The Galois relation $x_{1}=x_{2}+x_{3}$ for finite simple groups

by
Kurt Girstmair (Innsbruck)

In this note we prove the following theorem (which occurred in [4] as a conjecture):

Theorem 1. Let K be a field of characteristic 0 and L a finite Galois extension of K such that $G=\operatorname{Gal}(L / K)$ is a nonabelian simple group. Then there is an element $x \in L$ such that

$$
L=K(x) \quad \text { and } \quad x=s(x)+t(x) \quad \text { for some } s, t \in G \backslash\{1\}, s \neq t
$$

In other words, every polynomial f over K whose Galois group is nonabelian and simple has a Galois resolvent g such that $x_{1}=x_{2}+x_{3}$ holds for suitably numbered zeros x_{1}, x_{2}, x_{3} of g.

Proof of Theorem 1. By Proposition 1 of [4], it suffices to show that G contains a subgroup G^{\prime} such that the group ring $K\left[G^{\prime}\right]$ of G^{\prime} contains an admissible element $1-s-t, s, t \in G^{\prime} \backslash\{1\}$ (which means that there is a $\tau \in K\left[G^{\prime}\right]$ such that $(1-s-t) \tau=0$ and $\left.\left\{u \in G^{\prime}: u \tau=\tau\right\}=\{1\}\right)$. Now, it has been shown in [1] that the group G contains a minimal simple group G^{\prime} in the sense of [7, Section 2]. However, such a group G^{\prime} is either a simple linear group $\operatorname{PSL}(n, q)$ or a Suzuki group $\mathrm{Sz}\left(2^{2 n+1}\right)$ ([7, Corollary 1]). But Proposition 2 of [4] says that the group ring of every simple linear group contains an admissible element of the desired shape. The same holds for the Suzuki groups ([4, last paragraph $]$).

Remarks. 1. We only recently learned that finite nonabelian simple groups actually contain minimal simple groups. This is by no means obvious. Quite the reverse, the proof of this fact uses the classification of finite simple groups (see [1]). On the other hand, Proposition 2 of [4] settles an important special case of Theorem 1 in a rather easy way. Hence we think that the proof of this proposition still has some value.

[^0]2. The said proof depends on subgroups $\operatorname{AGL}(1, q)$ or $\operatorname{ASL}(1, q)$ of finite linear groups $\operatorname{PSL}(n, q)$, because of the fact that the group rings of these subgroups contain admissible elements of the desired type. Accordingly, the above proof of Theorem 1 involves an infinite series of groups AGL(1,q). In the light of [1], however, this proof could be based upon only three of these groups, namely, $S_{3}=\operatorname{AGL}(1,3), A_{4}=\operatorname{AGL}(1,4)$, and $\operatorname{AGL}(1,5)$. Indeed, a minimal simple group that is linear contains A_{4}, with the exception of the groups $\operatorname{PSL}\left(2,2^{p}\right), p$ an odd prime, which contain S_{3}, however (see [5, p. 213] and [2, p. 13]). Each Suzuki group contains the group AGL(1,5) (as follows from [6, p. 190]).

In [4] we did not mention the multiplicative analogue $x_{1}=x_{2} x_{3}$ of the relation $x_{1}=x_{2}+x_{3}$. This is regrettable inasmuch as our previous paper [3] shows that the theories of additive and multiplicative relations are almost identical. Accordingly, we note

Theorem 2. Let K be a field of characteristic 0 and L a finite Galois extension of K such that $G=\operatorname{Gal}(L / K)$ is a nonabelian simple group. Assume, further, that there is a place \mathfrak{p} of K that splits completely in L. Then there is an element $y \in L$ such that

$$
L=K(y) \quad \text { and } \quad y=s(y) t(y) \quad \text { for some } s, t \in G \backslash\{1\}, s \neq t
$$

Proof. The main issue is the fact that the admissible element $1-s-t$ in question lies in the rational group ring $\mathbb{Q}[G]$ of G, not only in $K[G]$. Therefore, Propositions 4 and 5 of [3] yield the result.

Remark. Theorem 2 applies to finite Galois extensions of arbitrary algebraic number fields K (with appropriate group, of course), since the assumption about the place \mathfrak{p} holds in this case.

The author gratefully acknowledges the support by the Austrian Science Fund (FWF Project P16641-N12).

References

[1] M. J. J. Barry and M. B. Ward, Simple groups contain minimal simple groups, Publ. Mat. 41 (1997), 411-415.
[2] J. H. Conway et al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[3] K. Girstmair, Linear relations between roots of polynomials, Acta Arith. 89 (1999), 53-96.
[4] -, The Galois relation $x_{1}=x_{2}+x_{3}$ and Fermat over finite fields, ibid. 124 (2006), 357-370.
[5] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
[6] B. Huppert and N. Blackburn, Finite Groups III, Springer, Berlin, 1982.
[7] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.

Institut für Mathematik
Universität Innsbruck
Technikerstr. 13
A-6020 Innsbruck, Austria
E-mail: Kurt.Girstmair@uibk.ac.at

[^0]: 2000 Mathematics Subject Classification: 12F10, 12E05.

