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Distributions and Euler systems in global function fields

by

Sunghan Bae (Taejon) and Linsheng Yin (Beijing)

0. Introduction. An ordinary distribution on Q with values in an
abelian group V (ordinary distribution from Q/Z to V , in Kubert’s ter-
minology [Ku]) is a map Θ : Q/Z→ V satisfying

(0.1) Θ

(
n

m

)
=

d−1∑

i=0

Θ

(
n+mi

md

)
=

∑

a∈Q/Z, da=n/m

Θ(a)

for every positive integer d. Ordinary distributions on Q form a category. The
image of the initial object of this category is called the universal ordinary

distribution on Q.

Let µn be the group of nth roots of unity, µ∞ the group of all roots of
unity, and µ∗∞ = µ∞\{1}. A circular distribution on Q is a Galois equivariant
map ψ : µ∗∞ → Q× such that

(0.2) ψ(ε) =
∏

ζd=ε

ψ(ζ),

for any ε ∈ µ×∞ and any positive integer d. The most well-known example
is ψ(ζ) = 1 − ζ. By an appropriate identification of µ∞ with Q/Z one can
view a circular distribution as a certain (punctured) distribution with Galois
equivariance.

Let F be a finite abelian extension of Q and let m be the formal product
of all prime numbers which split completely in F . An Euler system over F
is a collection {ξn ∈ F (µn)×}n|m such that

(0.3) ξn is a global unit,

(0.4) NF (µpn)/F (µn)ξpn = ξ
Frp −1
n , where Frp is the Frobenius map at p,

(0.5) ξpn ≡ ξn modulo all prime ideals above p.
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Distributions and Euler systems play very important roles in the cy-
clotomic theory of Q. The condition (0.4) may be interpreted as a certain
restatement of (0.1) or (0.2). Thus one can expect close relations between
distributions and Euler systems.

In fact, Anderson and Ouyang ([AO]) studied Euler systems via the
group cohomology of the universal ordinary distribution on the rational
number field. They constructed the universal Euler system {xm ∈ Um}m|m,
where Um is the universal ordinary distribution of level m, and the universal

Kolyvagin classes {cm ∈ H0(Gm,Um/MUm)}m|m induced from the univer-
sal Euler system, where Gm = Gal(Q(ζm)/Q) and M is an odd positive
integer. Then they showed that any Euler system and the corresponding
Kolyvagin classes can be recovered from the universal ones by specializa-
tion and that the universal Kolyvagin classes satisfy a universal recursion
independent of the choice of real abelian extension F of Q.

Moreover, Seo used Euler systems to attack Coleman’s conjecture on
the Galois module structure of the set of circular distributions. He then
introduced a method of constructing Euler systems from circular distri-
butions and gave some evidence indicating that the notions of circular
distribution, Euler system and circular units are essentially the same
([S1, §4]). He also computed the torsion subgroups of the groups of cir-
cular distributions and of circular distributions with a certain congruence
condition ([S2]).

The concept of distributions on general global fields was first introduced
by Yin [Y] generalizing the concept of distributions on Q of Kubert. It has
proven to be very useful in studying the arithmetic of global fields, in par-
ticular, of global function fields. The cyclotomic theory of global function
fields was well developed by many authors using sign normalized rank one
Drinfeld modules. Using this theory, one can define circular distributions
and Euler systems on global function fields, and study their properties anal-
ogous to those of circular distributions on the rational number field. In this
article we consider the above questions studied by Anderson–Ouyang and
Seo in the case of global function fields.

The rational number field and global function fields with a fixed place
of degree one, which we will call infinity, have many properties in common.
The most important are that they have only one infinite place and that
the Galois groups of ray class fields over the Hilbert class field are direct
products of inertia groups. In contrast to the rational number field, global
function fields have nontrivial class groups. As a result the group cohomol-
ogy of the universal ordinary distribution on a global function field is not
well understood. But in the study of Euler systems, we only need to consider
principal ideals. Thus we can also use the group cohomology method in the
global function field case.
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Notations.

• k : a global function field with the field of constants Fq,
• ∞ : a fixed place of k with degree one,
• A : the ring of functions of k which are regular away from ∞.

We assume that q > 2. Denote by e the unit ideal of A.

• Ke = the Hilbert class field of (k,∞).

For an integral ideal m of A,

• Km := the cyclotomic function field of the triple (k,m,∞) with con-
ductor m in the sense of Hayes [H1],

• Gm := Gal(Km/k), Hm := Gal(Km/Ke) ≃ (A/m)∗,
• K :=

⋃
mKm, G := Gal(K/k) = lim←−mGm, H := Gal(K/Ke) =

lim←−mHm.

Let σp be a generator of Hp.

• Np :=
∑qdeg p−2

i=0 σi
p and N ′

p :=
∑qdeg p−2

i=0 iσi
p.

Note that N ′
p(σp− 1) = (qdeg p− 1)−Np. For a square-free ideal m, let

• Nm :=
∏

p|mNp, N ′
m :=

∏
p|mN

′
p.

For each integral ideal g of A let

• n(g) := the number of distinct prime divisors of g,
• o(g) :=

∑
p ordp(g).

1. The universal ordinary distributions and Anderson’s resolu-

tion

1.1. The universal ordinary distribution. We briefly recall some basic
facts about the universal ordinary distribution on a global function field k.
(See [Y], [BK] for details. But note that our notations are slightly different
from those of [Y].) Fix a sign function, i.e. a multiplicative function, sgn :
k∞ → F∞ = Fq with sgn(0) = 0, where F∞ is the residue field at ∞. We
call x ∈ k positive or monic if sgn(x) = 1. Let T be the set of all nonzero
fractional ideals of A and Te the set of all nonzero integral ideals of A. For
m ∈ Te, let Tm be the set of all nonzero fractional ideals which can be written
as am−1 for some a ∈ Te, and let T ′

m be the set of all nonzero fractional ideals
which can be written as am−1 for some a ∈ Te prime to m. We see that T
is the union of Tm with m ∈ Te, and Tm is the disjoint union of T ′

n for all
ideals n |m.

We define an equivalence relation ∼ on T : for u and v in T , u ∼ v if and
only if v = (1 + x)u for some x ∈ u−1 with 1 + x positive. Let

T := T/∼, Tm := Tm/∼, T ′
m := T ′

m/∼ .
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Note that, when k = Q, T can be identified with Q/Z and under this
identification T (m) becomes (1/m)Z/Z, and T ′

(m) = ((1/m)Z/Z)∗ = {a/m ∈

(1/m)Z/Z : (a,m) = 1}.
For f ∈ T we denote by {f} the image of f in T . Then Te acts on T by

n{f} = {nf}, and Gm acts on Tm by σ{f} = {af} where σ = σa is the element
in Gm associated to the ideal a with (a,m) = e via the Artin map. Since
T =

⋃
mTm, T becomes a G-set. In this way every a ∈ T can be uniquely

written as σa{d−1
a } for some σa ∈ Gda , which can be thought as the analogue

of r/s with r, s ∈ Z, (r, s) = 1 in the case of rational number field. In this
sense, one may call σa the numerator and da the denominator of a. Or, one
may view

Q/Z =
⋃

n

(
1

n
Z/Z

)∗

≃
⋃

n

Gal(Q(ζn)/Q)

and

T ≃
⋃

n

Gal(Kn/k).

Thus one may think of T as an analogue of Q/Z.

An ordinary distribution on k with values in an abelian group V is a
function Θ : T → V such that

Θ(a) =
∑

nb=a

Θ(b)

for any integral ideal n of A and a ∈ T . Let A be the free abelian group
generated by the symbols [a] for a ∈ T , and Am the subgroup of A generated
by the symbols [a] for a ∈ Tm. Then Gm acts on Am by σ[a] = [σa], and
hence G acts on A.

Let U be the subgroup of A generated by the elements of the form

(1.1.1) E(n, a) = [a]−
∑

nb=a

[b] for n ∈ Te, a, b ∈ T
∗,

and let Um = U ∩ Am. Note that, for a ∈ T ′
d and a prime ideal p, we have

(1.1.2) E(p, a) =





[a]− Fr−1
p [a]−

∑

σ∈G(Kdp/Kd)

σ[p−1a] if p ∤ d,

[a]−
∑

σ∈G(Kdp/Kd)

σ[p−1a] if p | d.

Here Frp is the Frobenius map at p in G(Kd/k) and p−1a = σ̃a{p−1d−1
a },

where σ̃a is any extension of σa to Kpda . Let U = A/U and Um = Am/Um.
Then an ordinary distribution on k with values in V is a homomorphism
from A to V whose kernel contains U , that is, a homomorphism from U
to V . Define u : T → U to be the map induced by a 7→ [a] : T → A. Then u
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is the universal ordinary distribution, i.e. the initial object in the category
of ordinary distributions on k. By abuse of language we call U and Um the
universal ordinary distribution and the universal ordinary distribution of

level m, respectively. It is known that the group Um is free abelian of rank
|Gm| and U is free abelian ([A], [Y]).

1.2. Anderson’s resolution. In this section we briefly recall the construc-
tion of Anderson’s resolutions of U and Um. Fix a total ordering “<” in the
set of prime ideals of A. Let L be the free abelian group with basis {[a, g]} in-
dexed by a ∈ T and g ∈ Te square-free. We letG act on L by σ[a, g] := [σa, g].
The degree of [a, g] is defined to be −o(g) = −n(g). Define, for a square-free
integral ideal g and a prime ideal p,

ω(p, g) =

{
(−1)|{q : q|g, q<p}| if p | g,

0 otherwise,

and a differential operator d by

d[a, g] =
∑

p

ω(p, g)
(
[a, gp−1]−

∑

pb=a

[b, gp−1]
)
.

Then (L, d) becomes a complex and the map [a, e] 7→ [a] induces an iso-
morphism H0(L, d) ≃ U. For an integral ideal m, let Lm be the subgroup
spanned by the symbols of the form [a, g], where g |m and a ∈ Tmg−1 .
Then Lm is d-stable and the map [a, e] 7→ [a] induces an isomorphism
H0(Lm, d) ≃ Um. Let M be a positive integer dividing qdeg p − 1 for any
p |m and let Lm,M = Lm/MLm.

Following Anderson ([O, Proposition 3.2, 3.6 and Appendix by Ander-
son]), we have

Theorem 1.2.1.

(a) For m ∈ Te the complex (Lm, d) is acyclic in nonzero degrees and

H0(Lm, d) = Um.

(b) The complex (L, d) is acyclic in nonzero degrees.

(c) Hn(Lm,M ) =

{
Um/MUm if n = 0,

0 if n 6= 0.

We give Lm a double complex structure. An element [a, g] of Lm is of
bidegree (p1, p2) if p1 = n(da) − n(m) and p2 = n(m) − n(da) − n(g). The
differentials d1 of bidegree (1, 0) and d2 of bidegree (0, 1) are defined by

d1 : Lp1,p2
m → Lp1+1,p2

m , [a, g] 7→ −
∑

p

ω(p, g)Np[p
−1a, gp−1],

and

d2 : Lp1,p2
m → Lp1,p2+1

m , [a, g] 7→
∑

p

ω(p, g)(1− Frp)[a, gp−1].
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Then d = d1 + d2, d
2
1 = d2

2 = d1d2 + d2d1 = 0, and

Lp
m =

⊕

p1+p2=p

Lp1,p2
m .

2. Group cohomology of the universal ordinary distribution.

In this section we fix a square-free integral ideal m. We use the group Hm

instead of Gm. The group cohomology for Gm is very hard to understand
because Gm is not a direct product of inertia groups. Still the results we
get here are weaker than those of [O] because our A is not a principal ideal
domain. But when studying Euler systems in §3 we only consider principal
ideals.

2.1. Double complex K. Let m∞ be the formal ∞th power of m. Let
K be the free abelian group generated by the symbols [a, g, h] indexed by
[a, g] ∈ Lm and h |m∞. We say that [a, g, h] has bidegree (p, q) if n(g) =
o(g) = −p and o(h) = q. Let d and δ be the differentials on K of bidegree
(1, 0) and (0, 1), respectively given by

d =
∑

p

dp and δ =
∑

p

δp,

where

dp[a, g, h] = ω(p, g)
(
[a, gp−1, h]−

∑

pb=a

[b, gp−1, h]
)
,

δp[a, g, h] = (−1)o(g)+
∑

q<p ordq h

{
(1− σp)[a, g, hp] if ordp h is even,

Np[a, g, hp] otherwise.

Note that d is induced by the differential d on L, and thus we can decompose
d into d1+d2. Let KM = K⊗Z/M . We usually write M∗ or M∗,∗ for a module
M to specify the complex (M, d) or the double complex (M, d, δ).

Set

U∗ :=
〈[a, h] : a ∈ Tm, h |m∞〉

〈[a, h]−
∑

pb=a[b, h] : a ∈ Tmp−1 , h |m∞〉
.

We consider U∗ as the double complex (U∗,∗; 0, δ) concentrated on the ver-
tical axis. Let u : K∗,∗ → U∗,∗ be the map

[a, g, h] 7→

{
[a, h] if g = e,

0 otherwise.

Proposition 2.1.1 ([O, Proposition 5.1]). The map u is a quasi-iso-

morphism between K∗,∗ and U∗,∗. Therefore

H∗
total(K

∗,∗) = H∗(Hm,Um) and H∗
total(K

∗,∗
M ) = H∗(Hm,Um/MUm).
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2.2. Spectral sequence for K∗,∗. Now we study the spectral sequence of
K∗,∗ from the first filtration. Note first that

Ep,q
1 (K∗,∗) = Hq

δ (Kp,∗) = Hq(Hm, L
p).

Since Lp =
⊕

p1+p2=p L
p1,p2 =

⊕
o(g)=−p

⊕
g|g′|mLg′,g, where Lg′,g := 〈[a, g] :

a ∈ Tmg
′
−1〉, we have

Ep,q
1 (K∗,∗) =

⊕

o(g)=−p

⊕

g|g′|m

Hq(Hm, Lg′,g).

Hq(Hm, Lg′,g) is isomorphic to Hq(Hg′ ,Z[Ge]) by Shapiro’s lemma. We write
this as Hq(Hg′,g,Z[Ge]) to keep track of g.

The induced differential d1 is exactly the map
(
x 7→ −

∑
ω(p, g)xp

)
: Hq(Hg′,g,Z[Ge])→

⊕

p|g

Hq(Hg′p−1,gp−1 ,Z[Ge]),

where xp is the restriction of x in Hq(Hg′p−1,gp−1 ,Z[Ge]). The induced dif-

ferential d2 on E1 is

d2(τ) =
∑

p|g

ω(p, g)(1− Fr−1
p )τ,

after identifying Hq(Hg′,g,Z[Ge]) = Hq(Hg′,gp−1 ,Z[Ge]).

Unlike the rational case, d2 may not equal to 0 because of the nontriv-
iality of the class group of k. But if m is divisible only by principal prime
ideals, then d2 = 0.

2.3. The complex Q∗,∗. Put S∗,∗ = 〈[a, g, h] ∈ K∗,∗ : a /∈ T e if g | h〉, and

Q∗,∗ = K∗,∗/S∗,∗ = 〈[a, g, h] : a ∈ T e, g | h〉.

The induced differential d on Q∗,∗ is

d[a, g, h] =
∑

p

ω(p, g)(1− Fr−1
p )[a, gp−1, h],

which is not 0, in general.

Proposition 2.3.1. The quotient map f : K∗,∗ → Q∗,∗ is a quasi-

isomorphism.

Proof. Let E1(K∗,∗) = (Ep,q
1 (K)). Then as in [O, §5.3], for each q, E∗,q

1 is
the double complexMq = (Mp1,p2

q , d1, d2), where

Mp1,p2
q =

⊕

g|g′

o(g′)=−p1

o(g)=−p1−p2

Hq(Hg′,g,Z)[Ge],
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with d1 and d2 as in §2.2. Let

L′∗g := 〈[a, g, h] : a ∈ T e, g | h, ∗ = o(h)〉,

L′∗
g := 〈[{A}, g, h] : g | h, ∗ = o(h)〉.

Then L′∗g = L′∗
g [Ge]. Since L′∗

g is d1-stable, one can follow the proof of Propo-
sition 5.4 of [O]. The E1-term of the spectral sequence for the second filtra-
tion of the double complexMq is given, for m = n(m), by

Ep1,p2
1 (Mq) =





⊕

o(g)=m−p2

Hq(L′∗g ) =
⊕

o(g)=m−p2

Hq(L′∗
g )[Ge] if p1 = −m,

0 otherwise.

ThereforeMq degenerates at E2 and

Ep,q
2 (K∗,∗) = Hm+p(Nq),

where

Nq =
(
Np2 =

⊕

o(g)=m−p2

Hq(L′
g)[Ge], d2

)
.

On the other hand, Q∗,∗ =
⊕

g|mL
′∗
g . Since d1 = 0 on Q∗,∗, we have

Ep,q
1 (Q∗,∗) =

⊕
o(g)=−pH

q(L′
g)[Ge], and so Ep,q

2 (Q∗,∗) = Hm+p(Nq). There-
fore f2 is an isomorphism, which implies that f is a quasi-isomorphism.

The quotient map also induces a quasi-isomorphism between K∗,∗
M and

Q∗,∗
M . The differential δ on Q∗,∗

M is 0. But since d is not 0, the spectral sequence
for Q∗,∗

M does not degenerate at E1. Thus it is not easy to give a basis of
H∗(Hm,Um) and H∗(Hm,Um/MUm). However we can get an explicit basis
for H0(Hm,Um/MUm).

Theorem 2.3.2. There is a basis of H0(Hm,Um/MUm) consisting of

{cg,σ ∈ H
0(Hm,Um/MUm) : g |m, σ a representative of Ge/Ag}

where Ag is the subgroup of Ge generated by Frp with p | g.

Proof. Write x(g, h) to denote [{e}, g, h]. For g |m, h |m∞ and g | h, let
C(g, h) be the complex

· · · 0→ Z/M [Ge]x(g, h)
d
→

⊕

p|g

Z/M [Ge]x(gp−1, h)→

· · · → Z/M [Ge]x(e, h)→ 0,

where dx(g′, h) =
∑

p|g′ w(p, g′)(1− Frp)x(g
′p−1, h). Then the kernel of d at

degree 0 is Z/M [Ge]s(Ag)x(g, g) if g = h, and 0 otherwise. Therefore the set

{σs(Ag)x(g, g) : σ a representative of Ge/Ag}

is a basis of the 0th cohomology of the complex C(g, g). It is easy to see that
Q∗,∗

M is the direct sum of the complexes C(g, h) for g |m, h |m∞ and g | h. Let
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C(g, σ) be the cocycle of K∗,∗
M lifting σs(Ag)x(g, g), and cg,σ be the image of

u(C(g, σ)) in H0(Hm,Um/MUm). Hence we get the result.

The basis ofH0(Hm,Um/MUm) constructed in the proof of Theorem 2.3.2
will be called the canonical basis.

If m is divisible only by principal prime ideals, then the differential d on
Q∗,∗

M is trivial, and it is easy to compute the cohomology of the complex K∗,∗
M .

In this case we actually have

Um =
⊕

σ∈Ge

Um,σ,

and most of the results in [O] would hold for Um,σ for any σ ∈ Ge. In
particular, we have

Corollary 2.3.3. For g |m and σ ∈ Ge, let cg,σ be the image in

H0(Hm,Um,σ/MUm,σ) of the cocycle lifting σx(g, g). Then {cg,σ} is the

canonical basis of H0(Hm,Um,σ/MUm,σ).

Define the diagonal shift operator ∆l on K by

∆l[a, g, h] :=

{
[a, gl−1, hl−1] if l | g and l | h,

0 otherwise.

Then ∆l induces endomorphisms of H0(G,U/MU) and of H0(G,Um/MUm).

3. Euler systems and Kolyvagin classes. Let F be a finite abelian
extension of k, containing the Hilbert class field Ke, such that ∞ splits
completely. LetM be a positive integer prime to q(q−1). Let m be the formal
product of prime ideals p, which splits completely in F and M | qdeg p− 1.

Let Fm = FKm and Om be the integral closure of A in Fm. Let Km

be the compositum of all fields Km with m |m, and Fm = FKm. Then
G′ = Gal(Fm/F ) is isomorphic to Hm = lim←−m|mHm. Put O := Oe and
Om :=

⋃
m|mOm. For each integral ideal m dividing m and a prime ideal l,

let Om,(l) be the localization of Om with respect to the multiplicative sys-
tem of elements prime to l, O(l) := Oe,(l), and O

m,(l) :=
⋃

m|mOm,(l). Let

Um =
⋃

m|m Um and Tm =
⋃

m|m Tm.

3.1. The universal Euler system and the universal Kolyvagin class. Let
T 1

m
be the subset of Tm consisting of elements a such that the restriction

of σa is the identity on Ke. Let U1
m

= U
m,id. Let l |m be a prime ideal. For

a, b ∈ T 1
m

, we write a ∼l b if one of the following two conditions is satisfied:

1) l | da = db and σa = σb on Kdal−1 ,

2) da = dbl and σa = σb Frl on Kdb
.

Let Il be the subgroup generated by the elements of U1
m

of the form [a]− [b]
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with a ∼l b. It is easy to see that Il is Hm-stable and

(σl− 1)U1
m
⊂ Il.

Thus we may view U1
m
/Il as an Hm/Hl-module, and we have an exact

sequence

0→ U1
ml−1

|l|−Frl
−−−−→U1

ml−1 → U1
m
/Il→ 0,

where the map U1
ml−1 → U1

m
/Il is induced by the inclusion and |l| = qdeg l.

As in the rational number field case we have the following analogue of Propo-
sition 3.7 of [AO].

Proposition 3.1.1 (cf. [AO, Proposition 3.7]). For every prime ideal l

dividing m there exists a unique homomorphism

Dl : H0(Hm,U
1
m
/MU1

m
)→ H0(Hm,U

1
ml−1/MU1

ml−1)

such that

(σl− 1)x

M
≡

(|l| − Frl)y

M
mod Il ⇔ Dl(x mod MU1

m
) = y mod MU1

ml−1

for all x ∈ U1
m

representing a class in H0(Hm,U1
m
/MU1

m
) and y ∈ U1

ml−1

representing a class in H0(Hm,U1
ml−1/MU1

ml−1). Moreover ,

DlH
0(Hm,U

1
m/MU1

m) ⊂ H0(Hm,U
1
ml−1/MU1

ml−1)

for all integral ideals m dividing m and divisible by l.

The difference in the proof of Proposition 3.1.1 from the classical case is
the definition of ̺l, which in our case is

̺l([a]) = Fr−1
l [l · a].

For each m |m there exists a unique element ηm in Hm whose restric-
tion to Kp is

∏
p6=q|m Frq for p |m, by the Chinese remainder theorem. Let

xm ∈ Um be the class represented by ηm{m−1}. Then from the relation (1.1.2)
and the definition of Il, we have

Nlxm = (Frl−1)xml−1 and xm ≡ xml−1 mod Il

for all integral ideals m dividing m and prime ideals l dividing m.
We call the family

{xm ∈ U1
m ⊂ U1

m
}m|m

the universal Euler system.
For each prime ideal l |m, one sees easily that

(σl− 1)N ′
mxm ≡ −NlN

′
ml−1xm ≡ (Frl−1)N ′

ml−1xml−1 ≡ 0 mod MU1
m.

Hence N ′
mxm ∈ U1

m ⊂ U1
m

represents a class cm ∈ H0(Hm,U1
m/MU1

m). We
call cm the universal Kolyvagin class indexed by m. Again we have the fol-
lowing analogue of Proposition 4.5 of [AO].
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Proposition 3.1.2 (cf. [AO, Proposition 4.5]). The family {cm} of the

universal Kolyvagin classes satisfies

(∗) l |m ⇒ Dlcm = cml−1 .

We call the relation (∗) the universal Kolyvagin recursion.

Remark. As in the classical case ([AO, Proposition 5.8]) one can show
that the endomorphism of H0(Hm,U1

m/MU1
m) induced by the diagonal shift

operator ∆l coincides with Dl. Thus the canonical basis {cm,id} satisfies the
universal Kolyvagin recursion and the universal Kolyvagin classes {cm} form
a basis of H0(Hm,U1

m
/MU1

m
).

3.2. Euler system and Kolyvagin class. We call a collection {ξm∈F ∗
m}m|m

an Euler system if

(3.2.1) ξm ∈ O
∗
m for m 6= e,

(3.2.2) ξNl
m = ξFrl −1

ml−1

and

(3.2.3) ξm ≡ ξml−1 modulo the radical of the ideal lOm,

for a prime ideal l dividing m. In [AO] it is assumed in the definition that
ξe is a unit, which is not necessary.

Example 3.2.1. Let F = K+
r , the maximal real subfield of Kr, and

Fm = FKm. Let q be a prime ideal not dividing r and λ be a nonzero q tor-
sion point of a sign-normalized rank 1 Drinfeld module ̺. For m |m define

ξm = NKmqr/Fm

(
λ−

∑

p|m

λ(p)
)
,

where λ(p) is a fixed nonzero p torsion point of ̺. Then {ξm}m is an Euler
system.

Example 3.2.2. Let F and Fm be as in Example 3.2.1. Define

ξm = NKmr/Fm

(
λ−

∑

p|m

λ(p)
)
,

where λ is a nonzero r torsion point of ̺. Then {ξm}m is an Euler system.

Remark 3.2.3. Let F (p) be a subfield of FKp of degree M over F and
F (m) =

∏
p|mF (p), as in [XZ]. Then the two Euler systems in the proof of

Theorem 3.3 in [XZ] are just the norm NFm/F (m)ξm of ξm in the examples
above. It would be an interesting problem to find an example which does
not arise in this way.

As in [AO] we can identify H0(Hm, F
∗
m/F

∗M
m ) with F ∗/F ∗M . Moreover,

(image of H0(Hm,O
∗
m/O

∗M
m ) in H0(Hm, F

∗
m/F

∗M
m )) ⊂ O∗

(l)/O
∗M
(l)

for all prime ideals l not dividing m.
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Let {ξm} be an Euler system. Fix an integral ideal m 6= e dividing m. For

each prime ideal l dividing m one can show that ξ
N ′

m(1−σl)
m ≡ 1 mod O∗M

m ,
and so

ξ
N ′

m
m mod O∗M

m ∈ H0(Hm,O
∗
m/O

∗M
m ).

Therefore there exists a unique class κm ∈ F ∗/F ∗M such that

ξ
N ′

m
m ≡ κm mod F ∗M

m

and moreover, we have

m 6= e, (l,m) = e ⇒ κm ∈ O
∗
(l)/O

∗M
(l)

for all prime ideals l. We call κm the Kolyvagin class indexed by m associated
to the Euler system {ξm}.

3.3. Some operators and Kolyvagin recursion. Let l be a prime ideal
dividing m. Let νl : O∗

(l)/O
∗M
(l) → (O/l)∗M be the unique homomorphism

such that

νl(x mod O∗M
(l) ) ≡ x(|l|−1)/M mod lO(l)

for all x ∈ O∗
(l). Let [·]l : F ∗/F ∗M → C(l) ⊗ (Z/MZ) be the unique homo-

morphism such that

[x mod F ∗M ]l = xO(l) mod (C(l))
M

for all x ∈ F ∗, where C(l) is the group of fractional O(l)-ideals. As in the
classical case (cf. [AO, §2.4]) there exists a unique isomorphism

expl : C(l) ⊗ (Z/MZ)→ (O/l)∗M

such that

expl(x
NlO(l) ⊗ (1 mod M)) ≡ (x1−σl)(|l|−1)/M mod

√
lOl,(l)

for all x ∈ F ∗
l . Then, for all integral ideals m dividing m and prime ideals l

dividing m,

expl[κm]l ≡ νlκml−1 mod
√

lOm,(l).

We say that a system of classes {εm ∈ F ∗/F ∗M}m|m satisfies the Koly-

vagin recursion if, for all integral ideals m dividing m and prime ideals l,
the following hold:

• m 6= e, (l,m) = e⇒ εm ∈ O∗
(l)/O

∗M
(l) .

• l |m⇒ expl[εm]l = νlεml−1 .

Proposition 3.3.1 ([AO, Proposition 3.9]). Let ξ : U1
m
→ O∗

m
be any

Hm-equivariant homomorphism such that ξIl ⊂ 1 +
√

lO
m,(l) for all prime

ideals l dividing m. Let

κ : H0(Hm,U
1
m
/MU1

m
)→ H0(Hm, F

∗
m
/F ∗M

m
) = F ∗/F ∗M
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be the homomorphism induced by ξ. Let {cm ∈ H0(Hm,U1
m/MU1

m)}m|m be

any system of classes satisfying the universal Kolyvagin recursion. Then the

system {κcm ∈ F ∗/F ∗M}m|m also satisfies the Kolyvagin recursion.

Note that, for the Hm-equivariant map ξ, ξ(xlm) ≡ ξ(xm) modulo primes
over l is equivalent to ξIl ⊂ 1+

√
lO

m,(l). We see that an Euler system {ξm}
and its Kolyvagin classes {κm} can be recovered from the universal Euler
system {xm} and the universal Kolyvagin classes {cm} by the map ξ.

4. Circular distribution

4.1. Circular distribution. Let K̃ :=
⋃

mKm and T o := T \ T e. A G-

equivariant map f : T o → K̃∗ is called a circular distribution on k if, for
any a ∈ T o and n ∈ Te,

(4.1.1)
∏

nb=a

f(b) = f(a).

From the G-equivariance we see that f(a) ∈ Km for any a ∈ T o
m. Let C be the

set of all circular distributions on k. Then C becomes an R = Z[G]-module
via

(r · f)(a) =
∏

σ(f(a))nσ ,

where r =
∑
nσσ. Denote by Nm,n the norm map from Km to Kn for n |m.

Proposition 4.1.1 ([S1, Theorem 2.1]). Let f : T o → K̃ be a G-

equivariant map. Then the condition (4.1.1) is equivalent to the following

two conditions:

• For any prime ideal p of A and a square-free ideal m 6= e with p ∤ m,

(4.1.2) Npm,mf({p−1m−1}) = f({m−1})1−Fr−1
p .

• For n− i ≥ 1,

(4.1.3) Npnm,pn−imf({p−nm−1}) = f({pi−nm−1}).

Lemma 4.1.2. Let p and l be two distinct prime ideals of A. Let Lu

be a prime ideal of Kppu lying over l. Then the decomposition group of

Lu+1 in K
ppu+1/Kppu is nontrivial for any sufficiently large u, where p is

the characteristic of k.

Proof. Let du be the inertial degree of Lu in Kppu/Ke. Let x ∈ A be
such that

NKe/kL0 = (x), sgn(x) = 1.

Then from [H1, §4], du is the order of x in (A/ppu
)∗. Write xd1 = 1 + z,

where z ∈ pm \ pm+1. Let t be such that pt ≤ m < pt+1. Then dt = d1.
Let u > t. Then it is not hard to see that du = dtp

u−t. Hence the result
follows.
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Lemma 4.1.3. Let f ∈ C and p be a prime ideal of A. If m is divisible

by at least two distinct prime ideals (resp. a p-power), then f({m−1}) is a

unit (resp. a p-unit).

Proof. Let Lu be a prime ideal dividing f({p−pu
}) inKpu , which is prime

to any prime ideal above p. The condition (4.1.3) and Lemma 4.1.2 imply
that the principal ideal (f({p−pu

})) is divisible by any sufficiently large
power of Lu, which is a contradiction. Hence f({p−pu

}) is a p-unit. Again
by (4.1.3), f(p−s) is a p-unit for any positive integer s. A similar argument
implies that f({m−1}) is a unit if m is divisible by at least two distinct prime
ideals.

Let F be an R-submodule of C consisting of f ∈ C such that for any
nonunit integral ideal m and any prime ideal l with l ∤ m,

(4.1.4) f({l−1m−1}) ≡ f({m−1})Fr−1
l mod L,

where L is any prime ideal above l.

Let ψ : T o → K̃∗ be the G-equivariant map defined by

ψ({m−1}) = λm = ξ(m)em(1),

where ξ(a) is the ξ-invariant of a and ea is the Drinfeld lattice function
associated to a. See [H2] for details. From Theorem 5.1 of [H1],

ψ({m−1}) = ̺
(lm)
l (ψ({l−1m−1})) ≡ ψ({l−1m−1})qdeg l

mod L,

which implies that ψ ∈ F . As in the classical case one can state an analogue
of Coleman’s conjecture, that is, F = Rψ.

4.2. Torsions in circular distribution. In this section we describe the
torsion subgroups of C and F . Let S be any nonempty set of square-free
integral ideals. Let δS be a G-equivariant map on T o defined by

δS({m−1}) =





γ if there is s ∈ S such that

m and s have the same prime factors,

1 otherwise,

where γ is a fixed generator of F∗
q . Then it is easy to see that δS /∈ F , unless

S is the set of all square-free integral ideals. Let J ⊂ H be the sign group,
which is isomorphic to F∗

q . Let D be the R-submodule of C generated by δS
for all S as above.

Lemma 4.2.1. D is the submodule of C consisting of all elements f such

that f q−1 = 1, that is, the values of f lie in F∗
q.

Proof. Suppose that f q−1 = 1. For each i with 0 < i < q − 1, let

Si = {m : m square free and f({m−1}) = γi}.
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Then we can easily see that

f =
∏

i

δi
Si
.

One can follow [S2, §3] to obtain

Proposition 4.2.2. Let f ∈ F . Then {f({p−n1
1 · · · p−nr

r })}ni∈N * F∗
q if

and only if

lim
n

[Ke(f({p−u1
1 · · · p−n

i · · · p
−ur
r })) : Ke] =∞ for some i.

Moreover , if f({p−u1
1 · · · p−n

i · · · p
−ur
r }) /∈ F∗

q for all n, then

[Ke(f({p−u1
1 · · · p−n−1

i · · · p−ur
r })) : Ke(f({p−u1

1 · · · p−n
i · · · p

−ur
r }))] ≥ p

for all sufficiently large n.

Corollary 4.2.3. Ctor = D.

Let δ be a G-equivariant function on T o defined by δ({m−1}) = γ.

Proposition 4.2.4. Ftor = 〈δ〉.

Proof. Let 1 6= f ∈ Ftor. Then f =
∏q−2

i=1 δ
i
Si

. Then Si 6= ∅ for some i.
Let n ∈ Si and p be a prime ideal not dividing n. Then

γi = f({n−1}) ≡ f({p−1n−1}) mod P.

Since q > 2, pn ∈ Si. In this way we see that every square-free integral
ideal divisible by n lies in Si. Now processing backwards we see that every
square-free integral ideal lies in Si, which implies the result.

Remark 4.2.5. One easily sees that δ = ψσγ−1, where σγ(λm) = γλm.
But in the classical case, the circular distribution δodd in [S2], defined by
δodd(ζm) = ±1 depending on whether m is even or odd, is not contained
in Rψ, as we now prove.

Proposition 4.2.6. With the notations as in [S2, §3], we have

δodd /∈ Rψ.

Proof. Suppose that δodd = r ·ψ for some r ∈ R. On Q(ζ12) we can write

r = n1 id+nσσ + nτ τ + nστστ,

where σ(i) = i, σ(ζ3) = ζ−1
3 , τ(i) = −i and τ(ζ3) = ζ3. Since ψ(ζ) = 1− ζ,

−1 = r · ψ(ζ3) = (−ζ3)
nσ+nστ (1− ζ3)

n1+nσ+nτ+nστ ,(1)

1 = r · ψ(iζ3) = (i)nσ(−ζ3)
nτ (iζ−1

3 )nστ (1− iζ3)
n1+nστ−nσ−nτ .(2)

From (1), nσ + nστ must be odd, but from (2) it must be even, which is a
contradiction.

Therefore Coleman’s conjecture in the classical case should be Ff = Rψ,
where Ff is the free part of F .
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4.3. Circular distributions and Euler systems. Let EF be the set of all
Euler systems on F . Let CF be the group of cyclotomic units in the sense
of [ABJ].

Let f ∈ F and t be a nonunit integral ideal prime to m. For m |m, define

α(f, t)m = NKm[f,t]/Fm
f(xmt),

where [f, t] denotes the least common multiple of f and t. Then we have the
following lemma as in the classical case ([S1, Lemma 4.1]).

Lemma 4.3.1. {α(f, t)m}m|m is an Euler system.

Remark 4.3.2. (a) The examples in §3.2 are obtained from α(ψ, t) for
some appropriate t.

(b) In the classical case, for t prime to the conductor of F , α(f, t) does
not give any new units of F , so this case was not considered in [S1]. But in
the global function field case, elliptic units in the sense of Hayes ([H2]) can
be obtained in this way.

Let ÊF (m) (resp. F̂F (m)) be the Gm-submodule generated by the ele-
ments ξn (resp. α(f, t)n) for n |m with {ξn} ∈ EF (resp. f ∈ F and t 6= e

prime to m). Let EF (m) (resp. CF (m)) be the group of global (resp. cyclo-
tomic) units in Fm. Let

EF (m) = ÊF (m) ∩ EF (m), FF (m) = F̂F (m) ∩EF (m).

It is shown in [ABJ, Theorem 3.9 and 5.1] that if ℓ does not divide
q(q − 1)[Fm : k], then the ℓ-class number of F+

m is equal to the ℓ-primary
part of EF+

m
/CF+

m
. Then following the same argument as in §4 of [S1], we

have

Theorem 4.3.3. Let ℓ be a prime number as above and m |m. Then

EF (m)⊗ Zℓ = FF (m)⊗ Zℓ = CF (m)⊗ Zℓ.
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