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1. Introduction. A rational right triangle is a right triangle whose sides
are all positive rational numbers. Such a triangle is denoted {a, b, ¢} where a
and b are the legs, and c is the hypotenuse. Throughout this paper, a square-
free integer is understood to be a positive integer which is not divisible by
the square of an integer greater than 1. A congruent number is a square-free
integer which is the area of a rational right triangle. A square-free integer
N is a congruent number if and only if the elliptic curve Ny? = (2% — 1)x
has positive rank. For details, see Koblitz [7].

In the spirit of Euclid’s proof of the infinitude of prime numbers, one
can also show that there are infinitely many congruent numbers as fol-
lows: If there were only finitely many of them, say Ni,...,N,, all greater
than 1, then consider N = Nj - - - N,.. Elementary number theory shows that
sqf (N3 — N), the square-free part of N3 — N, cannot be 1. Moreover, it
is a congruent number which cannot be any of the INV;’s. Indeed, if it were
Ny, say, let M = Ny---N, and d = ged(Ny, M). Writing N; = dn and
M = dm with ged(m,n) = 1, one sees that sqf(m)sqf(NZM? — 1) = d.
This last equality implies that sqf (N2M? — 1) divides d, and hence M, but
at the same time, since it divides N?M? — 1, it must be 1, and this is
impossible.

Chahal [2] established that the residue classes of 1,2,3,5,6,7 modulo 8
contain infinitely many congruent numbers. Bennett [1] extended Chahal’s
result by showing that if a and m are positive integers such that ged(a, m)
is square-free, then the residue class of a modulo m contains infinitely many
congruent numbers.

In this paper we prove the following:
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MAIN THEOREM. If k and | are positive, square-free, coprime integers,
then there exist infinitely many pairs (M, N) of congruent numbers such that
IN = kM.

COROLLARY. Ifk andl are positive, square-free, coprime integers, then
there exist infinitely many square-free integers N such that both kN and I[N
are congruent numbers.

2. Holm’s curve and its jacobian. We consider the following non-
singular curve of genus one:
H: lz(z?—1)=ky(y®> - 1),
where k£ and [ are coprime, square-free integers. In a slightly different form,
this curve was considered by Holm [5], in his work on right triangles whose
areas are in a given ratio. The jacobian of H is the elliptic curve
E: Y?2=X3_3K22X +k22(k* + 1%).
The following proposition is easily proved.
PROPOSITION 2.1.
(i) The discriminant of E is —33k**(k? — 12)2.
(ii) The j-invariant of E is —2833k%1%/(k? — 12)2.
(iii) The following integral points lie on E:
(—kl, +kl(k 4+ 1)), (K%, £k(E*=1%)), (I, £Kkl(k—1)), (1%, +1(k*—1?)).
(iv) E has positive rank, since (12,1(k* —12)) is a point of infinite order.
(v) The rational transformations relating H and E are
k(X —12) (X —k?)
= Yy

Y ’ Y '
_ 2 _ 712

¥ = kl(kx ly)7 v — kl(k* —1 )
lx — ky lx — ky

Let A, = z(2? —1) and A, = y(y? —1). Then every rational point (z,v)
on H, that is, not in the set

{(0,0), (£1,£1),(£1,0),(0,£1)},

gives rise to two rational right triangles whose areas are in the ratio
A, k

A, U
Indeed, if both A, and A, are positive, the rational right triangles {2? -1,
2z, 22 +1} (for £ > 0), or {1—22, =2z, 2241} (for z < 0), will have area A,,
and similarly for A,, while if A, and A, are both negative, the rational right
triangles {z% — 1, —2x, 2% + 1} (for z > 0), or {1 — 22,2z, 22+ 1} (for = < 0),
will have area —A;, and similarly for —A,. Therefore, every rational point



Ratios of congruent numbers 103

(z,y) on H which is not in the set mentioned above produces a pair of
congruent numbers, (N, Ny ), when we take the square-free parts N, of A,
and N, of A, respectively.

If we choose a rational point (X,Y) in E(Q) different from those listed in
Proposition 2.1(iii) and employ the transformations, we get “areas” A,(X,Y)
and Ay(X,Y). We will show that there are infinitely many points (X,Y)
in F(Q) for which [ is prime to the square-free part of A,(X,Y) and k is
prime to the square-free part of A,(X,Y). In order to do this, we will use
well-known properties of p-adic filtrations.

3. The p-adic filtration on global points. Let E be an elliptic curve
given as a Weierstrass model with coefficients in Z, and p a prime at which
the model is minimal. We then have the p-adic filtration

E(Q)) D Ey(Q,) D Ei(Q,) D Ex(Q,) D - --

The following facts on p-adic filtrations are well-known (see Knapp [6] or
Silverman [8], for instance).

(1) Eo(Qp) is the set of points whose reduction mod p is non-singular.
2) E1(Qp) is the kernel of reduction mod p.

(2)
(3) E(Qp)/En(Qp) and Eo(Qp)/E1(Qp) are finite groups.
(4) For each n > 1, E,(Qp) = {P | ordy(z(P)) < —2n}.
(5) For each n > 1, E,(Qp)/En+1(Qp) = Fy.
Let
E,(Q)=E,(Q,) NE(Q) for eachn > 1.
The proofs of the following propositions are well-known.

PROPOSITION 3.1. For each m > 1, if Ep,(Q)/En+1(Q) = F), then

Epi1(Q)/ Emt2(Q) = Fy.
More generally, for any n > m, and for any P € E,,(Q) — Epn+1(Q),

PP € En(Q) — Enia(Q).

PRrOPOSITION 3.2. If E has positive rank over Q, then there is an integer
N >1 such that E,(Q)/En+1(Q) = F, for alln > N.

Next, we investigate the relationship between the filtrations on global
points for a set of primes at each of which the model is minimal.

Let S = {p1,...,ps} be a set of distinct primes such that F is minimal
at each p;. For each prime p;, there is a p;-adic filtration

E(sz) ) EO(@pi) 2 El(@pi) IDJEIIEIN
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As before, we put E,, p,(Q) = E,(Q),) N E(Q). Proposition 3.2 implies that
for each i, 1 <i < s, there exists an integer IN; such that

E”J’i (Q)/ETH-LZH(Q) = Fpi for all n > N;.
Let N = max{Ny,..., N}, and for each n > N, let
S
Un = () (Bnpi(Q) = Ent1,(Q)).
i=1
Although somewhat lengthy, the proof of the following proposition is
straightforward.

ProrosiTIiON 3.3. If E has positive rank over Q, then there exists an
integer m > N such that U,, # ().

COROLLARY 3.4. If E has positive rank over Q, then there exists an
integer mg such that for all m > mg, Uy, # 0.

4. Applications to the elliptic curve E. We now apply the general
results of the previous section to the curve

E: Y?=X3-3K*X + K12 (k* +1%),
which has positive rank over Q. Recall that k£ and [ are square-free, coprime
positive integers.

PROPOSITION 4.1. There exists an integer n and an infinite set P of
rational points in E(Q) such that if (X,Y') € P then, for any prime divisor q
of 1 and for any prime divisor p of k,

ordg(X) = ord,(X) = —4n, ordy(Y) = ord,(Y) = —6n.

Proof. In the notation of the previous section, let S be the set of all
prime divisors of k and [. By Proposition 2.1(i), and the assumptions on k
and [, F is minimal at all primes in S. Applying Corollary 3.4, we find an
integer n such that Uy, # 0. Let P € Us,, and consider the set of points
P={FP,=7r"P|acN} Sincer ¢S5,

P C U, C E(Q).
Moreover, P is infinite since P is of infinite order. The conclusions about
the orders directly follow from the definition of Us,,. =

For each point (X,Y) € P, we form the “areas” A, = x(2? — 1) and
Ay =y(y? — 1) where

k(X —12 X —k?
Y Y

THEOREM 4.2. For each (X,Y) € P, let N, (resp. Ny) be the square-free

part of Ay (resp. Ay). Then

IN, = kN,
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Proof. Proposition 4.1 implies that (I, N;) = (k, Ny) = 1. Since the point
(X,Y) is on E, the point (z,y) is on H, and hence [A, = kA,. Taking the
square-free parts of both sides yields the result. m

Theorem 4.2 associates to every point (X,Y) in the set P a pair of
square-free integers (N, N,). We next establish that there are infinitely
many such pairs (N, N,) associated to the infinite set P. It is clear that
if there were only a finite number of N,, there would also be only a finite
number of N, and wvice versa.

THEOREM 4.3. Associated with the infinite set of points (X,Y) in P,
there are infinitely many pairs of square-free integers (Ng, Ny).

Proof. Assume that there are only finitely many such pairs. Then there
must exist a pair (N, M) of square-free integers which is associated with
infinitely many rational points (X,Y") in P. Using (x,y) instead of (X,Y),
we find that in an zyzw-space, the algebraic variety

la(z® = 1) = ky(y® - 1),
(C): z(z? —1) = N22,
y(y* —1) = Mw?
is a non-singular algebraic curve, defined over QQ, having infinitely many
rational points.

LEMMA 4.4. In the xyz-space, the curve
la(z® — 1) = ky(y® - 1),
(€1) : 2 2
z(x*—1) =Nz
has only finitely many rational points.

Proof. In the projective space P3(Q), with z,y,z,¢ coordinates, the
curve (C1) has equations

la(a? — %) = ky(y* — %),
z(x? — %) = N2%t.

Let (C2) be the elliptic curve z(x? —t2) = Nzt2, and consider the projection
along y
(€1) = (C2),  (zy,2,t) = (z,2,1).

This is a finite morphism of curves, of degree 3, which is ramified over the
point (z,z,t) = (0,1,0). If we let g((C1)) be the genus of (C1), the Hurwitz
formula implies that g((C1)) > 1. Faltings’ theorem ([3]) now implies that
(C1) only has a finite number of rational points. m

NOTE. One could also work out Exercise 7.2(d) in Hartshorne [4].
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To finish the proof of Theorem 4.3, we observe that the projection from
the curve (C) to the curve (C1) along w is a rational map, defined over Q,
between curves, and is of degree 2. Since (C;) only has a finite set of rational
points, so does (C). This contradiction ends the proof of Theorem 4.3. m

THEOREM 4.5. If k and | are positive, square-free, coprime integers,
then there exist infinitely many pairs (N, M) of congruent numbers such

that IN = kM.

Proof. Consider the elliptic curve E : Y2 = X3 — 3k212X + k21?(k? + 12),
the infinite set of rational points P C FE(Q), and apply Theorems 4.2
and 4.3. =

The case [ = 1 is worth pointing out.

COROLLARY 4.6. Given a positive, square-free integer k, there exist in-
finitely many pairs (N, M) of congruent numbers such that N = kM. m
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