd).Proof. We observe that σ a
ts naturally on the �nite set (Z/qZ)d. Denoteby σ the 
orresponding endomorphism of the module (Z/qZ)d over the �nitering Z/qZ. Thus we have an a
tion of the semigroup N on (Z/qZ)d, given by
k.x = σkx, k ∈ N, x ∈ (Z/qZ)d. Clearly, det σ is the 
ongruen
e 
lass of det σin Z/qZ. Sin
e q is relatively prime to detσ, we 
on
lude that det σ 6= 0,hen
e σ ∈ GL(d, Z/qZ). Thus {σk : k ∈ N} is a semigroup 
ontained in the�nite group GL(d, Z/qZ); it follows that {σk : k ∈ N} is a group. Thus thereexists k su
h that σk = Id and the lemma is proved.For a given subset A ⊂ T2 × T2 and x ∈ T2, we de�ne

Ax = {t ∈ T2 : (t, x) ∈ A}.The next three lemmas generalize Lemmas 3.1�3.3 from [12℄, where diag-onal 2 × 2-matri
es with integer entries a
ting on T × T were 
onsidered,to our higher dimensional situation. Berend's Theorem 3.1, together withLemma 4.1 above, allows us to extend the results from [12℄ to the a
tionof M on T2 × T2. For 
larity of exposition, we give detailed proofs.Lemma 4.2. Let A be a non-empty , Mσ- and Mτ -invariant 
losed subsetof T2 × T2. Then the set P = {t ∈ T2 : Ax 6= ∅} is either the whole T2 ora �nite set of rational elements in T2. Furthermore, if q ∈ T2 is a rationalelement whose denominator is relatively prime to det σ2 and det τ2, then Aqis either empty , a �nite set of rational elements, or the whole T2.Proof. Clearly, P is non-empty (sin
e A is) and 
losed in T2. Moreover,sin
e A is Mσ- and Mτ -invariant it follows that P is σ2- and τ2-invariant.Hen
e, by our assumption that the semigroup Σ2 generated by σ2, τ2 satis�es
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onditions of Theorem 3.1, we infer that P is either a �nite set of rationalelements, or the whole T2.Next, given a rational element q whose denominator is relatively prime to
det σ2 and det τ2, and with Aq 6= ∅, by Lemma 4.1 we 
an �nd k1, k2 ∈ N su
hthat σk1

2 q ≡ q (modZ2) and τk2

2 q ≡ q (modZ2). Thus Aq is a non-empty,
losed, σk1

2 - and τk2

2 -invariant subset of T2. By Theorem 3.1, it is either a�nite set of rational elements, or the whole T2.Lemma 4.3. Let A be a 
losed , Mσ- and Mτ -invariant subset of T2×T2.If all rational elements of A are isolated in A, then A is �nite.Proof. Consider A′, the set A with all rational elements removed. If A′is empty there is nothing to do. If A′ is non-empty, then it is also 
losed and
Mσ- and Mτ -invariant. By Lemma 4.2, A′ must 
ontain a rational element.Thus A is a 
losed set 
onsisting of isolated points in the 
ompa
t spa
e
T2 × T2. Hen
e A is �nite.Lemma 4.4. Let A be a 
losed , Mσ- and Mτ -invariant subset of T2×T2.Let q1 and q2 be rational elements of T2 su
h that (q1, q2) ∈ A. Assume thatthe denominator of qi is relatively prime to det σi, det τi for i = 1, 2. Thenthere exist n, m ∈ N su
h that the set A−(q1, q2) := {(x−q1, y−q2) : (x, y) ∈
A} is Mn

σ - and Mm
τ -invariant.Proof. By Lemma 4.1 we 
an �nd n, m ∈ N su
h that

σn
1 q1 ≡ q1 (modZ2), τm

1 q1 ≡ q1 (modZ2),

σn
2 q2 ≡ q2 (modZ2), τm

2 q2 ≡ q2 (modZ2).Now, the point (q1, q2) is �xed under Mn
σ and Mm

τ . As A is obviously Mn
σ - and

Mm
τ -invariant, we 
on
lude that A−(q1, q2) is also Mn

σ - and Mm
τ -invariant.5. Proof of Theorem 1.6 and Corollary 1.12. Let λ > 1 be a realalgebrai
 integer of degree 2 with minimal (moni
) polynomial Pλ ∈ Z[x],

Pλ(x) = x2 + c1x + c0.With λ we asso
iate the 
ompanion matrix of Pλ,(5.1) σλ =

(
0 1

−c0 −c1

)
.Remark 5.2. We 
an think of σλ as the matrix of multipli
ation by λin the basis of the algebrai
 number �eld Q(λ) 
onsisting of 1 and λ, thatis, if x has 
oordinates α = (α0, α1) in the basis 
onsisting of 1, λ, then λxhas 
oordinates ασλ.Let µ = g(λ), where g ∈ Z[x], and de�ne the matrix τµ = g(σλ).



224 R. UrbanDenote by Σ the semigroup of endomorphisms of T2 generated by σλand τµ. The ve
tor v = (1, λ)t is an eigenve
tor of σλ with eigenvalue λ,that is, σλv = λv. Sin
e Σ is a 
ommutative semigroup, v is a 
ommoneigenve
tor of Σ, in parti
ular τµv = g(σλ)v = g(λ)v = µv.Let λ1, µ1 > 1 and λ2, µ2 > 1 be two pairs of rationally independentalgebrai
 integers of degree 2. Moreover, assume that µi = gi(λi), gi ∈ Z[x].We assume that the absolute values of the 
onjugates λ̃i, µ̃i of λi and µiare also greater than one. Now, we asso
iate with λi, µi the matri
es σi =
σλi

, τi = τµi
, as des
ribed above. For i = 1, 2, we denote by Σi = 〈σi, τi〉 thesemigroups generated by σi and τi.Clearly, σ1, τ1 and σ2, τ2 are rationally independent endomorphisms of

T2 and for i = 1, 2, the 
hara
teristi
 polynomial of σn
i or τn

i is irredu
ibleover Z for every n ∈ N. Furthermore, sin
e λ̃i, µ̃i > 1, it follows that for thesemigroups Σi 
ondition (ii) of Theorem 3.1 is also satis�ed. Thus Σ1 and Σ2are ID-semigroups of endomorphisms of T2. Hen
e, if we de�ne Mσ =
(

σ1 0
0 σ2

)and Mτ =
(

τ1 0
0 τ2

)
, we 
an apply the results of Se
tion 4 to the semigroup

M = 〈Mσ, Mτ 〉 of endomorphisms of T2 × T2.For α = (α1, α2) ∈ T2 × T2, de�ne(5.3) Xα = {(σn
1 τm

1 α1, σ
n
2 τm

2 α2) ∈ T2 × T2 : n, m ∈ N},whi
h is the orbit of α under the a
tion of the semigroup M generated by
Mσ and Mτ . Let Xac

α denote the set of a

umulation points of Xα. Clearly,
Xα and Xac

α are M -invariant. Furthermore, Xac
α is 
losed.The following simple lemma will be used in the proof of the next proposi-tion. (A more general version for d×d-matri
es is given in [16, Lemma 6.4℄.)Lemma 5.4. Let A be a real invertible 2 × 2-matrix with two di�erentreal eigenvalues η1, η2 su
h that |η1| > |η2| > 1. Let vn = (xn, yn), xn 6= 0,

yn 6= 0, be a sequen
e of ve
tors in R2 tending to (0, 0). Then there exists asubsequen
e vnk
and an in
reasing subsequen
e {jnk

} of N su
h that(5.5) lim
k→∞

Ajnk vnk
= w 6= 0 with ‖w‖ ≤ 1.Proof. We 
an assume that ‖vn‖ ≤ 1. By the assumption on the eigen-values it follows that A is an expanding map, and thus for every n, thereexists the smallest natural number jn su
h that

1/‖A‖ ≤ ‖Ajnvn‖ ≤ 1.Hen
e, by 
ompa
tness, we 
an 
hoose a subsequen
e {nk} ⊂ N su
h that(5.5) holds.We will also need the following



Density modulo 1 of some expressions 225Lemma 5.6. Let A : Rd → Rd be a linear map. For every δ > 0 thereexists a norm ‖ · ‖δ in Rd su
h that
‖A‖δ < r(A) + δ,where r(A) is the spe
tral radius of A (i.e., the maximal absolute value of aneigenvalue of A).Proof. See Proposition 1.2.2 in [11℄.Proposition 5.7. With the same assumptions as in Theorem 1.6, if

(0, 0) ∈ Xac
α then one of the following holds :(1) The point (0, 0) is isolated in Xac

α .(2) The set Xac
α 
ontains T2 × {0} or {0} × T2.Proof. Consider a general element m of the semigroup M = 〈Mσ, Mτ 〉,(5.8) m = m(k, l) = Mk

σM l
τ =

(
σk

1τ l
1 0

0 σk
2τ l

2

) for some k, l ∈ N.Denote the diagonal elements of m, whi
h are non-singular 2 × 2-matri
es,by m1 and m2. That is, m1 = σk
1τ l

1 and m2 = σk
2τ l

2. Let ̺1 > ̺′1 (̺2 > ̺′2,resp.) denote the absolute values of the eigenvalues of m1 (m2, resp.). Sin
e
σi (τi, resp.) has eigenvalues λi, λ̃i (µi, µ̃i, resp.), we see that

̺i = max{|λi|k|µi|l, |λ̃i|k|µ̃i|l}, ̺′i = min{|λi|k|µi|l, |λ̃i|k|µ̃i|l}.Suppose that k and l are �xed (we will 
hoose them appropriately later) and
onsider m =
(

m1 0
0 m2

) a
ting on V1 × V2 := R2 × R2.It follows from Lemma 5.6 that for every δ > 0 there exist norms ‖ · ‖i,δin Vi su
h that, for every y ∈ Vi,(5.9) ‖miy‖i,δ ≤ (̺i + δ)‖y‖i,δ.Furthermore, there exist norms ‖ · ‖i in Vi su
h that(5.10) ‖miy‖i ≥ ̺′i‖y‖ifor every y ∈ Vi. In fa
t, let T ∈ GL(2, R) be su
h that TAT−1 =
( ̺i 0

0 ̺′
i

)
,and de�ne ‖y‖i = ‖Ty‖, where ‖y‖ =

√
y2
1 + y2

2.By Lemma 4.2, we 
an assume that the interse
tion of Xac
α with {0}×T2(with T2×{0}, resp.) either 
ontains �nitely many rational points, or equals

{0} × T2 (T2 × {0}, resp.). Assume that Xac
α 
ontains neither {0} × T2 nor

T2×{0}. Then, removing �nitely many rational isolated points from {0}×T2and T2×{0}, by applying the matrix ( q1Id 0

0 q2Id

) to Xac
α , where q1 (q2, resp.) isa 
ommon denominator of the �nite set of rational points of (T2×{0})∩Xac

α(({0} × T2) ∩ Xac
α , resp.), we 
an assume that the interse
tion of Xac

α withthe �x and y axes� is empty, that is,(5.11) Xac
α ∩ ({0} × T2 ∪ T2 × {0}) = ∅.



226 R. UrbanSuppose that (0, 0) is not isolated in Xac
α . Thus there exists a sequen
e

{(xn, yn)} ⊂ Xac
α tending to (0, 0), with xn, yn 6= 0 by (5.11). Choosing anappropriate subsequen
e, we 
an assume that(5.12) lim

n→∞

‖yn‖
‖xn‖

= α ∈ [0, +∞) or lim
n→∞

‖yn‖
‖xn‖

= +∞,where ‖ · ‖ stands for an arbitrary norm in R2.First we 
onsider the 
ase when α 6= 0 or the limit in (5.12) is in�nite.By the assumption (1.7) there are k, l ∈ N su
h that m = m(k, l) has theproperty that(5.13) ̺′2 > ̺1.By (5.9) and (5.10) we get, for every j ∈ N,(5.14) ‖mj
2yn‖2

‖mj
1xn‖1,δ

≥
(

̺′2
̺1 + δ

)j ‖yn‖2

‖xn‖1,δ
.Now, by Lemma 5.4, we 
an 
hoose a subsequen
e vnk

= (xnk
, ynk

) and
{jnk

} ⊂ N tending to in�nity su
h that(5.15) lim
k→∞

m
jnk

2 ynk
= y 6= 0.By (5.13) we 
an take δ > 0 in (5.9) so that ̺′2 > ̺1 + δ. Hen
e, by (5.14)and our assumption that ‖ynk

‖2/‖xnk
‖1,δ tends to α 6= 0 or to in�nity as

k → ∞,(5.16) lim
k→∞

‖mjnk

2 ynk
‖2

‖mjnk

1 xnk
‖1,δ

= ∞.

Now (5.15) and (5.16) imply that m
jnk

1 xnk
→ 0. Thus we have 
onstru
tedthe sequen
e {(mjnk

1 xnk
, m

jnk

2 ynk
)} ⊂ Xac

α su
h that (m
jnk

1 xnk
, m

jnk

2 ynk
) →

(0, y) ∈ T2 × T2, with y 6= 0. This 
ontradi
ts (5.11).Finally, we 
onsider the 
ase when α = 0 in (5.12). By assumption (1.8)there are k′, l′ ∈ N su
h that the 
orresponding element m = m(k′, l′) in(5.8) satis�es ̺′1 > ̺2. By (5.9) and (5.10),
‖mj

1xn‖1

‖mj
2yn‖2,δ

≥
(

̺′1
̺2 + δ

)j ‖xn‖1

‖yn‖2,δ
.Now we pro
eed analogously to the previous 
ase ex
hanging the roles of xnand yn to get a sequen
e {(mjnk

1 xnk
, m

jnk

2 ynk
)} ⊂ Xac

α su
h that, as k → ∞,

(m
jnk

1 xnk
, m

jnk

2 ynk
) → (x, 0) ∈ T2 × T2, with x 6= 0. This again 
ontradi
ts(5.11).Corollary 5.17. With the same assumptions as in Theorem 1.6, either

(0, 0) is isolated in Xac
α , or {x + y : (x, y) ∈ Xac

α } = T2.



Density modulo 1 of some expressions 227Proof. Straightforward from Proposition 5.7.The following lemma will also be used. Its proof is analogous to the
lassi
al 
ase of one endomorphism of Td (see for example [11℄ or [1℄). In thislemma Σ ⊂ Minv(d, Z) := GL(d, R) ∩ M(d, Z), where M(d, Z) is the set of
d × d matri
es with integer entries, is a semigroup of endomorphisms of the
d-dimensional torus Td. The torus Td is endowed with its normalized Haarmeasure m, whi
h is Σ-invariant.Lemma 5.18. Assume A ⊂ Td is measurable, has positive measure andsatis�es ΣA ⊂ A. Then, if any 
hara
ter χ 6= Id has unbounded Σt-orbit ,then A has measure 1; in parti
ular Σ is ergodi
 on Td.Finally, we are ready to giveProof of Theorem 1.6. Consider the set Xα, α = (α1, α2), de�ned in(5.3), with α1 = ξ1(1, λ1)

t and α2 = ξ2(1, λ2)
t being 
ommon eigenve
torsof the semigroups Σ1 and Σ2, respe
tively. We 
an assume that both ξ1 and

ξ2 are non-zero; if one of them is zero then the 
on
lusion of Theorem 1.6follows from Theorem 1.3. Thus,(5.19) Xα = {(λn
1µm

1 ξ1, λ
n+1
1 µm

1 ξ1, λ
n
2µm

2 ξ2, λ
n+1
2 µm

2 ξ2) : n, m ∈ N}.We have noti
ed, before Lemma 5.4, that the semigroup Σ1 = 〈σ1, τ1〉satis�es the 
onditions of Theorem 3.1, and so is an ID-semigroup. Therefore,sin
e α1 is not a rational point (see Remark 3.2), for every x ∈ T2 there existsequen
es {nk} and {mk}, tending to in�nity, su
h that σnk

1 τmk

1 α1 → x as
k → ∞. Sin
e T2 is 
ompa
t, we 
an assume, 
hoosing a subsequen
e, that
σnk

2 τmk

2 α2 → y for some y ∈ T2. Therefore, for every x ∈ T2 there exists
y ∈ T2 so that (x, y) ∈ Xac

α . In parti
ular, Xac
α is in�nite.By Lemma 4.3 there is a non-isolated rational point (q1, q2) in Xac

α . For
κ, ι ∈ N ∪ {0}, de�ne

Jκ,ι =

(
detσ1Id 0

0 det σ2Id

)κ(
det τ1Id 0

0 det τ2Id

)ι

.

Let κ, ι be 
hosen so that, for ( q̃1

q̃2

)
= Jκ,ι

(
q1

q2

)
, the denominator of q̃i isrelatively prime to det σi, det τi for i = 1, 2. Applying Lemma 4.4 to theset X̃ac

α = Jκ,ιX
ac
α we 
an assume that (0, 0) is non-isolated in X̃ac

α . Itis 
lear that Proposition 5.7 and Corollary 5.17 are valid for X̃ac
α insteadof Xac

α , with no 
hanges in their proofs. Thus, by Corollary 5.17, the set
S̃ := {x + y : (x, y) ∈ X̃ac

α } is equal to the whole T2. So its proje
tion π1(S̃)of S̃ on the �rst 
oordinate equals T. But π1(S̃) = (detσ1)
κ(det τ1)

ιπ1(S),where S = {x + y : (x, y) ∈ Xac
α }. Thus we have

T = (detσ1)
κ(det τ1)

ιπ1(S).
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e, a 
losed Σ1-invariant subset π1(S) of T has positive Haar measure(greater than 1/(detσ1)
κ(det τ1)

ι). By Remark 5.2 and the 
ondition onthe eigenvalues of σ1 and τ1, any 
hara
ter χ 6= Id has unbounded Σt-orbit. Hen
e, by Lemma 5.18, the semigroup Σ1 is ergodi
. Thus π1(S) hasmeasure 1. Sin
e it is 
losed, we have π1(S) = T.Now 
omparing this with the �rst and third 
oordinate of Xα in T2 ×T2(see (5.19)) we obtain the result.Proof of Corollary 1.12. We slightly modify the proof of Theorem 1.6.The only di�eren
e is that when, say, λi is of degree 1, that is when λi is aninteger, we 
annot de�ne σλi
as in (5.1). Instead, if the 
orresponding µi isof degree 2, we de�ne
σλi

=

(
λi 0

0 λi

)
,whereas if µi is of degree 1, we de�ne σλi

and τµi
as the 1 × 1 matri
es,

σλi
= (λi) and τµi

= (µi).For example, if we 
onsider an expression as in (1.13), we have to deal with
Mσ =




0 1 0

−6 6 0

0 0 2


 and Mτ =




5 0 0

0 5 0

0 0 7




a
ting on T2 × T.It is 
lear that Proposition 5.7 and Corollary 5.17, with obvious 
hangesin their 
on
lusions and some 
osmeti
 
hanges in the proofs, work in thissituation as well. In parti
ular, in this example, Proposition 5.7 gives that,if (0, 0) is non-isolated in X̃ac
α then X̃ac

α 
ontains T2 × {0}, where 0 ∈ T, or
{0}×T, where 0 ∈ T2. As in Corollary 5.17 we 
on
lude that {x+y : (x, y) ∈
X̃ac

α } = T, where x is the proje
tion of x ∈ T2 on the �rst 
oordinate.
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