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On the number of pairs of binary forms with
given degree and given resultant

by

ATTILA BERCZES (Debrecen), JAN-HENDRIK EVERTSE (Leiden)
and KALMAN GYORY (Debrecen)

1. Introduction. Let us denote by R(F,G) the resultant of two binary
forms F,G. Let S = {p1,...,p:} be a finite, possibly empty set of primes.
The ring of S-integers and group of S-units are defined by

ZS = Z[(pl "'pt)_l]a Z*S = {:l:p'iUl p?t Wiy, W € Z}7

respectively, where Zg = Z, Z§ = {£1} if S = . We deal with the so-called
resultant equation

(1.1) R(F,G) € cZj

to be solved in binary forms F, G € Zg[X,Y], where ¢ is a positive integer.
It turns out that the set of pairs (F,G) satisfying this equation can be
divided into equivalence classes, where two pairs of binary forms (F;,G1),
(F5,G2) are said to be equivalent if there are e, € Z% and a matrix U =
(2%) € GLy(Zg) such that F»(X,Y) = eFi(aX +bY,cX+dY), Go(X,Y) =
nG1(aX +bY,cX +dY).

First Gyéry [10], [11] for monic binary forms F,G (i.e., with F/(1,0) =
G(1,0) = 1), and later Evertse and Gyéry [7] for arbitrary binary forms F, G,
proved results which imply that there are only finitely many equivalence
classes of pairs of binary forms F, G € Zg[X, Y| that satisfy (1.1) and certain
additional conditions. In [11], Gy&ry established his results on monic binary
forms in a quantitative form, giving explicit upper bounds for the number
of equivalence classes, while the results for arbitrary binary forms from [7]
were established only in a qualitative form. In the present paper, we improve
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the quantitative results from [11], and prove quantitative versions of the
finiteness results from [7].

In a simplified form, one of our results (Theorem 2.3 below) can be stated
as follows. Let m > 3, n > 3 be integers and L a number field. Then the
set of pairs of binary forms (F,G) in Zg[X,Y] satisfying (1.1) such that F'
has degree m, G has degree n, F', G do not have multiple factors and F, G
split into linear factors in L[X,Y] is contained in the union of O(c(1/m7)+9)
equivalence classes as ¢ — oo for every § > 0. Here, the implied constant
depends on L, m, n, S, § and cannot be computed effectively from our
method of proof. It is shown that the exponent on ¢ cannot be improved to
something smaller than 1/mn.

On the other hand, if we restrict ourselves to monic binary forms F, G,
we can derive an upper bound for the number of equivalence classes which
is completely explicit in terms of m, n, ¢t and ¢ (see Theorem 2.1 below).
We derive a similar such explicit bound for binary forms F, G that are not
necessarily monic, but there we have to impose a suitable minimality con-
dition on one of F,G. We explain that without this condition it probably
becomes very difficult to obtain a fully explicit upper bound for the number
of equivalence classes. As a corollary of our Theorem 2.2, we give a quantita-
tive version of a result by Evertse and Gyéry [6] on Thue-Mahler equations
(Corollary 2.4 below).

In Section 2 we state Theorems 2.1-2.3 and Corollary 2.4. Theorem 2.1
will be proved in Sections 3, 4 and Theorem 2.2 in Sections 5-8. The main
tools are explicit upper bounds from [4] and [9] for the number of solutions
of linear equations with unknowns from a multiplicative group. The latter
is a consequence of the quantitative subspace theorem. In our arguments we
use ideas from [8], [7] and [2]. Theorem 2.3 is proved in Section 9. Here the
hard core is an inequality from [7] relating the resultant of two binary forms
to the discriminants of these forms. This inequality is a consequence of the
qualitative subspace theorem.

2. Results. We introduce some terminology. The resultant of two bi-
nary forms

m
F=aX" +a X"+ anY™ = [J(arX = BY),

k=1
n

G=b X"+ b X"V 4 0, Y" = [[(nX - 6Y)
=1
is given by

R(F,G) = [] [ (exdi — Bin)-

k=11=1
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From the well-known expression for R(F,G) as a determinant (see [13, §34])
we infer that R(F,G) is a polynomial in Zlag,. .., am;bo, ..., b,] which is
homogeneous of degree n = deg GG in ay, . . ., a,, and homogeneous of degree
m = deg F' in b, ..., b,. Further, for any scalars A\, 4 and any matrix A =
(g 2) we have

(2.1) R(AF4,nGa) = N"u™(det A)™ R(F, G),
where for a binary form F' we define F)4 by
Fa(X,)Y):=F(aX +bY,cX +dY).

For a domain {2, we denote by NSo({2) the set of 2 x 2-matrices with
entries in {2 and non-zero determinant, and by GLo(f2) the group of 2 x 2-
matrices with entries in {2 and determinant in the unit group 2*. Two
binary forms Fy, Fy € 2[X,Y] are called §2-equivalent if there are e € 2%,
U € GLa(£2) such that F» = ¢(F})y. Two pairs of binary forms (F1,G1),
(Fy,Gy) are called 2-equivalent if there are e, € 2%, U € GLy({2) such
that Fy» = ¢(F1)v, G2 = n(G1)y. A binary form F' with F(1,0) = 1 is
called monic. Two pairs of monic binary forms (F1, G1), (F»2, G2) in 2[X,Y]
are called strongly 2-equivalent if F5(X,Y) = F1(X 4+ bY,eY), Go(X,Y) =
G1(X +bY,eY) for some b € £2, € € 2*.

We return to the resultant equation (1.1). Let S = {p1, ..., p:} be a finite,
possibly empty set of primes. Without loss of generality we may assume
that the number ¢ in (1.1) is a positive integer which is coprime to py - - - p;
if S # (). Clearly, if (F, Q) is a pair of binary forms with (1.1), then by (2.1)
every pair Zg-equivalent to (F,G) also satisfies (1.1). Therefore, the set of
solutions of (1.1) decomposes into Zg-equivalence classes. Likewise, the set
of pairs of monic binary forms F,G € Zg[X,Y] with (1.1) decomposes into
strong Zg-equivalence classes.

There were some earlier finiteness results on (1.1) in which one of the
binary forms F, G was kept fixed, but Gyory was the first to obtain results
on (1.1) in which both F, G are allowed to vary. He proved [10, Theorem 7]
the following result for monic binary forms. Let L be a given number field,
and m,n integers with m > 2, n > 2, m +n > 5. Then there are only
finitely many strong Zg-equivalence classes of pairs of monic binary forms
F,G € Zg[X,Y] satisfying (1.1) such that deg F' = m, deg G = n, F, G have
no multiple factors and F'-G has splitting field L (i.e., L is the smallest num-
ber field over which F - G splits into linear factors). Further, in [11], Gyéry
obtained explicit upper bounds for both deg F' + deg G and the number of
strong equivalence classes. In fact, by combining Gy6ry’s arguments from
[11] with the explicit upper bound for the number of non-degenerate solu-
tions of S-unit equations from [5, Theorem 3|, one can show that the pairs
of monic binary forms (F, G) with the properties given above lie in at most
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(2:2) {2(m + n + 1)4210501L: Ql(t+w(e)+1) ymtn—2

strong Zg-equivalence classes, where w(c) is the number of distinct primes
dividing c. Note that 1 < [L: Q] < m!n! (}).

Evertse and Gy6ry [7, Corollary 1] extended Gy6ry’s qualitative result to
binary forms which are not necessarily monic. Under the slightly stronger
hypothesis m > 3, n > 3, they proved that there are only finitely many
Zg-equivalence classes of pairs of binary forms F,G satisfying (1.1) such
that deg ' = m, deg G = n, F,G have no multiple factors and F' - G has
splitting field L. Further, they showed that deg F' 4+ deg G is bounded above
in terms of S, L and ¢. We mention that both Gy6ry for monic binary forms
and Evertse and Gy0ry for not necessarily monic binary forms proved more
general results for binary forms with coefficients in the ring of S-integers of
a number field (?). For a generalization to binary forms with given semi-
resultant, see Gyory [12].

Gyéry [11] and Evertse and Gy6ry [7] also showed that their finiteness
results do not remain valid if the conditions on m, n are relaxed, or if neither
F nor G is required to split into linear factors over a prescribed number
field. It is not known whether the finiteness results can be extended to the
case that only one of F, G is required to split over a given number field;
see [3] for a discussion on this. Probably the condition that F', G have no
multiple factors can be removed if we assume that F, G have sufficiently
many distinct factors in C[X, Y] (see [11] in the monic case).

Below we give precise quantitative versions of our results mentioned
above. In contrast to the above discussion, we do not deal with binary
forms F, G such that F'-G has a given splitting field but instead with binary
forms associated with certain given number fields. We say that a binary
form F' € Q[X,Y] is associated with a number field K if F' is irreducible in
Q[X,Y] and if there is € such that F'(6,1) = 0 and K = Q(6). We agree
that the binary forms aY (a € Q) are associated with Q. A binary form
F € Q[X,Y] is said to be associated with the sequence of number fields
Ki,...,K, if it can be factored as [[;_; F; where F; € Q[X,Y] is an irre-
ducible binary form associated with K, for ¢ = 1,...,u. It is easy to check
that a binary form F' associated with K, ..., K, has degree Y |[K; : Q.

For a non-zero integer d, we denote by w(d) the number of distinct primes
dividing d, and by ord,(d) the exponent of the prime number p in the prime
factorization of d.

(*) The results in [10], [11] were formulated in terms of monic polynomials instead of
monic binary forms. The formulation in terms of monic binary forms fits more conveniently
into the present paper.

() In the monic case, the results of [10], [11] were established in the even more general
situation when the ground ring is an integrally closed and finitely generated domain over Z.
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Our first theorem gives a quantitative result on (1.1) for monic binary
forms which is better than (2.2) if the degrees of the number fields with
which F, G are associated are not too small.

THEOREM 2.1. Let m,n be integers with m > 2, n > 2, m+n > 5 and
Ky,...,Ky, Lq,..., L, number fields with

i=1 i=1
Further, let S = {p1,...,p:} be a finite, possibly empty set of primes and

¢ a positive integer, coprime to p1---py if S # 0. Then the set of pairs of
monic binary forms F,G € Zg|X,Y| with

(1.1) R(F,G) € cZjs
for which

e F' is associated with K1, ..., K,, G is associated with L, ..., L,,
e I''GG do not have multiple factors

is contained in the union of at most

el?(m—i—n—i—lol1)mn(t+w(c)+1)

strong Zg-equivalence classes.

Clearly, our bound can be replaced by e!8(mtnmn(t+w(e)+1) if m 4 p is
sufficiently large. We note that from Theorem 2.2 below one can derive a
result similar to Theorem 2.1 but with a larger bound.

In Theorem 2.2, we give an explicit upper bound for the number of
equivalence classes for not necessarily monic binary forms, but instead we
have to assume that one of the binary forms satisfies a certain minimality
condition. More precisely, a binary form F' € Zg[X,Y] is called Zg-minimal
if there are no binary form G € Zg[X, Y] and matrix A € NSy(Zg)\GL2(Zs)
such that F = Gy4.

THEOREM 2.2. Let m,n be integers with m > 3, n > 3. Further, let
Ki,...,Ky, Li,..., Ly, S and ¢ be as in Theorem 2.1. Then the set of pairs
of binary forms F,G € Zs|X,Y] satisfying (1.1) for which

o [ is associated with K1, ..., K,, G is associated with L1, ..., Ly,
o I''GG do not have multiple factors,
o [ is Zg-minimal

is contained in the union of at most

61024 (m—i—n)mn(t—i—l)w(c)
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Zg-equivalence classes, where

P(e) ==2"OT] (Ordp(c) +mn + 2>.

mn + 2
ple

Using the arguments of the proof of Theorem 2.2 we could have given
also an explicit upper bound for deg F' 4+ deg G. We will not work this out
in the present paper.

If in Theorem 2.2 we drop the condition that F' be Zg-minimal, the
number of Zg-equivalence classes remains finite, but we are no longer able
to give an explicit upper bound for it. In fact, we believe that to give an
explicit upper bound for the number of equivalence classes without the min-
imality constraint is a difficult problem, and at the end of this section we
give an example to illustrate this. We only managed to prove the following
asymptotic result.

THEOREM 2.3. Let again m,n be integers with m > 3, n > 3, and let
Ki,...,Ky, L1,...,L,, S and ¢ be as in Theorem 2.1. Then the number
of Zg-equivalence classes of pairs of binary forms F,G € Zg|X,Y] which
satisfy (1.1) and for which

e [ is associated with K1, ..., K,, G is associated with L1, ..., Ly,
e F, GG do not have multiple factors

is, for every 6 > 0, at most O(c(l/m”)+5) as ¢ — 00, where the implied
constant depends on Ky,..., Ky, Li,...,Ly,, m, n, S and 0. This constant
cannot be computed effectively from our method of proof.

The following example shows that the exponent of ¢ cannot be replaced
by something smaller than 1/mn. Fix two binary forms F,G € Z[X,Y]
of degrees m > 3, n > 3, respectively, without multiple factors, and hav-
ing resultant R(F,G) =: r # 0. Suppose that F' is associated with the
number fields K1, ..., K, and G with the number fields Lq,...,L,. Let p
be any prime number. Then the pairs of binary forms (Fjy, Gp) given by
F(X,Y)=F(pX,bX +Y), Go(X,Y) =G(pX,bX+Y) (b=0,....,p—1)
are pairwise Z-inequivalent. Further, Fj is associated with Ki,..., K, and
Gy with Li,..., L, and Fp, Gy do not have multiple factors. By (2.1) we
have R(Fy, Gp) = rp™™. So if we take ¢ := |r[p™" and let p — 0o, we obtain
infinitely many integers ¢ such that the pairs of binary forms (F, G) satisfy-
ing the conditions of Theorem 2.3 with S = () lie in > ¢!/ Z-equivalence
classes.

We give a consequence for Thue-Mahler equations of the shape

(2.3) F(z,y) € cZ% in (x,y) € Zs x Zg, with ged(z,y) =1,

where F' is a binary form in Zg[X,Y] and c¢ is a positive integer coprime to
the primes in S. Two solutions (z1,y1), (2,y2) of (2.3) are called propor-
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tional if (z2,y2) = A(x1,y1) for some A € Q*. Evertse and Gyéry [6] proved

the following. Let m > 3 and let L be a given number field. Then the bi-

nary forms F' € Zg[X, Y] of degree m such that F' has no multiple factors,

F splits into linear factors over L and such that (2.3) has at least three pair-

wise non-proportional solutions, lie in finitely many Zg-equivalence classes.
We prove the following quantitative result:

COROLLARY 2.4. Let m be an integer with m > 3, K1,..., K, number
fields with Y ;" |[Ki : Q] =m, S = {p1,...,pt} a finite, possibly empty set
of primes, and ¢ a positive integer coprime to py---p; if S # (0. Then the
set of binary forms F € Zg[X,Y] such that

e (2.3) has three pairwise non-proportional solutions,
e [ is associated with (K1,...,K,), F' has no multiple factors,
o F is Zg-minimal

is contained in the union of at most

3107 m(m43) (t+1) | gw(c) I (3 ordp(c) + 3m + 2)

3m + 2
plc

Zg-equivalence classes.

Proof. We derive Corollary 2.4 from Theorem 2.2. Let F' € Zg[X,Y] be a
binary form satisfying the conditions of Corollary 2.4. Let (x1,y1), (z2,y2),

(x3,y3) be pairwise non-proportional solutions of (2.3). Define the binary
form G(X,Y) = [[>_,(%: X — #;Y). Then

3
R(F,G) = HF(a:i,yi) € CBZE.
i=1
Hence the pair (F,G) satisfies the conditions of Theorem 2.2 with n = 3,
(L1,..., L) = (Q,Q,Q), and with ¢ instead of c. By applying Theorem 2.2
with these data, we see that the pairs (F, G) lie in at most N Zg-equivalence
classes, where N is the quantity obtained by substituting n = 3 and ¢ for ¢
in the upper bound in Theorem 2.2. Hence the binary forms F’ lie in at most
N Zg-equivalence classes. m

We return to the problem, addressed above, to give a fully explicit upper
bound for the number of equivalence classes of pairs (F,G) satisfying the
conditions of Theorem 2.3 without the constraint that F' be Zg-minimal. In
Lemma 9.3 in Section 9 we prove that for every pair of binary forms (F, G)
in Zg[X,Y] with (1.1) there are a pair of binary forms (Fy, Go) in Zg[X,Y]
with (1.1) such that Fy is Zg-minimal, and a matrix A € NSy(Zg), such
that

(2.4) F=(F)a, G=(Go)deta)-14-
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Now Theorem 2.2 gives an explicit upper bound for the number of Zg-
equivalence classes of pairs (Fpy, Gp), so what we would like is to give an
explicit upper bound for the number of Zg-equivalence classes of pairs (F, G)
corresponding to a given pair (Fp, Gop) as in (2.4). But for this we would need
some “effective information” about the pair (Fp, Go) that is not provided by
our method of proof.

To illustrate more concretely the problems that arise, we consider a spe-
cial case. Let S = {pi1,...,pt} be a finite set of primes. Consider binary
forms

25) F=XX-aY)(X-aY), G=Y0HX-Y)(bhX-Y),

where a1,a9,b1,b0 € Z, a1 > 0, ag,b1,b2 # 0, a1 # a2, by # ba. These
constraints on aq, az, b1, by imply that any two distinct pairs of binary forms
of the type (2.5) are Zg-inequivalent. We have

2 2
(2.6) R(F,G) = -] ] - aib)).

i=1j=1

We consider
(2.7) R(F,G) € Z3g in binary forms of the type (2.5).
From (2.6), (2.7) it follows that
(2.8) giji=1—aibjeZy fori,j=1,2.
Further,

1 1 1
(2.9) 1 en e12|=0.

1 ea1 €22

Lemma 3.3 in Section 3 of the present paper gives an explicit upper bound
for the number of solutions €11, €12, €21, €22 € Z% of (2.9) such that

(2.10) each 2 x 2-subdeterminant of the left-hand side is # 0.

Notice that this is satisfied by the numbers of the type (2.8).
Let €11,€12,€21, €22 € Z N Z§ be any solution of (2.9), (2.10). Define the
quantities

_1—511 ,._1—521

1—e12
L= +ged(l—e11,1—¢€91), df = -

ay 1= by =
v, P v, 7 ay
where we choose the sign of b} such that a] > 0. Then a},a), b} € Z and
moreover b, € Z since a}/aly = (1 —¢e11)/(1 —e21) = (1 —e12) /(1 — £22) and
ged(ay,ay) = 1. Further, e1; = 1 — b}, €21 = 1 — abd), 12 = 1 — ajbs,
£92 = 1-— CL/Qb/Q.
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If we require that F' be Zg-minimal then ged(aj,ag) = 1. In that case
we have a1 = a, ay = ab, by = b}, by = b}, and so a1, ag, by, by are uniquely
determined by €11, €12, €21, €22. Thus, we obtain an explicit upper bound for
the number of solutions (F, G) of (2.7) for which F' is Zg-minimal.

If we do not require that I’ be Zg-minimal, we obtain for every solution
€11,€21,€12,€22 € ZNZG of (2.9), (2.10) and every positive divisor d of

ged(b,05) = ged(1 —e11,1 — €21, 1 — €12, 1 — £29)
a solution (F,G) of (2.7), given by
a1 =day, as=da,, by =0V/d, by=10/d.

Thus, to obtain an explicit upper bound for the total number of solutions
(F,G) of (2.7), we need for every solution 11,12, €21, €22 € ZENZ of (2.9) an
explicit upper bound for the number of divisors of the quantity ged(1 —e17,
1 —e91,1 —€12,1 — £92). We have no clue how to determine such a bound.

3. Auxiliary results. Let (C*)" be the N-fold direct product of C*
with coordinatewise multiplication (x1,...,2n5)(y1,...,yn) = (T1Y1,. ..,
ryyn). We say that a subgroup I' of (C*)V has rank r if I" has a free
subgroup Iy of rank r such that for every u € I' there is s € Z~g with
u’® € Iy.

LEMMA 3.1. Let I' be a subgroup of (C*)N of rankr and a1, ...,an € C*.
Then the equation

(3.1) az1+ - +ayzy =1 imx=(z1,...,zn) €T

has at most e®NN 1) solutions with

(3.2) Z a;x; 70  for each non-empty subset I of {1,...,N}.
i€l

Proof. See Evertse, Schlickewei, and Schmidt [9, Theorem 1.1]. m
For N = 2, the following lemma gives a sharper result.

LEMMA 3.2. Let N = 2 and let I', ay,az be as in Lemma 3.1. Then
equation (3.1) has at most 250 +2) solutions.

Proof. This is an immediate consequence of Theorem 1.1 of Beukers and
Schlickewei [4]. m

LEMMA 3.3. Fori,j = 1,2, let I5; be a subgroup of C* of rank r. Then
equation

1 1 1
(3.3) 1 211 x12| =0 nxy €l fori,j=1,2

1 o1 w20
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15 (4r4-2)

has at most 39 solutions such that

(3.4)  each 2 x 2-subdeterminant of the left-hand side of (3.3) is # 0.

Proof. This can be proved by going through the proof of Evertse, Gyéry,
Stewart and Tijdeman [8, Theorem 1], see also Bérczes [1]. By expanding
(3.3) we obtain

(3.5) T11%22 — T12%21 + T21 — T2 + x12 — x11 = 0.

Notice that the summands of (3.5) lie in the group generated by —1, I'11, I'2,
151, I'50, which has rank at most 4r. We have to consider all partitions of the
left-hand side of (3.5) into minimal vanishing subsums and apply Lemma
3.1 to each subsum. We consider only two cases; the other cases can be dealt
with in a similar way following [8].

First, we consider the solutions of (3.3), (3.4) such that no proper subsum
of the left-hand side of (3.5) vanishes. On dividing (3.5) by x1; we obtain

Ti2T21 | T21  T22 | T12
T22 — +—-—+—=1
11 Ti1 Tl T11
. 15 1 e1eye
By Lemma 3.1 with N = 5, we have at most e3" (4r+1) possibilities for

the tuple (:1:22, z 1;1”’;21 , %, i—ff, %) Each such tuple determines uniquely the

tuple (z11, 212, 21, T22). Hence (3.3), (3.4) have at most 30" (4r+1) golutions
such that no proper subsum of the left-hand side of (3.5) vanishes.
Next, we consider those solutions of (3.3), (3.4) for which

(3.6) T11022 — T12%21 + 221 =0, —xo9 + 12 — 211 =0

and no proper subsum of any of these sums vanishes. By dividing the first
sum by x921 and the second sum by x1; we obtain

. Tt T2 T2 4
2-——=4 —=—=1L
o] 11 Z11
By Lemma 3.1 we have at most
6 1 15
(612 (4r+1))2 < 301°(4r+1)

—e
200

possibilities for the tuple (11312, A2z, A2, i—ff) This tuple determines
uniquely the tuple (z11,212,%21,222). Hence (3.3), (3.4) have at most
2—3063015(4”“) solutions such that (3.6) holds, and no proper subsum of the
sums in (3.6) vanishes.

Following [8] one can show that each other partition of (3.5) into minimal
vanishing subsums also gives rise to at most 2—3063015(47’“) solutions of (3.3),
(3.4). The total number of partitions of (3.5) into minimal vanishing subsums
is at most (g) + (g) + (g) (;1) = 125 (we are very generous here). Hence the
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total number of solutions of (3.3), (3.4) is at most

125
(1 + %)63015(47“4-1) < 63015(47"4-2). .

4. Proof of Theorem 2.1. We shall deduce Theorem 2.1 from the
following.

LEMMA 4.1. Let m,n be integers withm > 2, n > 2 and m+n > 5. For

i=1,...,m,j=1,...,n, let I}; be subgroups of C* of rank at most r. If
Ty evey Ty Yly - -+ Yn) TUNS throy, e tuples in or whic
(%15, Ty Y1, -+ Yn) through the tuples in C™*™ for which
(41) xi—y; €l for1<i<m,1<j<n,
) TlyeeesTms YLy - - -, Yn are patrwise distinct,
then the mn-tuple (%)i:17_“,m’j:1 ’’’’’ ,, Tuns through a set of cardinality
at most
(4.2) 3. 224(r+1)(m+n—4)6189(4r+1)_

Proof. We proceed by induction on m + n. First suppose that m = 2,
n = 3. Let (21, 72,%1,%2,y3) € C° be a tuple with (4.1). For 1 < j < k < 3,
consider the identity
(4.3) (1 —yj) + (yj —x2) + (x2 —y) + (yx — 1) = 0.
It is easily seen that the 4-term sum on the left-hand side of (4.3) can have
a vanishing subsum for at most one pair (j, k). We may assume that for
(j,k) = (1,2) and (1, 3) there is no vanishing subsum on the left-hand side.
For (j,k) = (1,2), identity (4.3) gives
T2 —Y1 X2~ Y2 +x1—y2
1=y T1—Y1 IT1— U
Notice that the summands of (4.4) belong to the group generated by —1, I'11,
I'o, I51, I'52, which has rank at most 4r. Hence, by Lemma 3.1, there are

(4.4) =1.

_ 18%(4r+1) S To—Y1 Ta—Y2 T1—Y2

at most C; = e possibilities for the tuple (xl—yl’ = xl—yl)' If

we fix 2222 and set a3 = 2= as = —ay, then we infer from (4.3) with
T1—Y1 T1—x2’ ’

(jok) = (1,3) that
x1 — To —
1—Y3 by 22 Y3
1 — U 1 — U
By Lemma 3.2 there are at most Co = 2867+3) possibilities for the tuple
(3= Z2-83)  This proves the assertion for m +n = 5 with the bound
1—Y1’ T1—Y1
3C1Cs.
Consider now the case m +n > 5. We may assume without loss of
generality that n > 3. Suppose that Lemma 4.1 has already been proved
for m + n — 1. This means that if (x1,...,Zm,y1,...,Yn—1) runs through

the tuples in C™*"~! with (4.1), then the tuple (%)121 gl

(4.5) = 1.

runs
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through a set of cardinality at most 301057*”_5. Fix such a tuple (w)

r1—Y1

with 1 <i<m,1<j<n-—1. Then ﬁ—:“’;f is uniquely determined. So we

get equation (4.5) again, but with y,, instead of y3, and we infer as above
that there are at most 02 possibilities for the tuple (2=~ 22=¥n) f sych

T1—-Y1’ T1—Y1
y is uniquely determined for each ¢ > 2. Hence the

a tuple is fixed, then Z

set of tuples under con81derat10n (ﬂUi—Zjl ) with 1 <7< m, 1 <j <n has

cardinality at most 3ClC§”+"_4, which proves our assertion. m

Proof of Theorem 2.1. We view Ky,...,K,, L1,..., L, as subfields of C.
Fori=1,...,u,let 055 (j =1,...,[K;: Q]) be the embeddings of K; in C,
and let Ki,..., K, be the sequence of fields consisting of 0;;(K;) (i =

1,...,u,j=1,...,[K;:Q]). Likewise, we augment L, ..., L, to a sequence
of fields Lq,...,Ly,. Denote by T the set of primes consisting of pi,...,ps
and the distinct prime factors of c. For ¢ =1,...,m, j =1,...,n, let I;; be

the unit group of the integral closure of Zr in the compositum K;L; of K;
and L;. Then I; is a subgroup of C* of rank at most mn(t +w(c) +1) — 1.

Let F,G be any pair of binary forms with coefficients in Zg satisfying
(1.1) and the other conditions of Theorem 2.1. Then

m n
F(XY)=][[(X - aY), =[x -5Y)
i=1 j=1
where o; € K; for i = 1,...,m, B; € L; for j = 1,...,n, the numbers
Aty ..., Qm, P1,..., O, are pairwise dlstlnct and
H H ) € Zi.
i=1j=1

This implies that a; — 3; € I fori =1,...,m, j =1,...,n. So by Lemma
4.1 and the fact that each group I; has rank at most mn(t +w(c) +1) —1,
the mn-tuple (3;;_%1 1<i<m, 1 <5< n) belongs to a set independent
of F, G of cardinality at most C, where C' denotes the quantity obtained by
substituting mn(t + w(c) + 1) — 1 for r in the bound in (4.2).
It follows from (1.1) that

(4.6) R(F,G) = 0" 0oc

where 01, 0o € Z3 and where gp may assume at most 2(mn)? distinct values.
Any choice of g9 and a tuple (gi;_gjl 1 <i<m,1<j< n) determines
uniquely the tuple (—ai/gl_ﬂj/gl) with 1 < i <m, 1< j <n and, by (4.6),

a1/e1—P1/e1
also the number (a/01 — $1/01)™". This leaves at most mn possibilities for

a1/01 — (1/01. Then any choice of ay/01 — ($1/01 determines uniquely the
numbers «;/01 — B;/01 and Bj/o1 — fi/or (i=1,...,m,j=1,...,n).
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By combining the above we deduce that there is a set V' of cardinality at
most 2(mn)!*1C with the following property: if (F,G) is any pair of binary
forms satisfying (1.1) and the conditions of Theorem 2.1, then there are
01 € Z§ and an ordering of the zeros ai,..., o, B1,...,0, of F,G, such
that (ai/01 — B1/01,65/01 — fi/e1:1<i<m,1<j<n)eV.

If now F’,G" is another pair of binary forms in Zg[X,Y] with (1.1)
whose zeros, say, of,...,al,, B1,..., 0, yield for some ¢} € Z% the same
tuple (aj/0y — B1/01,B;/01 — Bi/ey : 1 <i<m, 1< j<n), then

af = oa; +b  and B;‘:QBj‘i‘b

fore =1,...,mand j = 1,...,n, where o € Z3 and where b is integral
over Zg. Using a1 + -+ + oy € Q, B1 + -+ + B € Q we infer that b € Q.
Consequently, b € Zg. This means that the pairs (F',G’) and (F,G) are
strongly Zg-equivalent.

It follows that the pairs of binary forms (F,G) satisfying (1.1) and the
conditions of Theorem 2.1 lie in the union of at most

Q(mn)t—i-lc _ Q(mn)t-i-l 3. 224mn(t+w(c)+1)(m+n—4)6189(4mn(t+w(c)+1)—3)

< 617(m+n+1011)mn(t+w(c)+1)

strong Zg-equivalence classes. This completes the proof of Theorem 2.1. u

5. Augmented forms. In the proof of Theorem 2.2 it will be more
convenient to work with so-called augmented forms F*, which are tuples
consisting of a binary form F' and the zeros of F' on the projective line.

Let K be a field and PY(K) := {(¢ : n) : £&,n € K, (£,1) # (0,0)} the
projective line over K where (£ :n) = (¢ : 7/) if and only if (¢/,7') = (&, n)
for some A € K*. The projective transformation of P!(K) defined by a
matrix A = (99) € GLy(K) is given by (A) : (£ : n) — (a& + by : c€ + dn).
Clearly, two matrices define the same projective transformation if and only
if they are proportional.

Let 2 be a domain with quotient field K of characteristic 0. Choose an
algebraic closure K of K. By an augmented binary form of degree m over (2
we mean a tuple

F*=(F,(B1:a1),...,(Bm : am)),

where F'is a binary form in £2[X, Y], and (61 : 1), ..., (Bm : aum) are distinct
points in P}(K) such that F = A][", (e, X — 3;Y) for some A € K*. So it
is part of the definition that F' does not have multiple factors. We define
deg F* := deg F' = m. We denote by A(f2, m) the collection of augmented
forms of degree m over §2. We write F* = (F,...) if F' is the binary form
corresponding to F™*.
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Given F* = (F,(B1 : 1), -, (Bm : am)) € A(2,m), ¢ € 2%, U =
((é g) € GLa(42), we define

eFS = (eFy, (U ™DYB1: 1), ..., (U D (Bm - ).

Then again, eFj; € A(f2,m). Two augmented forms FY, Fy € A(f2,m) are
called £2-equivalent if Fy = (Fy)y for some ¢ € 2% and U € GLy(£2).
Two pairs (F},G7), (F5,G5) € A(£2,m) x A(§2,n) are called 2-equivalent
if By =e(Fy)u, G5 =n(G7)v for some €, € 2 and U € GLa(£2).

Denote by Gk the Galois group of K over K and for ¢ € Gg and
(€ m) € PUE) let o((€ : m) i= (0(€) : o(n). I F* = (F,(By : an),...,
(Bm @ am)) € A(£2,m), then every ¢ € Gg permutes (51 : a1),...,
(Bm : am). By a Gg-action on {1,...,m} we mean a group homomorphism
from Gk to the permutation group of {1,...,m}. Given a Gg-action ¢ of
{1,...,m}, we denote by A(£2, ) the collection of augmented forms of de-
gree m over {2,

F*=(F,(f1:1),...,(Bm : am)),
such that

O'(ﬂZ : Ozi) = (@p(o)(z) : a¢(o)(i)) force Gg, 1=1,...,m.
It is easy to check that A(£2,¢) is closed under {2-equivalence, and that
for any two actions ¢ on {1,...,m}, ¥ on {1,...,n}, A2, ) x A(£2,v) is
closed under {2-equivalence.

A binary form F' € 2[X,Y] is called 2-primitive if the ideal generated
by its coefficients is equal to 2. We call I’ £2-minimal if there are no binary
form G € 2[X,Y] and matrix A € NSy(£2) \ GL2(£2) such that F' = G4.
(These notions are meaningless if (2 is a field.)

We start with a useful lemma.

LEMMA 5.1. Let K be a field of characteristic 0, K an algebraic closure
of K, and L an extension of K. Further, let m > 3 and let ¢ be a G-
action on {1,...,m}. Lastly, let F;,Fy € A(K,y), and suppose that there
are A € GLa(L) and A € L* such that

Fy = A7) a.
(i) Let A" € GLo(L), X' € L* be any other pair with Fy = N (F})ar.

Then A’ = pA for some p € L*.
(ii) There are B € GLo(K) and v € L* such that A = vB.

PT‘OOf. (1) Write Fz* = (an(ﬁzl : 042'1),.. ;(ﬁzm : alm)) for i = 1,2. By
assumption, m > 3 and (A7Y)(B1; : auj) = (B2j 1 azy), (AH(B1; : aiy)
= (B2 : ag;) for j = 1,...,m. Since a projective transformation of the

projective line is uniquely determined by its action on three points, this
implies (A~1) = (A’~1), hence A’ = puA for some p € L*.
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(ii) Since (B : ayj) € PY(K) for i = 1,2, j = 1,...,m, the projective
transformation (A~!) is defined over K. This implies that there are v € L*
and B € GLy(K) such that A = vB. Without loss of generality we assume
that one of the entries of B is equal to 1. For ¢ € Gk, denote by o(B) the
matrix obtained by applying o to the entries of B. Then for ¢ € Gx we
have (o(B) Yo (Bi1 : ai1) = o(Bi2 : aye) for i = 1,...,m and this implies
(O‘(B)_1>(ﬁi1 : a“) = (ﬁzg : Oéig) for i = 1,...,m since U(ﬁij : Oéij) =
(Biso(0)(G) © Qip(o)()) for i = 1,2, 5 = 1,...,m, 0 € Gk. Hence for each
o € G there is k, € K* such that o(B) = k,B. But one of the entries
of B is equal to 1, so 0(B) = B for 0 € Gg. Therefore, B € GLa(K). m

We now formulate a proposition for augmented forms over Zg and then
deduce Theorem 2.2 from this. As before, S = {p1, ..., p:} is a finite, possibly
empty set of primes, and ¢ a positive integer coprime to the primes in S.
Condition (5.2) below has been inserted for technical convenience.

PROPOSITION 5.2. Let m > 3, n>3. Let ¢ be a Gg-action on {1,...,m}
and ¥ a Gg-action on {1,...,n}. Then the set of pairs of augmented forms

F*=(F,...), G* = (G,...) such that
(5.1) F*e A(Zs,¢), G* € A(Zg,v),
(5.2) F,G are Zg-primitive,
(5.3) F is Zs-minimal,
(5.4) R(F,G) € cZy
s contained in the union of at most
24 (0 4V, wlc ordy,(c) + mn
N(e) = 0% (mmmn(t+1) ()_g( p(m)n )

Zg-equivalence classes.
Proposition 5.2 will be proved in Sections 6 to 8.

Proof of Theorem 2.2. Let Ki,..., K, be one of the sequences of fields
from Theorem 2.2. By assumption, >+ |[K; : Q] = m. For i = 1,...,u
denote by oi; (j = 1,...,m; := [K; : Q]) the isomorphisms of K; into Q.
Pick & with Q(&) = K; for i = 1,...,u, such that the elements of the
sequence

(15, 1m)
= (011<§1)7 cey 01mg (51)7 021(52)7 <oy 02my (52)7 R 7JU1(§U)7 <oy Oumy, (fu))

are distinct. Then every o € Gg permutes (71, ..., 7m). We define an action
pon {1,...,m} by requiring that

(k) = Np(ey(ky for o € Go, k=1,...,m.
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Now let F' € Zg[X,Y] be a binary form without multiple factors associ-
ated with K1,..., K,. Then F' can be expressed as
u m;

F(X,Y) =[] [[(i(6)X = 03(¢:)Y)

i=1j=1
where 0;,(; € K; fori=1,...,u and A € Q*. Define the augmented form

F* = (F, (,61 : 041); ceey (ﬁm : am))?
where (81 : a1),...,(Bm : ) is the following sequence of points in P! (Q):

(0'11(<1) : 011(91))’ SR (Ul,ml (Cl) F01my (‘91))’ LR
(Uul (Cu) : Uul(gu))a ceey (Ju,mu (Cu) D O0umy (Qu))

Clearly, o(8; : a;) = (Bp(o)(i) * Qp(o)(s)) for o € Gg, i = 1,...,m. Thus,
we have defined an action ¢ on {1,...,m} depending only on Ki,..., K,
and every binary form F € Zg[X,Y] without multiple factors associated
with Ki,..., K, can be extended to an augmented form F* € A(Zg, o).
Completely similarly, we can construct an action 9 on {1,...,n} from the
sequence of fields Lq,..., L,, and extend every binary form G € Zg[X,Y]
without multiple factors associated with Li,..., L, to an augmented form
G* € A(Zs, ).

For the moment we consider pairs of binary forms (F,G) in Zg[X,Y]
which satisfy the conditions of Theorem 2.2 and in addition are Zg-primitive.
From the definitions it is clear that the corresponding pairs (F™*, G*) con-
structed above satisfy (5.1)—(5.4). Further, if two pairs of augmented forms
are Zg-equivalent, then so are the corresponding pairs of binary forms. With
these observations, it follows at once that the pairs of binary forms (F,G)
which satisfy the conditions of Theorem 2.2 and which are Zg-primitive lie
in the union of at most N (c) Zg-equivalence classes, where N (c) is the upper
bound from Proposition 5.2.

Now let (F,G) be a pair of binary forms in Zg[X, Y] satisfying the con-
ditions of Theorem 2.2 which are not both Zg-primitive. Write F' = d; F”,
G = d2G" where dq, dy are positive integers coprime to the primes in S and
where both F’', G" are Zg-primitive. Then by (2.1), di'd}* divides ¢ and the
pair (F',G’) satisfies all conditions of Theorem 2.2 but with ¢/d}d}" in-
stead of c. It follows that the set of pairs of binary forms (F,G) in Zg[X,Y]
satisfying the conditions of Theorem 2.2 is contained in the union of at most

> N(e/didy)
dl,dgzd?d'gﬂc

< A0 mnmn(t1) 900 TT § <01"dp(0) — nu —mv + mn>

mn
p‘c u,v



Number of pairs of binary forms with given resultant 35

< A0 (mt (19000 T (Ofdp(c) +mn + 2)

- mn + 2
plc

Zg-equivalence classes, where the summation is over all pairs of non-negative

integers w,v such that nu + mv < ordy(c). This completes the proof of
Theorem 2.2. u

6. Local-to-global arguments. For a prime number p, let Q) denote
the completion of Q at p, Q,, an algebraic closure of Q,, Z, C Q, the ring of

p-adic integers, and Zp the integral closure of Z,, in @p. By |-|, we denote the
standard p-adic absolute value with |p|, = 1/p, extended to @p. As before,
S ={p1,...,pt} is a finite, possibly empty set of primes.

LEMMA 6.1. Let m > 3, n > 3, ¢ a Gg-action on {1,...,m}, ¥ a
Gk-action on {1,...,n}, F{, F5 € A(Zs,p), G7,G5 € A(Zs,). Then
(FY,GY) is Zs-equivalent to (Fy, G5) if and only if (F}', GY) is Zyp-equivalent
to (Fy,G%) for every primep & S.

Proof. The “only if” part is obvious. To prove the “if part”, assume that
(FY, GY) is Zp-equivalent to (Fy, G3) for every prime p ¢ S. This means that
for every prime p € S, there are U, € GLa(Zy) and ey, 17, € Z, such that

(6.1) By =ep(F)u,, Gy =mp(G1)u,-
We may assume that we have inclusions Q C Q, C @p and Q C Q C @p.
Apply Lemma 5.1(ii) with K = Q, L = @p. Thus, there are )\, € @; and
(pr € GL2(Q) such that Up~: )\p[}p. Without loss of generality, we may
assume that the entries of U, are integers in Z with ged 1. Since U, €
GLa(Zyp), this implies that A, € Z;. Together with (6.1) this gives
(62) F=&(F)y. Gi=i(Gig

with &,,7, € Q N2} and U, € GLy(Q) N GLy(Z,).

By Lemma 5.1(i), the matrices ﬁp (p € S) are proportional. Since we as-
sumed that the entries of U, have gcd 1, the matrices U, (p € S) are equal
up to sign. Hence there are U € NS2(Z) and £, 7 € Q* such that
Fy =&, G3=1(Glg,

and U = :l:ﬁp7 € = +€p, N = £, for every prime p ¢ S. But then det U=
det U, € Z, for every prime p ¢ S, and therefore detU € Z§ and U €
GL2(Zs). Likewise, €,7 € Z,, for every prime p ¢ S, which implies €, 7 € Z.
This proves Lemma 6.1. =

LEMMA 6.2. Let F € Zg[X,Y] be a binary form. Then F' is Zg-minimal
if and only if F' is Zy-minimal for every prime p € S.
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Proof. If F is not Zg-minimal, then there is a matrix A € NS9(Zg) with
A & GLy(Zg) such that Fy—1 € Zg[X,Y]. There is a prime p ¢ S such that
A & GLy(Zy), while Fy-1 € Zy[X,Y]. Hence F is not Z,-minimal.

Now assume that F' is not Zp-minimal for some prime p ¢ S. We have
to prove that F' is not Zg-minimal. By assumption, there are a binary form
G € Zp[X,Y] and a matrix A € NSy(Z,) \ GL2(Z,,) such that F' = G 4. We
have A = UB, where U € GL2(Z,) and

01
2=(y )

0 p%
with 01,02 € Z>p and b € Z. Let H := Gy. Then F' = Hp. The binary form
H belongs to Q[X, Y] since B € GL2(Q). Further, H € Z,[X,Y] since H is
Zp-equivalent to G, and for every prime ¢ € S U {p} we have H € Z,[X,Y]
since B € GLy(Z,). Hence H € Zg[X,Y]. This shows that indeed F' is not
Zg-minimal. m

7. Equivalence over the algebraic closure. Let S = {pi,...,p}
be a finite set of primes, Q an algebraic closure of Q and Zg the integral
closure of Zg in Q. By a finitely generated Zs-fractional ideal we mean
a finitely generated Zg-submodule of Q. The non-zero finitely generated
Zs-fractional ideals form a group under multiplication. Those Zg-fractional
ideals generated by finitely many elements from a number field K form
a subgroup. Every finitely generated Zg-fractional ideal is principal. We
denote by [a1,...,a,] the fractional Zg-ideal generated by a1, ...,a,. For a
polynomial P with coefficients in Q we denote by [P] the Zg-fractional ideal
generated by the coefficients of P.

In this section we estimate the number of Q-equivalence classes contain-
ing the pairs of augmented forms with (5.1)—(5.4). In fact, we prove slightly
more and we use this in Section 8 to complete the proof of Proposition 5.2.

We introduce some notation. Let m > 3, n > 3, let ¢ be a Gg-action on
{1,...,m} and ¥ a Gg-action on {1,...,n}. Let

(7.1) F*=(F,(f1:01), s (Bm:am)), G =(G,(01:71)s---,(0n 7))
be a pair of augmented forms with (5.1)—(5.4). Thus,

(7.2) F=X[J(iX = 8Y), G=p]](uX-5Y)
L - ol
where A, i, o, B8i,74,905 € Q*.
We define the Zg-fractional ideals

(7.3) aij(F*,G*):—% (i=1,....,m, j=1,...,n)
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and the numbers

N (@i, 0 J1 @17]1)(%2 Jo ﬂzz%z)
(7.4) ‘9“ 127]17]2(}7 ¢ ) . (ah J2 ﬁ11732)(a12 J1 @2%1)
(i1,i2 € {1,...,m}, j1,72 € {1,...,n}).

Both these fractional ideals and these numbers are independent of the choice
of A\, u and the al,ﬁl,’y],

Since [oyd; — Biv;] C [az,ﬁz] [v;, 8] we have 0;;(F*,G*) C Zsg, i.e.,
0, (F*,G") is a finitely generated ideal of Zg.

By applying Gauss’ lemma to (7.2) and using our assumption (5.2) we
obtain

(7.5) M Tl 8 = [F) = 1], [ [0 650 = [G] = [,
=1 7j=1

while by (2.1), (5.4) we have

[R(F,G)] "™ T T ews; — Bivs] = [el.
i=17=1
Hence
(76) [T 0u(F".G) = [el.

i=1j=1

We have some freedom to choose A,y and the o, 8;, v;,d; in (7.2). By
our assumption (5.1) we can choose these numbers such that

A p€QF,
(7.7) o(ai) = ayo)@)y,  0(Bi) = Byoyay foro€Ge,i=1,...,m,
U('Yj) = Yy(o)(4)> U(5j) = (Sw(g)(j) for o € GQ, ji=1....n

For the moment we keep this choice; later we will make another.
We prove the following lemma:

LEMMA 7.1. If (F*,G*) runs through the pairs of augmented forms with
(5.1)-(5.4), then the tuple (3;;(F*,G*) i =1,...,m, j = 1,...,n) runs
through a collection of cardinality at most

ord,(c) +mn
(™)

Proof. Gg acts on {1,...,m} x {1,...,n} by means of ¢ x ¢ which

is given by (p x 1)(0)(i, ) = (2(0)(i), ¥(0)(7)) for o € G, i = 1,...,m,
j=1,...,n.LetCy,...,Cy bethe orbits of {1,...,m}x{1,...,n} under this
action and choose a representative (i, jw) € Cy for w = 1,..., u. Further,
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define the field M,, by

(7.8) Gal(Q/My) = {0 € Gg : ¢(0)(iw) = iw, ¥(0)(jw) = ju}-
Let (F*,G*) be a pair with (5.1)—(5.4). Then, by (7.7),

o (0 (F*,G")) = 0y (0) (i) (o) () (5 G7)
for 0 € Gg, @ = 1,...,m, j = 1,...,n. Hence the tuple (9;;(F*, G*) :
i=1,...,m, j =1,...,n) is determined by the tuple (9;,;, (F"*,G*) :
w =1,...,u). Furthermore, by (7.7), 9;, ., (F*, G*) is generated by elements
from M,,, and the conjugates of v;,;, (F*, G*) over Q are precisely the ideals
0, (F*,G*) with (7,7) € Cy. Thus, we can rewrite (7.6) as

u
(7.9) [T Natuo(0u) = le]
w=1
where 0,, is the ideal in the integral closure of Zg in M,, determined by
Vinju (F*,G*) = 0yZs forw=1,...,u.

Let p be a prime with p|c. Let py1,. .. s Pw,g(w) b€ the prime ideals of
My, above p and fu1, ..., fu,g(w) their respective residue class degrees. Let
Twj (7 =1,...,9(w)) be the exponent of p,,; in the prime ideal factoriza-
tion of 0. Then the exponent of p in the prime number factorization of

Nty j0(@w) is T fujzw;. So, by (7.9),

u g(w)

Z Z JwjZTwj = ordy(c).

w=1 j=1

Let x(p) := (xw; : w =1,...,u, j = 1,...,9(w)). Then x(p) consists of

Yooy g(w) < S0 [My Q] > 1 #Cy = mn non-negative integers,
and moreover,

u g(w)
Z Z Tyyj < ordy(c)
w=1 j=1

Hence for x(p) there are at most

<ordp<§): + 2wt g<w)> < <0fdp(0) * m") =N,

1 g9(w) mn
possibilities.

The tuples x(p) (p|c) determine the ideals 9, hence also ;,;, (F*, G*)
(w=1,...,u). So by what was explained above, they determine the ideals
0, (F*,G*) (i=1,...,m,j=1,...,n) as well. This implies that if (F"*, G*)
runs through all pairs with (5.1) ( A4), then the tuple (9;;(F*,G*) : i =
1,...,m, j = 1,...,n) runs through a collection of cardinality at most

Hp|c NP‘ .
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We fix a tuple (9;; : i = 1,...,m, j = 1,...,n) of ideals of Zg, and
consider the set
Z({0i;})

consisting of the pairs (F™*, G*) that satisfy (5.1)—(5.4) and for which
(7.10) az-j(F*,G*):Dij fori=1,....m,j=1,...,n.

LEMMA 7.2. For each i1,io € {1,...,m} with i1 # iy and ji,j2 €
{1,...,n} with j1 # jo, there is a subgroup I}, ;. j, of rank at most

(7.11) dmn(t +1) —3
such that for every pair (F*,G*) € Z({0d;;}) we have
(7'12) 9i1,®’2;j1,j2 (F*v G*) € Fil,iz;jl,jQ'

Proof. For i = 1,...,m, j = 1,...,n define the number fields K;, L;,
M;; by
Gal(Q/Ki) = {o € Gg : ¢(0)(i) = i},
Gal(Q/L;) = {o € Gg : ¥(0)(j) = j},
Gal(Q/Mij) = {o € Gg : ¢(0)(i) =i, ¥(0)(j) = j}-
Let H be a positive common multiple of the class numbers of these fields.
Assume that the set Z({0;;}) is non-empty and pick a pair (F*, G*) from
this set. Let ay, (i,7;,9; be as in (7.1), (7.2), (7.7). Then there are \; € K,
p; € Lj; such that
(7.13) e, BF =N [0 =] fori=1,...,m,i=1,...,n.

By (7.7), the ideal d;; is generated by elements from M;;. Hence there are
vij € M;; such that

(7.14) Dgz[vij] fori=1,...,m,j=1,...,n.
Let I7; be the unit group of the integral closure of Zg in M;;. Then
(7.15) rank I < [M;; - Q(t+1) -1 <mn(t+1)—1.

By (7.13), (7.14), (7.10) we have [(c;d; — Biv;) 7 /\ipj] = Dg = [vi;], hence

(c;6; — Biy)

7.16
(7.16) o

= y;jei;  with g5 € I3
fori=1,....m,j5=1,...,n.
Then for i1,i2 € {1,...,m}, j1,j2 € {1,...,n} with iy # i, j1 # j2 we have

Viy,52Via, 1 €i1,52€12,51

(note that the terms \;, u; cancel). Hence 6;, 4,5, 4, (F*, G*) belongs to the
group generated by v;, j, Vi, j, /Viy joVis,jy and by I3 ;. (p,q = 1,2), which has
rank at most 4{mn(t+1)—1}+1 < 4mn(t+1)—3. But then 6;, ;,.;, j, (F*, G*)
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belongs to the set of Hth roots of the elements of this group, which is also
a group of rank at most 4mn(t + 1) — 3. This proves Lemma 7.2. =

LEMMA 7.3. Letiq,io 6{1, R ,m}, 91,72 6{1, R ,n} with i1 #i9, j1#£ J2.
Then if (F*,G*) runs through Z({0;;}), the quantity 0;, ;,.j, j. (F*, G*) runs
through a set of cardinality at most

63015{16mn(t+1)—11}

Proof. Pick (F*,G*) € I({0i;}), let o, Bi,7j,0; be as in (7.1), (7.2),
(77), write 91'177;2;]'17]'2 for 09i17i2;j17j2(F*,G*) and define Ai]’ = Oéi(Sj — ﬂi’)/j.
Then
- Ail,leimjz
i1,92;51,02 = AiviaDigir
Choose i3 € {1,...,m} \ {i1,i2}, js € {1,...,n} \ {j1,j2}. Then

Ai1j1 Ailjz Ai1j3
Aigjr Aigje Aigjs| =0
Aigjr  Aizje Aisjs

0

hence

1 1
(7.18)

—_ = =

Oirsiaiji gz ivsizijngs| =
Oivisijnge i isign s
From the fact that (G; : «;) (i = i1, 42,43), (0; : v5) (§ = Jj1, J2, j3) are distinct,
it follows that each 2 x 2-subdeterminant is non-zero. Now by applying
Lemma 3.3 to (7.18), invoking Lemma 7.2, it follows immediately that if
(F*,G*) runs through Z({9;;}), then 0;, ., j, (F*, G*) runs through a set
of cardinality at most

63015(4{4mn(t+1)—3}+1) _ 63015{16mn(t+1)—11}' .

We now come to the main result of this section.

LEMMA 7.4. There is a collection T C A(Zs,m)x.A(Zs,n) of cardinality
at most

dp(c) +mn
1 1024 (m+n)mn(t+1) OTrdy
(7.19) e | | o

ple
with the following property: for every pair (F*,G*) with (5.1)~(5.4), there
are (F§y,Gg) € I, A € NSo(Zs) and e,m € Z§ such that

(7.20) F*=e(Fg)a, G =n(Gp)(det 4)-14-
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Proof. Our pair (F, Gj) will depend only on the data
0 (F*,G¥), i=1,...,m, j=1,...,n,
(7.21) ;121 (F*,G*), i=2,...,m,
012.1,(F*,G*), j=2,...,n,
where ;;(F*,G*) are the ideals given by (7.3) and 6;, j, ., j, (F*,G*) are
the numbers given by (7.4). By Lemmata 7.1, 7.3, if (F"*, G*) runs through

all pairs with (5.1)—(5.4), the tuple given by (7.21) runs through a set of
cardinality at most

{H <0rdp(0) + m”) }63015{16mn(t+1)—11}(m—1+n—1)

mn
ple

< 0% (mAn)mn(t+1) H ordy(c) + mn _
| mn
ple

Hence the number of possibilities for (Fj], G{) is bounded above by (7.19).
Let (F*,G*) be a pair with (5.1)—(5.4). Put
Oir insjn o 7= Oininigrgn (F5, GT), 035 := 045(F™, GY).
Further, choose d;; € Zg such that 9;; = [8;;]. Therefore, §;; depends only
on (7.21).
By assumption (5.2), Gauss’ lemma and the fact that every finitely gen-
erated ideal of Zg is principal, we can express F* and G* as

F* = (Fv(ﬁlial)a"'a(ﬁmiam)% G* = (G7(51:71)7"'a(5n:7n))7

where
m

F=]J(iX = 3Y), [oq,8]=[1] fori=1,...,m,
(7.22) o

G = H(%‘X —0;Y), [v,0;]=[1] forj=1,...,n
j=1

Put
Aij =05 — By, (1=1,....m,j=1,...,n).
Then with the decomposition of F*, G* in (7.22), definition (7.3) becomes
0ij = [Ag].
Hence
(7.23) A =dijeij withej; €25 fori=1,...,m,j=1,...,n.

Further, (7.4) can be rewritten as

(724) 91'171'2;]'17]'2 = W for 11,12 € {1,...,m}, J1,)2 € {1,...,71}.
11,72 22,71
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Define the following Q-linear subspace of Q™:

[ (oax =By amT = Bmy \ . o
(7.25) V= {< AL T AL ) .a:,ye(@}.

By substituting (x,y) = (d1,71), (z,y) = A1 L(d2,72) respectively, we obtain
a basis of V, that is,

(1,...,1),
<1 A1 Agy Ay Asp A1 A
T A A1y’ Az Ay’ A A
where the last identity follows from (7.24). This basis of V', hence V itself,
depends only on (7.21).
Consider the Zg-module

(7.26) M= {(fl, - ,fm) eV (51151 € Zs, ceey 5m15m S Zs}

Since every finitely generated ideal of Zg is principal, M is a free Zg-module
of rank 2. Choose a basis {(a1, ..., am), (b1,...,bn)} of M. The module M,
hence this basis, depends only on (7.21). Now define

) =(1,612:12:61312, -, 01,m:1,2)

FO_H%H X —bY), Ff:=(Fo,(bi:a1),...,(bm: am)).

=1

Then F{ depends only on (7.21). Further, Fy € Zs|X,Y], which implies
Fy € A(Zg,m).

By (7.23), (Z‘—lll, e 0‘;"1) € M. Hence there are uiq, ui2, U1, ugs € Zg
such that
o o
<A—1, RN A—m> == Ull(al, .. 7am) - 'U,Ql(bl, CIEa 7bm)7
(7.27) 11 ml

/81 5m)
— o, — | = —upe(ar, - am) + u2a(b1, ..., b))
(S ™) = tnalan )+ uali )

Set A := (41l 112). Thus, by (7.23),

(H&l) H (ai(unX 4+ u12Y’) — bi(u21 X + u22Y))

=1
-11 Aﬂl JJ(eix - 8Y) = (Héﬁl) F
; v = i=1

i=1 7

Further, (b; : a;) = (A71)(B; : o) fori =1,...,m. So

—_

m
(7.28) F*=e(Fg)a  withe:=][]en € Zg.
=1
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We now construct G§. Solve ¢;,d; (j =1,...,n) from
(7.29) aldj — blcj = 1, Gde — bQCj = (92,1;3'71 (] = 1, e ,n)
and define
n 5 n
15 *
Go := ﬁ Jleix = diy),  Gii=(Go,(dr:cr),...,(dn:cn)).
j=1 j=1

Then G is determined by (7.21). We have

a1 —b 4 = ! forj=1,...,n
az —ba ) \¢j 02,151
by (7.29), and
(o )e- (2 )
1 .
AgjAry forj=1,...,n.
Az1 Ay
On the other hand,

11 I J) = 11 for j =1 n
@ ﬁz . Agj P
A ~an/ \W 30

Hence A’l(dj) = 2—5( ) for j =1,...,n. Now, by (7.23),

by (7.27). Hence

a1 A
A1 A1
Qg B2

Aoy 21

gl
N
~_
I

(cj(un X +ui2Y) — dj(ua1 X + u2Y))

B
Py
I
-
\8
::]s

<
Il
—
=g (=]
<
Il
-

I
E‘:

<
I

—_
<
I

—

{(ullcj — ’LLQldj)X — (—ulgcj + UQde)Y}

5 1 (All > < = 511>
= (det A)" - Il X —0;Y (det A)" ||
( ) J 1511 j: Alj (7] ) : 81]

3

43

J
ThU.S, G = n(GO)(detA)*lA with n = H?:l(gll/glj) S Zg. Now Go =

N Gaet aya—r € Zs[X,Y], hence Gf € A(Zs,n). Further, (6; : v;) =

(A1) (d; : ¢j) for j =1,...,n. Hence
G* =1(GY) (et a)-14  with ) € Zg.
Together with (7.28) this gives (7.20). Lemma 7.4 is proved. =
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8. Proof of Proposition 5.2. Proposition 5.2 is deduced from Lem-
ma 7.4 above and the following local lemma.

LEMMA 8.1. Let p be a prime, ¢ € Z, with ¢ # 0, and pp, Y, be Go,-
actions of {1,...,m}, {1,...,n}, respectively. Further, let F; € A(Zp, m),
Gy € A(Zp,n). Then the collection of pairs of augmented forms F* =
F,..), G"=(G,...) such that

8.1) F* =e(Fy)a, G* = 1(Gp) (et a)-1a for some A € NSy(Zy), &, € L,
8.2) F'e AlZp,¢p), G* € AlZp,thp),

8.3) F.,G are Zy-primitive,

8.4) F is Zy-minimal,

8.5) R(F,G) € cZ

is contained in at most one Zy-equivalence class if pfc, and in the union of
at most two Zy-equivalence classes if p|c.

We first deduce Proposition 5.2.

Proof of Proposition 5.2. Let S = {p1,...,p:} and ¢,m,n,p, 9 be as in
the statement of Proposition 5.2.

Let (F§,G§) be a pair of augmented forms from the set Z from Lem-
ma 7.4. Denote by V(F§, Gf) the set of pairs of augmented forms (F™*, G*)
that satisfy (5.1)—(5.4) and for which there are e,7 € Zj, A € NSy(Z%) such
that (7.20) holds. Pick (F*,G*) € V(Fy, G}). Let p be a prime outside S. We
view Q as a subfield of Q,,. Clearly, (F*, G*) satisfies (8.1), (8.3), (8.5). Fur-
ther, this pair satisfies (8.2) where ¢, 1, are the Gg,-actions of {1,...,m},
{1,...,n} induced by ¢, ¥. Lastly, by Lemma 6.2 it also satisfies (8.4). So
the pairs (F*,G*) € V(F§, G§) satisty (8.1)—(8.5) for every prime p ¢ S.

Now Lemmata 8.1 and 6.1 imply that V(Fj,G{) is contained in the
union of at most 2¢(¢) Zg-equivalence classes. So the total number of Zg-
equivalence classes of pairs (F*, G*) with (5.1)—(5.4) is bounded above by
2¢(¢) multiplied with the bound from Lemma 7.4. The resulting bound is
precisely that of Proposition 5.2. =

Proof of Lemma 8.1. Let p be a prime. Given ay,...,a, € @p, we de-
note by [ai,...,a,] the Z,fractional ideal generated by a,...,a,. Every
finitely generated Zp—fractional ideal is principal. For a polynomial P with
coefficients in Z,, denote by [P] the Z,-fractional ideal generated by the

coefficients of P. By Gauss’ lemma, we may express I, Gj, as

Fy = (Fo, (B10 : 10),- - (Bmo : aumo))s
Gy = (Go, (610 : 710)s - - - (Ono : Tno0))
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where

Fy = H (0o X — BioY),  [ovo, Bio] C [1],
(8.6) =l
Go = H (j0X = 6j0Y), [0, 650] € [1]

forizl,...,m,jzl,...,

The remainder of the proof of Lemma 8.1 is divided into a few lemmata.
For the moment, we work with two pairs of augmented forms (Fy,G7),
(Fy,G5) satisfying (8.1)—(8.5) which are not Zj,-equivalent. Just as for
Fy, G, we may express Iy, Iy, G7, G5 as
(87) {‘F];;k = (Fkv(ﬂlk :alk)a--'v(ﬂmk : amk))a

Gy = (Gk, (O1k = Y1k)s -+ + > (ke Ynk))

for k = 1,2, with

= H axX — BikY),  [ouk, Bik] = [1],
(8.8)

fori =1,....m, j = ,n, k = 1,2, where the stronger assertions
[k, Bik] = [ ] [Vik, 0jk) = [1 ] follovv from Gauss’ lemma and our assumption
(8.3) that F}', G} (k =1,2) are Z,-primitive.

LeMMA 8.2. Let (FY,GY), (F5,G3%) be two pairs of augmented forms
satisfying (8.1)—(8.5) which are not Z,-equivalent and suppose that they are
represented as in (8.7), (8.8). Then there are a matriz B € NSa(Z,) with
|det B|, = p~!, a number ¢ € Q with 0 < ¢ < 1, and numbers A\, € Qs
i € @; (i=1,...,m) such that

(8.9) Fy =AF)p, G5=pCaetn)-1p  with A, =p™, |ulp=p "
(8.10) (det B)B™! (ﬂ“) =\ <5i2> with |\il, = p~¢ fori=1,...,m

Q51 Q2

H (VX = 6Y), [k 03] = [1]
1

)

If moreover pfc then there are p; € @;‘, (j=1,...,n) such that
R dj2 . 1 .
(8.11) (detB)B = [t with [pil, =p> " forj=1,...,n
Y51 752

Proof. By _(8-1)a there are matrices Aj, Ay € NSQ(Zp) and numbers
€1,€2,M,M2 € Z;; such that

(8.12) Fe =er(Fg)ays  Gr = mk(Go)(det )14,  for k=1,2.
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This implies F§ = ezey (F}) 414, G5 = ngn;I(G;)d(ﬂAflAQ)_lAflAQ. Then
by (8.2) and Lemma 5.1, there are B € GL2(Qp), £ € Q) such that Al_lAg =
xkB. Without loss of generality we may assume that B € NSy(Z,) and that
the entries of B have ged 1 in Zj,. Define ¢, 0 by

(8.13) [l :pca ’detB‘p :P_e-

Then, on putting A := 5251 , W= 7]2771 " we get

(8.14) Fy = A(F{)B, Gy= :U'(Gl)(detB)*lB with |, = p™, |ul, = p~".

It is clear that A, u € Qp. It 6 =0 then B € GL2(Zp), and also A, € Z,,
since by (8.3) the binary forms Fj,, Gy, (k = 1,2) are Z,-primitive. Soif = 0
then (FY,GY), (Fy,G%) are Z,-equivalent, contrary to our assumption. The
number 0 is clearly a non-negative integer. Hence

(8.15) 0> 1.
By (8.12), (8.6), (8.8) we have

(det Ay) A, (5“’) = v, (ﬁl’“> fork=1,2,i=1,...,m,
Q50 ik

where vy, € Q* Since (det Ak)A € NS2(Z,) and [ay, Bix] = [1] for i =
1,...,m, k=1,2, we have v EZ fori=1,...,m, k=1,2. Further,

m

(F0)a, (X, Y) = [[(vik(ainX = BaY))  for k =1,2,
=1

hence [[%, vix = 6,;1 € Z;. Therefore

(816) (det Ak) </620> = Vik (611@) with Vik. € Z;

;0 Qi
fork=1,2,i=1,...,m
On putting \; = uigui_llm_l and inserting A1_1A2 = kB and (8.13) we obtain
(8.17) (det B)B™ <ﬁ“> =\ (@2) with [Ail, =p~¢ fori=1,...,m
(73] Q2

Since (det B)B~! € NS5(Z,) and since [z, Bi2] = [1] for i =1,...,m in
view of (8.8), we have { > 0. We now show that § =1 and 0 < { < 1. Here
we use the fact that Fy, F) satisfy (8.4), i.e., that F, Fy are Z,-minimal.

Since Zj is a principal ideal domain and the entries of B have ged 1,
there are Uy, Uy € GLa(Z,) such that

1 0
B=U Us.
1(0 p9> 2
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By inserting this into (8.17) we obtain

10 i ! . _ .
8.18 =)\ 72 th [N, =p S fori=1,...,m,
o (3 9) () (%) i<

where
/ / ,
(8.19) < ) (det Ul) <Bﬂ> < 1,2) = (det UQ)_lUQ (612>
g Qi1 Q9 Q2
fori=1,...,m.

By (8.18) we have |3}], = ])\ ﬂ12|p < p=€fori=1,. ..,m Suppose
¢ > 1. Then 8};/p € Zy, for i = 1,...,m. Hence, withC’::( S)Ul )

(detC)~'C (51'1) = (ﬁgl/p> €Z2.
Qi1 Q;q

Consequently, (Fy)c—1 € Zp[X,Y]. But then (Fi)c—1 € Z,y[X,Y], since
(F1)c-1 € Qp[X,Y]. Hence F} is not Z,-minimal, contrary to our assump-
tion. Thus we conclude that ¢ < 1. From (8.18) we also infer that

ladolp = PPN Taly], <70 fori=1,...,m.

By the same argument as above, using the Z,-minimality of Fb, we infer
that 0 < # — ¢ < 1. Combining this with (8.15) and 6 € Z, it follows that
f=1land 0 < (<1

We have proved that (8.9), (8.10) hold for a suitable ¢ with 0 < ¢ < 1.
Next, in view of (8.13) we have |det B|, = p~!. It remains to prove (8.11).
Assume that p 1 c. By (8.14) we have

(820) (det BB () =, (2] with ;€ @ forj=1,...im
i1 V52
By (8.8), (8.5),
m n
H H ik — BirViklp = [R(F, G)lp = |elp =1  for k=1,2.
i=1j=1
Further, a6, — Bin vk € Zp. Hence
’az’kdjk —ﬁik”yjk\p =1 for i = 1,...,m, ] = 1,.. ., N, k= 1,2.
Now by (8.10), (8.20),
|det B|g1|04i15]1 ﬁzl'}’jl|p |>\Z)u’_] (az26]2 - 6z27j2)|?7

SO
’)‘iﬂj‘p = |det B’p7
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which together with the already established identities |det B|, = p~! and
|Ailp = p~¢ implies | ], = p¢~! for j = 1,...,n. This proves (8.11), and
completes the proof of Lemma 8.2. u

LEMMA 8.3. Assume that p t c¢. Then the pairs of augmented forms
(F™*,G*) with (8.1)—(8.5) lie in at most one Zy,-equivalence class.

Proof. Assume there are two Zj-inequivalent pairs (F},G7), (F5,G3)
with (8.1)—(8.5). Let B be the matrix and ¢ € Q the number from Lem-
ma 8.2. There are Uy,Us € GLa(Zy) such that B = Ul((l)g)Ug. Together
with (8.10), (8.11) this implies

L0 1{1 =\ 2{2 ’ 10 5§'1 = 1 632
0 p) \aj iy 0 p) \7j Vi
with

( :) (det U)) Uy (6“) ( :) (det Us) Uy (5’2)
a5 Q1 ;o (079]
&y 51 AN 1 (65
(%) o (). (%) e (2]

fori=1,...,m,j=1,...,n. Thus |B|p = [NiBlslp <p ¢ fori=1,...,m,
051 1p = |125650lp < p¢~for j=1,...,n. Hence

li1dj1 — Bavjlp = |det U1|;1|04;153‘1 — BirVitlp = laindi1 — Bivialp
< max(p ¢, p7) <1
fori=1,...,m,j=1,...,n. But then

m

|R(F1,Gh)lp = H H 161 — Binvilp < 1

i=1j=1
contradicting our assumptions that p{c and that (Fj, G]) satisfies (8.5). m

LEMMA 8.4. Assume that p|c. Then the pairs (F*,G*) with (8.1)—(8.5)
lie in at most two Zy-equivalence classes.

Proof. Assume there are three Z,-inequivalent pairs (F}’,G}) (k=1,2,3)
with (8.1)-(8.5). Then by Lemma 8.2, there are matrices Big, B3, Bas €
NSy (Z,) with |det Bya|, = |det Bis|, = |det Bag|p, = , as well as numbers
)\12, )\13, Ao3 € Q such that

F2* :)‘12(F1*)B127 F?:k = )\13(F1*)BIS7 FI;( :)‘23(F2*)323'

Thus Fék = )\12)\23(F1*)312323. Hence by Lemma 5.1, B1oBos = ABi13 with
A € Q. But this implies
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’)\|2 _ |det Blg|p’det 323’]; Zpil
p |det Blg|p ’

which is impossible. So three pairwise Z,-inequivalent pairs with (8.1)—(8.5)
cannot exist. Lemma 8.4 follows. =

Now Lemma 8.1 is an immediate consequence of Lemmata 8.3 and 8.4. m

9. Proof of Theorem 2.3. The discriminant of a binary form F =
Yoo ar XM RYR =TI, (0 X — BY) is given by

D(F)= ][ (i —a;i8)*

1<i<j<m
Recall that D(F') is a homogeneous polynomial in Zlao, . .., a,] of degree
2m — 2. Further, for any scalar A and any 2 x 2-matrix A we have
(9.1) D(AF4) = A2 2(det A)™(™=V D(F).

Let again S = {p1, ..., p:} be a finite, possibly empty set of primes. Every
non-zero a € Zg can be expressed uniquely as a = ¢|alg, where ¢ € Z§ and
lals is a positive integer coprime to the primes in S. For a binary form
F =" a,X"""Y" € Zg[X,Y], we define [F|g := ged(laols, .-, |amls)-
Then for any two Zg-equivalent binary forms Fi, Fo we have

[Fi]s = [Fals,  [D(F1)[s = [D(F2)]s.
The first equality is obvious, while the second follows from (9.1).

Let F' € Zg[X,Y] be a binary form and consider the matrices A €
NS2(Zg) such that Fy-1 € Zg[X,Y]. If a matrix A satisfies this condition,

then so does every matrix in the left GLa(Zg)-coset GLo(Zg)A = {UA :
U e GLy(Zs)}.

LEMMA 9.1. Let F € Zg|X, Y] be a binary form of degree m without mul-
tiple factors. Suppose that F is associated with the number fields K1, ..., K.
Then the set of matrices

{A € NSQ(Zs) s Fy- € ZS[X, Y]}
s a union of
(9.2) < [FI§"D(F))}

left GLa(Zg)-cosets for every § > 0, where the implied constant depends only
on Kq,..., Ky, 6,5 m.

Proof. In all Vinogradov symbols < used below, the implied constant
depends only on Ki,..., Ky, 6,5, m.

Every matrix A € NSy(Zg) can be expressed as UB, where U € GLa(Zg)
and B = (83) with a,b,d € Z,a >0,d > 0,0 < b < d and ged(ad, p1 - - - pt)
=1 (if S # (). Therefore, it suffices to show that the number of such
matrices B with Fg-1 € Zg[X,Y] is bounded above by (9.2).
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By (9.1) we have |D(F)|s = (ad)™™ V|D(Fg-1)|s, hence (ad)™™1
is a divisor of |D(F)|s. The number of pairs (a,d) with this property is
< |D(F)|% for every 6 > 0. We show that for given a,d the number of b € Z
such that 0 < b < d and Fg-1 € Zg[X,Y] is < [F]g/m)M for every § > 0.
This implies the bound (9.2), since by (9.1), [F]?(m_l) divides [D(F)]s.

If in the matrix B we replace b by another integer in the same residue
class mod d, we obtain a matrix in the same left GLy(Zg)-coset. Therefore,
it suffices to show that the number of residue classes b mod d in Zg such that
Fp-1 € Zg[X,Y] is < [F]g/m)_m for every 6 > 0. In view of the Chinese
Remainder Theorem, it suffices to estimate from above the number of residue
classes b mod d in Z,, for every prime p|d and then take the product. More
precisely, for each prime p|d let R, denote the number of residue classes b
mod d in Zj, such that
(9.3) Fp1(X,Y)=F(a'X —b(ad)"'Y,d7Y) € Z,[X,Y].

Then we have to show that
(9.4) H R, < [P’]S/M)JﬂS for every 6 > 0.
pld

Let p be a prime dividing d. Denote by ord,(F') the exponent of p in the
prime factorization of [F|g. Let L, denote the splitting field of F' over Q,,
and O, the integral closure of Z, in L,. For aq,...,a, € L, we denote by
[a1, ..., a;] the Op-fractional ideal generated by a1, . .., a,.. For a polynomial
with coefficients in L), we denote by [P] the O,-fractional ideal generated
by the coefficients of P. There is m € O), such that every O,-fractional ideal
is equal to [r]" for some r € Z. In particular we have

(9.5) [p] =[7]¢ with1 <e<[L,:Q,] <ml
Let b € Z,, satisty (9.3). By Gauss’ lemma, we can factor F'in Op[X, Y] as
m
(9.6) F(X,Y)= ’YH(%’X - BiY)
i=1

* with [v] = [F] and [, ;] = [1] for i =1,...,m.
Then

Ty b(a;/a) + B
(9.7) Fpa(X,)Y) = yil_[l ( ~ X y Y ).
Define integers r; (i = 1,...,m) by

9.8 —re |20 2T TR
(0. = |2, el
Then since

[%’W} > [%,@-Fﬁz} D) [%,ﬁi] 2 [, 8] = [1],



Number of pairs of binary forms with given resultant 51

we have
(9.9) r; >0 fori=1,...,m.
Further, by Gauss’ lemma, the product over i = 1,...,m of the ideals on

the right-hand side of (9.8) is [Fz-1][F]~!. Together with (9.3), (9.5) this
implies
7 = [F ] 2 [F] = [l ),
Hence
(9.10) 4+ < eord,(F).

Inequalities (9.9), (9.10) imply that for the tuple (ri,...,r,) we have at
most

(9.11) (m—i-eordp(F))

m
possibilities.
We now fix a tuple (ry,...,r,) and estimate the number of residue

classes b mod d in Z, with (9.3), (9.8). For i = 1,...,m define k;, \; € L,
by

. bl .
(9.12) Y _ Ky e, 7(%/&) + 5 = \m T
a d
This implies that for ¢ = 1,...,m we have
(9.13) br; + 73 = N\id,
i Ad
(9.14) b+a&: .
(67 Kj

Define integers s; (i = 1,...,m) by

(9.15) [ki,d] = [7]%.

These integers are uniquely determined by a,d, F, r1,...,7y, so they are
independent of b. We claim that

(9.16) 0<s;<r fori=1,....,m.

Indeed, by (9.8) we have [k;, \;] = [1] for i = 1,...,m. Hence k;,d € Op, and
so s; > 0 for i =1,...,m. On the other hand, by (9.13),

ki, d] = [k, Nid) = [K4, by + 7" 35) = [ke, ©" Bi] = 7" i /a, Bi] 2 [7]™,

and therefore, s; < r; fori=1,...,m.
From (9.14) it follows that

(9.17) b+

¢ ‘i =0 (moddn™%) fori=1,...,m.

Q;

Thus, every b € Z, with (9.3), (9.8) satisfies (9.17).
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Let b1, by be two numbers in Z, with (9.3), (9.8). Then
by = by (mod dm™*)
and so, by (9.5),
by = by (mod dp~lsi/ey.
By (9.9), (9.10), thereisi € {1,...,m} with r; < eord,(F')/m. By (9.16), for
this ¢ we have [s;/e] < [ord,(F")/m]. Hence for any two numbers by, by € Z,,
with (9.3), (9.8), we have
by = by (mod dp~orde(F)/mly

Consequently, the numbers b € Z, with (9.3), (9.8) lie in at most plord»(F)/m]
residue classes mod d in Z,,.

This gives an upper bound for the number of residue classes b mod d
for fixed r1,...,7n. Invoking the upper bound (9.11) for the number of
possibilities for (ri,...,ry), we infer that for the number R, of residue
classes b mod d in Z, with (9.3) we have

R, < <m + eord,(F )) plordy(F)/m]
m

Since Hp‘dp[ordP(F)/m} <[F ]Um it follows easily that [, , R < [F ](l/m)+6

for every 6 > 0. This proves (9.4), and completes the proof of Lemma 9.1. m

LEMMA 9.2. Let F,G € Zg[X,Y] be binary forms of degrees m > 3,

n > 3, respectively, such that FG has no multiple factors, and suppose that

F is associated with the number fields K1, ..., K, and G with the number
fields Ly, ..., L,. Then

n/(m—1) m/(n—1 _
[R(F,G)|s > (DE)[{ " VID(@)[g/ ") 0/n=0
for every 6 > 0, where the implied constant depends only on Ky, ..., Ky,
Ly,..., Ly, m,n,S,d, and is not effectively computable from the method of
proof.
Proof. See Evertse and Gyéry [7, Theorem 1]. u
LEMMA 9.3. Let F,G € Zg[X,Y] be binary forms without multiple fac-

tors. Then there are binary forms Fy,Go € Zg|X,Y] and a matriz A €
NSs(Zs) such that

o I'=(Flp)a, G= (GO)(detA)—lAv

o Fy is Zg-minimal, R(Fy, Go) = R(F,G).

Proof. Assume that F' is not Zg-minimal. Then there are a binary form
Fy € Zg[X,Y] and a matrix A; € NSa(Zg)\ GL2(Zg) such that F' = (F1) 4,.
By (9.1), |D(F)|s = |det A7 V|D(Fy)|s > |D(Fy)|s. It Fy is not Zg-
minimal, there are a binary form Fy € Zg[X,Y| and a matrix Ay € NSy(Zg)
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such that Fy = (F3)a, and |D(F3)|s < |D(F1)|s. Further, F' = (F»)a,4,-
It is clear that this argument can be repeated at most finitely many times.
So eventually, we obtain a Zg-minimal binary form Fy € Zg[X,Y] and a
matrix A € NSg(Zs) such that F' = (Fp)a. Now put Go := G(get a)a-1-
Then Gy € Zg[X,Y] and by (2.1) we have R(Fy,Go) = R(F,G). =

Proof of Theorem 2.3. The constants implied by the Vinogradov symbols
< used below depend only on K1,..., Ky, L1,..., Ly, m,n, S, 4.

Let (F,G) be a pair of binary forms in Zg[X,Y] satisfying the condi-
tions of Theorem 2.3, so in particular satisfying (1.1). Let Fy, Go be a pair
of binary forms in Zg[X,Y], and A € NS3(Zs) as in Lemma 9.3. Then
(Fo, Go) satisfies (1.1). By Theorem 2.2, the pairs of binary forms (Fp, Go)
constructed in this manner lie in < ¢! Zg-equivalence classes for every § > 0.

Let F be a full system of representatives for these classes. So

(9.18) #F < ®  for every 6 > 0.

Starting with a pair of binary forms (F,G) satisfying the conditions of
Theorem 2.3, we first obtain a pair of binary forms (Fp,Go) and a ma-
trix A € NS2(Zg) as in Lemma 9.3, and then a pair (F1,G;) € F and
a matrix U € GLa(Zg) such that Fy = (F1)y, Go = (G1)y. On putting
Aj := (det A)A~1U~!, we obtain

(9.19) F = g(Fl)(detAl)Al_l’ G = <G1)A1_1 with € € Zg, A € NSQ(ZS).

For the matrix A; we have (Gl)A;I € Zs[X,Y]. So by Lemma 9.1, there
is a set of matrices M(G1) in NS2(Zg) depending only on G of cardinality

(9.20) #M(Gy) < [G1)Y"|D(GY)|%  for every § > 0

such that A; = UB for some B € M(G1), U € GLy(Zs). By inserting this
into (9.19), we infer that every pair of binary forms (F,G) satisfying the
conditions of Theorem 2.3 is Zg-equivalent to a pair

(9.21) ((Fl)(detB)B*h (Gl)Bfl) with (Fl,Gl) eF,Be M(Gl)

We estimate the number of pairs in (9.21). Every pair (Fi,G1) € F
satisfies (1.1). From (2.1) it follows that [G1]¢ divides R(F},G1), hence c as
well. Therefore, [G1]g < ¢'/™. Further, by Lemma 9.2 (taking & sufficiently
small), we have

¢ =|R(Fy,G1)|s > |D(Gy)[5/M™,

therefore, |D(G1)|s < ¢!™/™. By inserting this into (9.20) we deduce that
M(G1) has cardinality < ¢(1/™")+9 for every § > 0. Together with (9.18)
this implies that the set of pairs in (9.21) has cardinality < ¢(/m™+9 for
every 0 > 0. The proof of Theorem 2.3 is complete. =
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