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equation (2 —1)/(x — 1) = py?
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1. Introduction. Let p be an odd prime number and let
P —1
z—1
be the pth cyclotomic polynomial. It is well-known that, for x € Z, the
integer @(x) is divisible by at most the first power of p. More precisely,
pf®(x) if £ # 1 mod p, and p || &(x) if z =1 mod p.

Indeed, if p|®(z) then 2P = 1 mod p, which implies z = 1 mod p. Now,
using the binomial formula, we obtain

B(z) = (1+(m—1)1’—1 +z( ) (z—1) k—1 (x—l)pflEmed])Q,

r—1

B(x) = By(2) =

which implies p || &(x).

Let ¢ be another prime number. A classical Diophantine problem, stud-
ied, most recently, by Mihailescu [6, 7], is whether the p-free part of ¢(x)
can be a gth power. This can be rephrased as follows: given e € {0,1}, does
the equation @(z) = p°y? have a non-trivial solution in integers x and y?
(By trivial solutions we mean those with x =e=0and z =e=1.)

The case e = 0, that is, the equation ®(x) = y?, is (a particular case of)
the classical Nagell-Ljunggren equation. It is known to have several non-
trivial solutions, and, as is commonly believed, no other solutions exist.
See [3] for a comprehensive survey of results on this equation and methods
for its analysis.

In the present note we study the case e = 1, that is, the equation

P —1
(1) p—
(As we have seen above, any solution of this equation must satisfy x = 1
mod p.)

= py’.
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Let h, be the pth relative class number. Mihdilescu [7, Theorem 1]
proved that (1) has no non-trivial solutions if ¢{h, and, in addition, some
complicated technical condition involving p and ¢ is satisfied. In this note
we show that this technical condition is not required.

THEOREM 1.1. Let p and q be distinct odd prime numbers, p > 5. As-
sume that q does not divide the relative class number h,, . Then (1) has no
solutions in integers x,y # 1.

In particular, since h, =1 for p <19, equation (1) has no non-trivial
solutions when 5 < p < 19. (Neither does it have solutions when p = 3, as
was shown long ago by Nagell [8].)

The interest in equation (1) was inspired by the fact that it is closely re-
lated to the celebrated equation of Catalan aP — 2% = 1. In fact, Cassels [4]
showed that any non-trivial solution of Catalan’s equation gives rise to a
solution of (1). All major contributions to the theory of Catalan’s equa-
tion, including Mihailescu’s recent solution [1, 5], have Cassels’ result as the
starting point.

This article is strongly inspired by the work of Mihailescu [5, 6, 7]. In
particular, the argument in the case ¢ # 1 mod p (see Section 6) can be
found in [6]. However, the case ¢ = 1 mod p (see Section 7) requires new
ideas.

2. The cyclotomic field. Let p be an odd prime number and let
¢ = (p be a primitive pth root of unity. In this section we collect several
facts about the pth cyclotomic field K = Q({). As usual, we denote by
K+ = KNR = Q(¢ +¢) the maximal real subfield of K. (Here and below,
z — Z stands for the “complex conjugation” map.) We denote by O the ring
of integers of K; it is well-known that O = Z[(].

We denote by p the principal ideal (1 — ). It is the only prime ideal of
the field K above p, and pP~! = (p). For k # [ mod p the algebraic number

Ck . Cl
1-=¢
is a unit of K (called cyclotomic or circular unit); in other words, we have

(= =p.

2k _ 21 kE_
1-¢ —¢
is a unit in K. All this will be frequently used without special reference.
Finally, recall that h}f |h,, where h, and h} are the class numbers

of K and K™, respectively, and the relative class number is defined by
h, = hy/hf.

In particular,
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The proofs of all statements above can be found in the first chapters of
any course of the theory of cyclotomic fields; see, for instance, [9)].

The following observation provides a convenient tool for calculating
traces of algebraic integers from K modulo p. We denote by I, the field
of p elements, and we let Tr : K — Q be the trace map.

PROPOSITION 2.1. Let o: O — F, be the reduction modulo p. Then for
any a € O we have

(2) o(a) = —Tr(a) mod p.

Proof. We have p(¢") =1 for all n € Z, and
) wen={ b

p—1, pln.
Hence (2) holds for a = ¢™. By linearity, it extends to O = Z[(]. =
Here is an example of how one can use this.
COROLLARY 2.2. For any u € Z put
"=C

@ S Ar Ao

Then
(5) 2Tr(xy) = w — 1 mod p.
In particular, Tr(x,) Z 0 mod p unless u = 1 mod p.

Proof. For w =1 mod p we have x, = 0 and there is nothing to prove.
Now let v # 1 mod p. We may assume that u > 0. We have

o(§55) —etc-¢ = =1

Also, since 1 + ¢* is a unit, we have

1 _ u\—1 __ 1
9<1+<u> =o(1+¢") 7 =3
Hence o(xu) = (1 — u)/2, which implies (5). m

In the following example we cannot use (2) because the number we are
interested in is not an algebraic integer.

PROPOSITION 2.3. We have

Tr((l—Co?) -7

Proof. Consider the rational function

p—1

k
F(t) = ZL

2 =gy
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Using (3), we obtain

p—1 oo o]
F(t)==> > n¢km"=—=> nTr((")t"
k=1n=1 n=1
oo oo 2
t p“t?
= " — p? = — :
Zn p Zn (1—t)2+(1—tp)2
n=1 n=1
When ¢t — 1 we have
b1 1
1-t)2 (t-12 t-1
2 2
p=tP 1 1 1—p
= 1
G-z o ticit T oW

Hence

T%ﬁ) — Py =1 IQPQ. .

3. Binomial power series. We shall need a property of binomial power
series in the non-archimedean domain. As usual, we denote by Z, and Q,
the ring of p-adic integers and the field of p-adic numbers, and we extend
the standard p-adic absolute value from Q) to the algebraic closure @p.

Given a € Zj, we let

Ry(t)=(1+t)*=1+at+ <;>t2+ <§)t3+...

be the binomial power series. Its coefficients are p-adic integers, and for
any 7, algebraic over Q, and with |7|, < 1, our series converges at ¢ = 7 in
the field Q,(7). For any n = 0,1, ... we have the obvious inequality

< ‘T’;H_l.

’ n
p

Ro(r) =Y (Z) ot

k=0

When a is p-adically small, a sharper inequality may hold. For instance,
|Rp(T) — (1 +p7)|p < pl7l7

when |7|, is sufficiently small. We shall need a result of this kind for the
second order Taylor expansion.

It will be convenient to use the familiar notation O(:) in a slightly non-
traditional fashion: we say 7 = O(v) if |7, < |v],.

PROPOSITION 3.1. Assume p > 5 and that || < p~ Y @=3) Then

(6) R,(1) =1+ar — %TQ + 0(a®7?) + O(at?).
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Proof. Since

—1
a(a2 ) 2 _ _gTz +0(a2r),
equality (6) is an immediate consequence of
-1
(7) Ry(t)=1+4ar+ 7a(a2 ) 7%+ O(at),

so it suffices to prove the latter.

We prove (7) by induction on the p-adic order of a. When |a|, =1,
equality (7) is an immediate consequence of the binomial formula (and holds
even under the weaker assumption |7|, < 1). Now assume that (7) holds for
some a € Zjy, and let us show that it holds with a replaced by pa.

By the induction hypothesis, R,(7) = 1 + v, where

v=ar+ w 72 4+ O(at).
Then
-1
8) Rpalr) = (140 = 14 p0+ 22D 02 L o) + 007)
—1 2(p—1
= 1+pat+ pa(a2 ) 242 (12) ) 72 4+ O(pat®) + O((at)?)
-1
=1+ par + palpa—1) 7% 4 O(par3) 4+ O((ar)P).

2
Since |7| < p~/®P=3) we have |(aT)?|, < |paPT3|, < |pat>|,. Hence the term
O((at)P) in (8) can be disregarded. This completes the proof of (7) and of
the proposition. =

4. A special unit of the cyclotomic field. We start the proof of
Theorem 1.1. We fix, once and for all, distinct odd prime numbers p and g,
and rational integers z,y # 1 satisfying (1). Recall that

x =1 mod p,

this congruence being frequently used below without special reference. Also,
we use without special reference the notation of Section 2.

In this section, we construct a special unit of the field K, which plays the
central role in the proof of Theorem 1.1. Our starting point is the following
well-known statement.

PRrROPOSITION 4.1. Put

Then we have the following:
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1. The principal ideal (o) is a qth power of an ideal of K.
2. Assume that q does not divide the relative class number h,, . Then @/a
1 a qth power in K.

Though the proof can be found in the literature, we include it here for
the reader’s convenience. We closely follow [2].

Proof. Since

Bp(x) = (x=C)---(x =Y, p=0y(1)=(1-()---(1-¢"),
we may rewrite equation (1) as
p—1 o — Ck

(9) 1— Ck

g yq.

k=1
Since p = pP~!| (z — 1), we have p || (z — ¢¥) for k =1,...,p — 1. Hence the
numbers

(k=1,....,p—1)

are algebraic integers coprime with p.
On the other hand, since
(1—=¢Mar— 1 =Ny = ¢ =P,

the greatest common divisor of ay, and oy should divide p = (¢¥ — ¢!). Hence
the numbers oy, ..., a,—1 are pairwise coprime. (In particular, o and @ are
coprime, to be used in the proof of Proposition 4.2.) Now (9) implies that
each of the principal ideals (ay) is a gth power of an ideal. This proves
part 1.

Now write (o) = a?, where a is an ideal of K. If ¢{h, then the class of a
belongs to the real part of the class group. In other words, we have a = b(v),
where v € K* and b is a “real” ideal of K (that is, b = b). Further, b? is
a principal real ideal; in other words, b = (3), where 8 € K+. We obtain
(o) = (Bv7), that is, « is equal to Gv7 times a unit of K.

Recall that if 7 is a unit of a cyclotomic field then 77/7 is a root of unity.
Since 3 = 3, we deduce that @/« is (7/)9 times a root of unity. Since every
root of unity in K is a gth power, we have shown that @/« is a gth power.
This proves part 2. m

From now on we assume that q does not divide h, . In particular, Propo-
sition 4.1 implies that there exists p € K such that @/a = u?. Moreover,
this p is unique because K does not contain non-trivial gth roots of unity.
Similarly, the field K contains exactly one gth root of a/@. Since both 1
and p~! are gth roots of a/@, we have

(10) pl =T
This will be used in Section 5.
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Now we are ready to construct the promised unit.

PROPOSITION 4.2. Let u be the inverse of q modulo p (that is, we have
uq = 1 mod p). Then the algebraic number ¢ = a(u+ ¢*)? is a unit of the
field K.

Proof. Write the principal ideal (1) as ab~!, where a and b are co-prime
integral ideals of K. Then (@/a) = a?b™9. Moreover, since a and @ are
coprime (see the proof of Proposition 4.1), we have (@) = a? and («) = b,

Further, we have (u + (%) = ¢b~!, where ¢ is yet another integral ideal
of K. We obtain (¢) = b%?b~7 = ¢4, which shows that ¢ is an algebraic
integer.

Next, put

— ol 1(2'“’ Cuqlk)

The same argument as above proves that ¢’ is an algebraic integer as well.
Further,

¢¢—aq(u+C“Zu —¢ ) = (aut + ),

Now recall that u? =a@/a and that ug = 1 mod p. The latter congruence
implies that (*? = (, and we obtain

¢¢' = (a(@/a+())" = (@+¢a)! = (1+()%.
Since 1 + ¢ is a unit of K, so are ¢ and ¢’. m

5. An analytic expression for pu. We shall work in the local field
= Qp(¢). As before, we extend p-adic absolute value from Q, to Kj, so
that 11 —¢lp =p Y- 1)

Since p totally ramifies in K, every automorphism o of K/Q extends to
an automorphism of K,/Q,. In particular, the “complex conjugation” z +— Z
extends to an automorphism of K,/Q, (we continue to call it “complex
conjugation”).

Let R,(t) be the binomial power series, introduced in Section 3. Since
the automorphisms of K,/Q, (in particular the “complex conjugation”) are
continuous in the p-adic topology, for any 7 € K, with ||, < 1 and for any
o € Gal(K,/Qp) we have Rq(7)? = Rq(77). In particular, R,(7) = R4 (7).

Put

r—1

A\ =
1-¢’

so that
a=1+)\, a=1+A=1-(\
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(recall that « is defined in Proposition 4.1). Then
Alp = |z — 1|,p"/ P~V < pP=2/=1) 1
and similarly for E In particular, for any a € Z,, the series R, (t) converges
att=Aand t = A
We wish to express the quantity u, introduced in Section 4, in terms of

the binomial power series. Since both p and Ry /q(A)R_1/4()) are gth roots
of @/, we have

(11) H= Rl/q(x)Rfl/q()‘)é‘a

where £ € K, is a gth root of unity. We want to show that § = 1.

The field Q,(§) is an unramified sub-extension of the totally ramified
extension K. Hence Q,(&) = Q,, that is, £ € Q,. It follows that £ is stable
with respect to all automorphisms of K,/Q,; in particular, it is stable with
respect to the “complex conjugation”: & = €.

Applying the “complex conjugation” to (11) and using (10), we obtain
pt= Rl/q(/\)R_l/q(X)g, which, together with (11), implies that &2 = 1.
Since £ is a gth root of unity, this is possible only if £ = 1.

We have shown that

(12) M= Rl/q(X)Rfl/q()‘) = Rl/q(_c)‘)Rfl/q()‘)'

The rest of the proof splits into two cases, depending on whether ¢ # 1
mod p or ¢ = 1 mod p. The arguments in both cases are quite similar, but
the latter case is technically more involved.

6. The case ¢ # 1 mod p. We have

p= Rug ~OVR-17,(0) = 1= =80+ 000),

where, as in Section 3, we say that 7 = O(v) if |7], < |v]p.
Hence, for the quantity ¢, introduced in Proposition 4.2, we have

1Z<A+O(AQ))
1+¢
1+¢
— u 2)
_(1+C)q<1 1T cu )-1—0)\
= (1+ ¢+ (2 = Dxu) + O(N?),
where x,, is defined in (4).

(13) ¢:(1+)\)(1+C"

= (1+§“)q(1+/\)<1 — A) +0(\?)
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Since the automorphisms of K/Q extend to automorphisms of K,/Qy,
the same is true for the norm and the trace maps: for any a € K we have
Nk, 0,(@) = Ngjgla),  Trg, jg,(a) = Trggla).
Below, we shall simply write AV'(a) and Tr(a). Also, since the automorphisms
are continuous, we have [N (a)|, < la[5~! and |Tr(a)l, < lalp.
Taking the norm in (13), we obtain
¢ 2
—— ) =1 - 1T O(\).
N (g ) = 1+ (@ = D) + O0%)
Since both ¢ and 1+ (* are units, the norm on the left is £1. Since —1 # 1
mod p, the norm is 1, and we obtain (x — 1)Tr(x.) = O(\2).

But, since ¢ # 1 mod p, we also have u Z 1 mod p. Corollary 2.2 implies
that Tr(x,) is not divisible by p. We obtain

[z = 1], < Al = |z — 1) p? 7Y,

which implies |z — 1|, > p~2/®=1). Since p|(z — 1), this is impossible as
soon as p > 5.
This proves the theorem in the case ¢ Z 1 mod p.

7. The case ¢ = 1 mod p. We have (12). Also, v = 1 mod p and x, = 0,
which means that the first order Taylor expansions are no longer suffi-
cient. We shall use the second order expansion. Put a = (¢ — 1)/g¢, so that
lal, < p~1, and rewrite (12) as

(14) n= (1 - C)\)R—a(—C)\)(l + A)_lRa(A)'
For p > 5 we have
Alp < p~ (P=2)/(=1) < =1/(p=3)
which means that Proposition 3.1 applies to 7 = A\. We obtain
2
R_o(—C\) =1+ al)+ % ad? 4+ O(aX?) + 0(a®N?),
Ro(\) =1+a)\— g A2+ 0(aX®) + O(a)?).

Substituting this into (14), we get
p=(1 —(A)(l+a§>\+ gc2x2>(1+x)—1<1+m— gv)
+ 0(aX®) 4+ O(a?)?)
- (H(—Haﬂ@A—@
+ 0(aX®) + O(a®)\?).

a)\z)(l + )71
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It follows that
o= (1+A)(u+¢)*

= <1+(c+a+a<)A
+ O0(aX?) + 0(a®)?)
1+a/(1—a)

u 24)2 aX? + ¢(1+ )\)>q(1 + A

~ (1 +g)q<1 +aX— (14 \)¢/(1-a)

+ 0(aX?) + O(a®)?).

Applying Proposition 3.1 with the exponents +a/(1 —a) and taking into
account the inequality |a|, < 1, we find

1+¢ a/(l—a)_ a2 -
> aA) —1+1_a)\+0(a)\),

_a a 9 3
1—a)\+2(1—a))\ + O(aX’)

__a a9 3 242
1—a)\+2)\ + O(aX’) + O(a”X?).

Taking everything together, we obtain

(1fc)q: <1+ax—¥ax2><1+lcf“><1—1fax+gx2>

+ 0(aX®) 4+ O(a®)?)

<1+a)\—

(1+ )"0 =1

=1

=1- % ad? 4+ 0(aX?) + O(a*)?)
- ﬁ a(z — 1)2 + O(aN?) + 0(a222).

Now we complete the proof in the same fashion as in Section 6. Taking
the norm, we find

(15) +1=1- %Tr(u _CC)2>a(x — 124+ 0(a)®) + O(a®)?).

The —1 on the left is again impossible, and if we have 1, then, in view of
Proposition 2.3, we must have the inequality

= 1f; < max{|A[, lal,|A[}}
= max{|x — 1|13)p3/(p_1)’ ’a|p’$ — 1’]2)p2/(p_1)}’
which means that either |z — 1|, > p~3/®=1 or |a|, > p~2/?~1. But, for

p > 5, neither of the latter inequalities can hold, because |z — 1], < p~ ! and
lalp, < p~!. The theorem is proved in the case ¢ = 1 mod p as well.
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