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1. Introduction. A rational right triangle is a right triangle whose sides
are all positive rational numbers. Such a triangle is denoted {a, b, c} where a
and b are the legs, and c is the hypotenuse. Throughout this paper, a square-

free integer is understood to be a positive integer which is not divisible by
the square of an integer greater than 1. A congruent number is a square-free
integer which is the area of a rational right triangle. A square-free integer
N is a congruent number if and only if the elliptic curve Ny2 = (x2 − 1)x
has positive rank. For details, see Koblitz [7].

In the spirit of Euclid’s proof of the infinitude of prime numbers, one
can also show that there are infinitely many congruent numbers as fol-
lows: If there were only finitely many of them, say N1, . . . , Nr, all greater
than 1, then consider N = N1 · · ·Nr. Elementary number theory shows that
sqf(N3 − N), the square-free part of N3 − N, cannot be 1. Moreover, it
is a congruent number which cannot be any of the Ni’s. Indeed, if it were
N1, say, let M = N2 · · ·Nr and d = gcd(N1, M). Writing N1 = dn and
M = dm with gcd(m, n) = 1, one sees that sqf(m) sqf(N2

1 M2 − 1) = d.
This last equality implies that sqf(N2

1 M2 − 1) divides d, and hence M, but
at the same time, since it divides N2

1 M2 − 1, it must be 1, and this is
impossible.

Chahal [2] established that the residue classes of 1, 2, 3, 5, 6, 7 modulo 8
contain infinitely many congruent numbers. Bennett [1] extended Chahal’s
result by showing that if a and m are positive integers such that gcd(a, m)
is square-free, then the residue class of a modulo m contains infinitely many
congruent numbers.

In this paper we prove the following:
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Main Theorem. If k and l are positive, square-free, coprime integers,
then there exist infinitely many pairs (M, N) of congruent numbers such that

lN = kM.

Corollary. If k and l are positive, square-free, coprime integers, then

there exist infinitely many square-free integers N such that both kN and lN
are congruent numbers.

2. Holm’s curve and its jacobian. We consider the following non-
singular curve of genus one:

H : lx(x2 − 1) = ky(y2 − 1),

where k and l are coprime, square-free integers. In a slightly different form,
this curve was considered by Holm [5], in his work on right triangles whose
areas are in a given ratio. The jacobian of H is the elliptic curve

E : Y 2 = X3 − 3k2l2X + k2l2(k2 + l2).

The following proposition is easily proved.

Proposition 2.1.

(i) The discriminant of E is −33k4l4(k2 − l2)2.
(ii) The j-invariant of E is −2833k2l2/(k2 − l2)2.
(iii) The following integral points lie on E:

(−kl,±kl(k + l)), (k2,±k(k2− l2)), (kl,±kl(k − l)), (l2,±l(k2− l2)).

(iv) E has positive rank , since (l2, l(k2 − l2)) is a point of infinite order.

(v) The rational transformations relating H and E are

x =
k(X − l2)

Y
, y =

l(X − k2)

Y
,

X =
kl(kx − ly)

lx − ky
, Y =

kl(k2 − l2)

lx − ky
.

Let Ax = x(x2 − 1) and Ay = y(y2 − 1). Then every rational point (x, y)
on H, that is, not in the set

{(0, 0), (±1,±1), (±1, 0), (0,±1)},

gives rise to two rational right triangles whose areas are in the ratio

Ax

Ay

=
k

l
.

Indeed, if both Ax and Ay are positive, the rational right triangles {x2 − 1,
2x, x2+1} (for x > 0), or {1−x2,−2x, x2+1} (for x < 0), will have area Ax,
and similarly for Ay, while if Ax and Ay are both negative, the rational right
triangles {x2−1,−2x, x2 +1} (for x > 0), or {1−x2, 2x, x2 +1} (for x < 0),
will have area −Ax, and similarly for −Ay. Therefore, every rational point
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(x, y) on H which is not in the set mentioned above produces a pair of
congruent numbers, (Nx, Ny), when we take the square-free parts Nx of Ax

and Ny of Ay respectively.

If we choose a rational point (X, Y ) in E(Q) different from those listed in
Proposition 2.1(iii) and employ the transformations, we get “areas”Ax(X, Y )
and Ay(X, Y ). We will show that there are infinitely many points (X, Y )
in E(Q) for which l is prime to the square-free part of Ax(X, Y ) and k is
prime to the square-free part of Ay(X, Y ). In order to do this, we will use
well-known properties of p-adic filtrations.

3. The p-adic filtration on global points. Let E be an elliptic curve
given as a Weierstrass model with coefficients in Z, and p a prime at which
the model is minimal. We then have the p-adic filtration

E(Qp) ⊃ E0(Qp) ⊃ E1(Qp) ⊃ E2(Qp) ⊃ · · ·

The following facts on p-adic filtrations are well-known (see Knapp [6] or
Silverman [8], for instance).

(1) E0(Qp) is the set of points whose reduction mod p is non-singular.

(2) E1(Qp) is the kernel of reduction mod p.

(3) E(Qp)/E0(Qp) and E0(Qp)/E1(Qp) are finite groups.

(4) For each n ≥ 1, En(Qp) = {P | ordp(x(P )) ≤ −2n}.

(5) For each n ≥ 1, En(Qp)/En+1(Qp) ∼= Fp.

Let

En(Q) = En(Qp) ∩ E(Q) for each n ≥ 1.

The proofs of the following propositions are well-known.

Proposition 3.1. For each m ≥ 1, if Em(Q)/Em+1(Q) ∼= Fp, then

Em+1(Q)/Em+2(Q) ∼= Fp.

More generally , for any n ≥ m, and for any P ∈ Em(Q) − Em+1(Q),

pn−mP ∈ En(Q) − En+1(Q).

Proposition 3.2. If E has positive rank over Q, then there is an integer

N ≥ 1 such that En(Q)/En+1(Q) ∼= Fp for all n ≥ N.

Next, we investigate the relationship between the filtrations on global
points for a set of primes at each of which the model is minimal.

Let S = {p1, . . . , ps} be a set of distinct primes such that E is minimal
at each pi. For each prime pi, there is a pi-adic filtration

E(Qpi
) ⊃ E0(Qpi

) ⊃ E1(Qpi
) ⊃ · · · .
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As before, we put En,pi
(Q) = En(Qpi

) ∩ E(Q). Proposition 3.2 implies that
for each i, 1 ≤ i ≤ s, there exists an integer Ni such that

En,pi
(Q)/En+1,pi

(Q) ∼= Fpi
for all n ≥ Ni.

Let N = max{N1, . . . , Ns}, and for each n ≥ N, let

Un =
s

⋂

i=1

(En,pi
(Q) − En+1,pi

(Q)).

Although somewhat lengthy, the proof of the following proposition is
straightforward.

Proposition 3.3. If E has positive rank over Q, then there exists an

integer m ≥ N such that Um 6= ∅.

Corollary 3.4. If E has positive rank over Q, then there exists an

integer m0 such that for all m ≥ m0, Um 6= ∅.

4. Applications to the elliptic curve E. We now apply the general
results of the previous section to the curve

E : Y 2 = X3 − 3k2l2X + k2l2(k2 + l2),

which has positive rank over Q. Recall that k and l are square-free, coprime
positive integers.

Proposition 4.1. There exists an integer n and an infinite set P of

rational points in E(Q) such that if (X, Y ) ∈ P then, for any prime divisor q
of l and for any prime divisor p of k,

ordq(X) = ordp(X) = −4n, ordq(Y ) = ordp(Y ) = −6n.

Proof. In the notation of the previous section, let S be the set of all
prime divisors of k and l. By Proposition 2.1(i), and the assumptions on k
and l, E is minimal at all primes in S. Applying Corollary 3.4, we find an
integer n such that U2n 6= ∅. Let P ∈ U2n, and consider the set of points
P = {Pa = raP | a ∈ N}. Since r /∈ S,

P ⊂ U2n ⊂ E(Q).

Moreover, P is infinite since P is of infinite order. The conclusions about
the orders directly follow from the definition of U2n.

For each point (X, Y ) ∈ P, we form the “areas” Ax = x(x2 − 1) and
Ay = y(y2 − 1) where

x =
k(X − l2)

Y
, y =

l(X − k2)

Y
.

Theorem 4.2. For each (X, Y ) ∈ P, let Nx (resp. Ny) be the square-free

part of Ax (resp. Ay). Then

lNx = kNy.
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Proof. Proposition 4.1 implies that (l, Nx) = (k, Ny) = 1. Since the point
(X, Y ) is on E, the point (x, y) is on H, and hence lAx = kAy. Taking the
square-free parts of both sides yields the result.

Theorem 4.2 associates to every point (X, Y ) in the set P a pair of
square-free integers (Nx, Ny). We next establish that there are infinitely
many such pairs (Nx, Ny) associated to the infinite set P. It is clear that
if there were only a finite number of Nx, there would also be only a finite
number of Ny, and vice versa.

Theorem 4.3. Associated with the infinite set of points (X, Y ) in P,
there are infinitely many pairs of square-free integers (Nx, Ny).

Proof. Assume that there are only finitely many such pairs. Then there
must exist a pair (N, M) of square-free integers which is associated with
infinitely many rational points (X, Y ) in P. Using (x, y) instead of (X, Y ),
we find that in an xyzw-space, the algebraic variety

(C) :











lx(x2 − 1) = ky(y2 − 1),

x(x2 − 1) = Nz2,

y(y2 − 1) = Mw2

is a non-singular algebraic curve, defined over Q, having infinitely many
rational points.

Lemma 4.4. In the xyz-space, the curve

(C1) :

{

lx(x2 − 1) = ky(y2 − 1),

x(x2 − 1) = Nz2

has only finitely many rational points.

Proof. In the projective space P 3(Q), with x, y, z, t coordinates, the
curve (C1) has equations

{

lx(x2 − t2) = ky(y2 − t2),

x(x2 − t2) = Nz2t.

Let (C2) be the elliptic curve x(x2− t2) = Nzt2, and consider the projection
along y

(C1) → (C2), (x, y, z, t) 7→ (x, z, t).

This is a finite morphism of curves, of degree 3, which is ramified over the
point (x, z, t) = (0, 1, 0). If we let g((C1)) be the genus of (C1), the Hurwitz
formula implies that g((C1)) > 1. Faltings’ theorem ([3]) now implies that
(C1) only has a finite number of rational points.

Note. One could also work out Exercise 7.2(d) in Hartshorne [4].
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To finish the proof of Theorem 4.3, we observe that the projection from
the curve (C) to the curve (C1) along w is a rational map, defined over Q,
between curves, and is of degree 2. Since (C1) only has a finite set of rational
points, so does (C). This contradiction ends the proof of Theorem 4.3.

Theorem 4.5. If k and l are positive, square-free, coprime integers,
then there exist infinitely many pairs (N, M) of congruent numbers such

that lN = kM.

Proof. Consider the elliptic curve E : Y 2 = X3 − 3k2l2X + k2l2(k2 + l2),
the infinite set of rational points P ⊂ E(Q), and apply Theorems 4.2
and 4.3.

The case l = 1 is worth pointing out.

Corollary 4.6. Given a positive, square-free integer k, there exist in-

finitely many pairs (N, M) of congruent numbers such that N = kM .
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