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1. Introduction. A famous open problem in simultaneous Diophantine
approximation is the Littlewood conjecture [9]. It claims that, for every given
pair (α, β) of real numbers, we have

(1) lim inf
q→∞

q · ‖qα‖ · ‖qβ‖ = 0,

where ‖ · ‖ denotes the distance to the nearest integer. The first significant
contribution to this question goes back to Cassels and Swinnerton-Dyer [3]
who showed that (1) holds when α and β belong to the same cubic field.
Further explicit examples of pairs (α, β) of real numbers satisfying (1) have
been given in [10, 1]. Despite some recent remarkable progress [13, 5] the
Littlewood conjecture remains an open problem.

Recently, de Mathan and Teulié [12] proposed a “mixed Littlewood con-
jecture” that can be stated as follows. Let D = (dk)k∈Z be a sequence of
integers greater than or equal to 2. Set e0 = 1 and, for any n ≥ 1,

en =
∏

0<k≤n

dk.

For q ∈ Z, set

wD(q) = sup{n ∈ N : q ∈ enZ},
|q|D = 1/ewD(q) = inf{1/en : q ∈ enZ}.

When D is the constant sequence equal to p, where p is a prime number, then
|·|D is the usual p-adic absolute value |·|p, normalized by |p|p = p−1. In anal-
ogy with the Littlewood conjecture, de Mathan and Teulié asked whether

(2) lim inf
q→∞

q · ‖qα‖ · |q|D = 0
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for every real number α. They proved that (2) holds for every quadratic
irrationality α when the sequence D is bounded.

In the present paper, we focus on the particular case when D is the con-
stant sequence equal to a prime number. Thus, we investigate the following
conjecture.

Mixed Littlewood Conjecture. For every real number α and every

prime number p, we have

(3) lim inf
q→∞

q · ‖qα‖ · |q|p = 0.

Obviously, this holds if α is rational or has unbounded partial quotients.
Thus, we only consider the case when α is an element of the set Bad of
badly approximable numbers, where

Bad = {α ∈ R : inf
q≥1

q · ‖qα‖ > 0}.

We are concerned with the following question:

Problem 1. Is there any α in Bad which is irrational and not quadratic,
and such that, for any prime number p, the pair (α, p) satisfies (3)?

As briefly outlined on p. 231 of [12], the answer to Problem 1 is positive
when α lies in a subset of Bad with Hausdorff dimension 1; see also [6] for
a stronger result. Nevertheless, these approaches do not provide any new
explicit examples of pairs (α, p) satisfying (3) with α in Bad. The purpose
of the present note is precisely to construct explicitly uncountably many
real numbers α in Bad such that the pair (α, p) satisfies (3) for any prime
number p.

We further extend the problem posed by de Mathan and Teulié, by con-
sidering an “inhomogeneous mixed Littlewood conjecture”. We ask whether

(4) lim inf
q→∞

q · ‖qα‖ · |q − y|p = 0

for any real number α, any prime number p and any y in Zp, the ring of
p-adic integers. It turns out that our methods allow us to establish (4) for
a wide class of real numbers α in Bad.

Our proofs heavily depend on p-adic analysis, and our key tool is the
p-adic logarithm function. It is not clear to us whether our Theorem 1 has
a real analogue, or an analogue for formal power series over a finite field.

2. Results. Our main result shows that (3) holds for any real number
α whose sequence of partial quotients is, in some sense, quasi-periodic.

Theorem 1. Let α be in Bad and write

α = [a0; a1, a2, . . .].
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Let T ≥ 1 be an integer and b1, . . . , bT be positive integers. If there exist

two sequences (mk)k≥1 and (hk)k≥1 of positive integers with (hk)k≥1 being

unbounded and

amk+j+nT = bj for every j = 1, . . . , T and every n = 0, . . . , hk − 1,

then

(5) lim inf
q→∞

q · ‖qα‖ · |q − y|p = 0

for every prime number p and every y ∈ Zp. If , furthermore, there exists a

constant C such that

(6) mk ≤ Chk for k ≥ 1,

then

(7) lim inf
q→∞

q · log q · ‖qα‖ · |q − y|p < ∞,

for every prime number p and every y ∈ Zp.

It is worth rephrasing the assumption of Theorem 1 by using the termi-
nology of combinatorics on words. Let α = [a0; a1, a2, . . .] be in Bad and
view its sequence of partial quotients as the infinite word a = a0a1a2 . . .
on the alphabet A = {1, . . . , M}, where M is an upper bound for the ai’s.
Theorem 1 asserts that if there exists a finite, non-empty word B on the
alphabet A such that, for every k ≥ 1, the concatenation of k copies of B
occurs in the word a, then (5) holds for every prime number p and every y
in Zp. Consequently, Theorem 1 provides an uncountable, explicit class of
badly approximable real numbers for which the mixed Littlewood conjec-
ture, and even the inhomogeneous mixed Littlewood conjecture, is true.

We further mention that if the real number α satisfies the assumption of
Theorem 1 with sequences (mk)k≥1 and (hk)k≥1 such that (6) holds, then α
is either a quadratic irrationality, or a transcendental number. This follows
from Theorem 3.2 of [2].

We display an immediate consequence of the proof of Theorem 1.

Theorem 2. Let α be a quadratic real number. Let p be a prime number.

For any y in Zp, there exist a positive constant c(α, p, y), depending only on

α, p and y, and arbitrarily large positive integers q with

‖qα‖ ≤ c(α, p, y)/q

and

(8) |q − y|p ≤ c(α, p, y)/log q.

In particular , (7) holds.

The case y = 0 was already established in Théorème 2.1 of [12]. Notice
that the latter result actually covers the more general case of a bounded
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sequence D of positive integers. In view of [11], we cannot replace log q in
(8) by (log q)λ with λ very large.

Theorem 2 also holds for an arbitrary bounded sequence D when y is an
integer.

Using some of the ideas occurring in the proof of Theorem 1, we get
another uncountable, explicit class of badly approximable real numbers for
which the mixed Littlewood conjecture, and even the inhomogeneous mixed
Littlewood conjecture, is true.

Theorem 3. Let α = [a0; a1, a2, . . .] be in Bad. If for every integer

h ≥ 1 there exists an integer T such that

aj+nT = aj for every j = 1, . . . , T and every n = 0, . . . , h,

then, for any prime number p and any integer y,

lim inf
q→∞

q · ‖qα‖ · |q − y|p < ∞.

More generally, Theorem 3 holds for an arbitrary (bounded) sequence D.
Its analogue in the function field case can also be easily established.

Using arguments from [13], we deduce that (4) holds for “many” real
numbers α with bounded partial quotients.

Theorem 4. The set of real numbers α with bounded partial quotients

for which

lim inf
q→∞

q · ‖qα‖ · |q − y|p = 0

for every prime number p and every y in Z has Hausdorff dimension 1.

A stronger result holds when y = 0. Namely, Einsiedler and Kleinbock
[6] established that the set of α for which (3) does not hold has Hausdorff
dimension 0. Presumably, their approach could be modified to get an anal-
ogous result for (4), but this is not clear to us.

In view of Theorem 1, we would like to address the following problem.

Problem 2. Let ε be a positive real number. Find a real number α in
Bad, a prime number p, and a rational integer y such that

(9) lim inf
q→∞

q1+ε · ‖qα‖ · |q − y|p < ∞.

It follows from the p-adic analogue of the Schmidt subspace theorem,
established by Schlickewei [15], that any real number α satisfying (9) must
be transcendental. Apparently, our construction does not allow us to tackle
Problem 2. Nevertheless, by using the folding lemma recalled in Section 6,
it is possible to give a positive answer to Problem 2.
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Theorem 5. For any prime number p, there exists a real number α in

Bad such that

lim inf
q→∞

q2 · ‖qα‖ · |q|p ≤ 1.

Since (9) cannot hold with ε > 1 and α in Bad, Theorem 5 is best
possible.

We end this section with a third question.

Problem 3. Given α in Bad, is there a prime number p such that (3)
holds for the pair (α, p)?

Apparently, there is no contribution towards Problem 3, which seems to
be quite difficult.

3. Proof of Theorem 1

Preliminaries to the proof. Let (qn)n≥−1 be the sequence of the denomi-
nators of the convergents of α. These numbers satisfy the recurrence relation

qn = anqn−1 + qn−2

with q0 = 1 and q−1 = 0. For n ≥ 0, set

Qn =

(

qn

qn−1

)

.

We can write

Qn = PnQn−1 where Pn =

(

an 1

1 0

)

.

Set

Mj =

(

bj 1

1 0

)

, j = 1, . . . , T, M = MT . . .M1.

Replacing if necessary b1, . . . , bT by b1, . . . , bT , b1, . . . , bT , we may replace T
by 2T , and thus we can suppose detM = 1. The matrix M is diagonalizable
and its eigenvalues are quadratic units ω > 1 and 1/ω. We have NQ(ω)/Q ω
= 1. Set a = TrQ(ω)/Q ω. Then a > 2 is a positive integer, and ω is a root of

the polynomial X2 − aX + 1. We have Qmk+nT = MQmk+(n−1)T for every
1 ≤ n ≤ hk, hence Qmk+nT = MnQmk

. The Cayley–Hamilton theorem
implies that, for 2 ≤ n ≤ hk, we have

Qmk+nT = M2Qmk+(n−2)T = (aM − I)Qmk+(n−2)T

= aQmk+(n−1)T − Qmk+(n−2)T .

Hence the sequence (qmk+nT )n≥0 satisfies

(10) qmk+nT = aqmk+(n−1)T − qmk+(n−2)T

when 2 ≤ n ≤ hk.
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Note that Qmk+1+nT = M ′Qmk+1+(n−1)T for 0 < n < hk, where M ′ =

M1MT . . .M2 = M1MM−1
1 . Hence, M ′ has the same characteristic polyno-

mial as M , and the sequence (qmk+1+nT )n≥0 also satisfies the recurrence

qmk+1+nT = aqmk+1+(n−1)T − qmk+1+(n−2)T

when 2 ≤ n < hk. Consequently, we may replace mk by mk + 1. Since qmk

and qmk+1 are coprime, we can, without any loss of generality, suppose that
p does not divide qmk

.

We have

(11) qmk+nT = Akω
n + Bkω

−n

for 0 ≤ n ≤ hk, where Ak and Bk are given by (11) with n = 0 and n = 1:

Ak =
ωqmk+T − qmk

ω2 − 1
,(12)

Bk = −ω
qmk+T − ωqmk

ω2 − 1
.(13)

We also denote by ω a zero of the polynomial X2 − aX + 1 in the algebraic
closure of Qp. We still denote by | · |p the p-adic value extended to this
field. As ω is a unit, we have |ω|p = 1. The formulæ (12) and (13) hold
in Qp. Since ω and ω−1 are conjugate in Q(ω), and so are Ak and Bk, we
can change Ak into Bk by changing the embedding of ω in Qp(ω)—it is
convenient to make this embedding depend upon k. We can thus suppose
that |Ak|p ≥ |Bk|p (i.e., |qmk+T − ωqmk

|p ≤ |ωqmk+T − qmk
|p). Since we

suppose that |Ak +Bk|p = |qmk
|p = 1, we then have 1 ≤ |A

k
|p ≤ 1/|ω2−1|p.

The field Qp(ω) is complete. The ball

G = {x ∈ Qp(ω) : |x − 1|p < p−1/(p−1)}
is a subgroup of finite index in the multiplicative group {x∈Qp(ω) : |x|p =1}.
Hence, replacing again T by ℓT , therefore ω by ωℓ, where ℓ is a suitable
positive integer, we may also suppose that |ω − 1|p < p−1/(p−1).

In what follows, we shall make use of the p-adic logarithm function, which
is defined on the multiplicative group {x ∈ Qp(ω) : |x − 1|p < 1} in Qp(ω)
by

log x =

∞
∑

n=1

(−1)n−1(x − 1)n/n.

We have

log xy = log x + log y for x, y in {x ∈ Qp(ω) : |x − 1|p < 1},
and, for every x, y in G,

|log x|p = |x − 1|p
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and

|log x − log y|p =

∣

∣

∣

∣

log
x

y

∣

∣

∣

∣

p

=

∣

∣

∣

∣

x

y
− 1

∣

∣

∣

∣

p

= |x − y|p.

The constants implied in the symbols ≪ and ≍ occurring below will only
depend upon b1, . . . , bT and on p.

The proofs in the cases y = 0 and y 6= 0 are rather different. First, we
deal with the case y = 0, which is slightly more difficult.

An auxiliary result for the case y = 0. Keep the above notations and set
either

εk = |ω2 − 1|p · |qmk+T − ωqmk
|p

or
εk = p−1/2 · |ω2 − 1|p · |qmk+T − ωqmk

|p,
in such a way that εk < 1 is an integral power of p.

Lemma 1. There exist integers xk and yk, with |yk|p = 1, such that

|xkqmk
+ ykqmk+T |p ≤ εk,(14)

max{|xk|, |yk|} ≪ ε
−1/2
k .(15)

Furthermore,

(16) |xkqmk
+ ykqmk+T |p ≤ |ω2 − 1|p |xk + ykω|p ≪ (max{|xk|, |yk|})−2.

To prove Lemma 1, we need the following version of Liouville’s lemma.

Lemma 2. For any integers X and Y , not both zero,

|X + Y ω|p ≫ (max{|X|, |Y |})−2.

Proof. We have

|NQ(ω)/Q(X + Y ω)| ≪ max{|X|, |Y |}2

and

|NQ(ω)/Q(X + Y ω)|p = |(X + Y ω)(X + Y/ω)|p ≤ |X + Y ω|p.
As NQ(ω)/Q(X + Y ω) is a non-zero integer, we get

|NQ(ω)/Q(X + Y ω)| · |NQ(ω)/Q(X + Y ω)|p ≥ 1.

It then follows that |X + Y ω|p max{|X|, |Y |}2 ≫ 1, as claimed.

Proof of Lemma 1. Let s be a positive integer. By the pigeonhole prin-
ciple, there exist integers xk,s and yk,s, not both zero, such that

|xk,sqmk
+ yk,sqmk+T |p ≤ εkp

−s,(17)

max{|xk,s|, |yk,s|} ≤ ε
−1/2
k ps/2.(18)

First, we prove that there exists a non-negative integer S, depending only
on ω, such that if s > S, then yk,s cannot be divisible by ps. Indeed, let
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σ be a positive integer with 0 ≤ σ ≤ s such that yk,s is divisible by pσ.
Then xk,s as well is divisible by pσ. Indeed, we have |yk,sqmk+T |p ≤ p−σ

and |xk,sqmk
+ yk,sqmk+T |p ≤ p−σ, hence |xk,sqmk

|p ≤ p−σ. Since we have
assumed that |qmk

|p = 1, we get |xk,s|p ≤ p−σ. Setting x′
k,s = p−σxk,s and

y′k,s = p−σyk,s, we deduce from (17) that

(19)

∣

∣

∣

∣

x′
k,s + y′k,s

qmk+T

qmk

∣

∣

∣

∣

p

≤ εkp
−s+σ

and from (18) that

(20) max{|x′
k,s|, |y′k,s|} ≤ ε

−1/2
k ps/2−σ.

Hence, writing

(21) x′
k,s + y′k,sω = x′

k,s + y′k,s

qmk+T

qmk

+ y′k,s

(

ω − qmk+T

qmk

)

,

and noticing that (19) implies that
∣

∣

∣

∣

x′
k,s + y′k,s

qmk+T

qmk

∣

∣

∣

∣

p

< |qmk+T − ωqmk
|p,

we get

|x′
k,s + y′k,sω|p ≤ |qmk+T − ωqmk

|p ≪ εk.

Then by (20),

|x′
k,s + y′k,sω|p max{|x′

k,s|, |y′k,s|}2 ≪ ps−2σ.

If σ = s, we thus get

|x′
k,s + y′k,sω|p max{|x′

k,s|, |y′k,s|}2 ≤ p−s,

and it follows from Lemma 2 that we must have s ≪ 1, i.e., s ≤ S, where
S ≥ 0 is an integral constant, depending only upon ω. Thus, if s > S, then
yk,s cannot be divisible by ps. Take s = S+1. If we define σ by |yk,s|p = p−σ,
then σ < s. Set xk = p−σxk,s and yk = p−σyk,s, so that

(22) |yk|p = 1.

By (19) and (20), as s = S + 1, we deduce (14) and (15). To conclude, let
us show (16). Indeed, as εk < |qmk+T − ωqmk

|p, we deduce from (22), (14)
and (21) that

|xk + ykω|p = |qmk+T − ωqmk
|p.

Accordingly, (14) and (15) lead to the desired conclusion.

Completion of the proof for the case y = 0. For any k ≥ 1, let xk and yk

be the integers given by Lemma 1. For any n ≥ 0, set

(23) Qk,n = xkqmk+nT + ykqmk+(n+1)T .
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Our aim is to prove that there exists an integer n(k) ≤ hk − 1 such that
Qk,n(k) 6= 0, and

inf
k≥1

|Qk,n(k)| · |Qk,n(k)|p · ‖Qk,n(k)α‖ = 0.

First, we note that, for every 0 ≤ n < hk, we have

|Qk,n| ≪ max{|xk|, |yk|} qmk+nT ,

‖Qk,nα‖ ≪ max(|xk|, |yk|)/qmk+nT .

We thus get

(24) |Qk,n| · ‖Qk,nα‖ ≪ max{|xk|, |yk|}2.

Further, with Ak and Bk being defined as in (12) and (13), we can write

Qk,n = Ckω
n + Dkω

−n

where
Ck = Ak(xk + ykω), Dk = Bk(xk + ykω

−1).

Since |Ak|p ≥ 1, we deduce from Lemma 1 that

|Ck +Dk|p = |xkqmk
+ ykqmk+T |p ≤ |ω2 − 1|p · |xk + ykω|p ≤ |ω2 − 1|p · |Ck|p.

Hence, |Ck + Dk|p < |Ck|p, and thus |Ck|p = |Dk|p. We then get

(25) |1 + Dk/Ck|p ≤ |ω2 − 1|p < p−1/(p−1).

Write
Qk,n = Ckω

−n(Dk/Ck + ω2n).

Since |Ck|p ≪ |xk + ykω|p ≪ (max{|xk|, |yk|})−2, we thus get

|Qk,n|p ≪ (max{|xk|, |yk|})−2|Dk/Ck + ω2n|p
and, by (24),

(26) |Qk,n| · |Qk,n|p · ‖Qk,nα‖ ≪ |Dk/Ck + ω2n|p.
Now, inequality (25) enables us to use the p-adic logarithm in the domain

G where |log x − log y|p = |x − y|p. As

|Dk/Ck + ω2n|p = |log(−Dk/Ck) − 2n log ω|p,
we may also write (26) as

|Qk,n| · |Qk,n|p · ‖Qk,nα‖ ≪
∣

∣

∣

∣

log(−Dk/Ck)

2 log ω
− n

∣

∣

∣

∣

p

.

Now let us show that (log(−Dk/Ck))/(2 log ω) lies in Qp. This is trivial if
ω ∈ Qp. In the case where ω 6∈ Qp, there exists a unique Qp-automorphism
σ of Qp(ω), different from the identity. We have σ(ω) = 1/ω, and σ is
isometrical. We have σ(log ω) = log(σ(ω)) = − log ω, and σ(−Dk/Ck) =
−Ck/Dk, since σ(Ck) = Dk. We thus have

σ(log(−Dk/Ck)) = log(−Ck/Dk) = − log(−Dk/Ck).
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Hence,

σ

(

log(−Dk/Ck)

2 log ω

)

=
log(−Dk/Ck)

2 log ω
,

and so the element log(−Dk/Ck)/(2 log ω) of Qp(ω) lies in Qp. Further, it
lies in Zp, since

|log(−Dk/Ck)|p = |Dk/Ck + 1|p ≤ |ω2 − 1|p = |2 log ω|p,
by (25). If tk is a positive integer with

1

2p
hk < ptk ≤ 1

2
hk,

then there exists an integer n, with 0 ≤ n < ptk , such that
∣

∣

∣

∣

log(−Dk/Ck)

2 log ω
− n

∣

∣

∣

∣

p

≤ p−tk .

Replacing if necessary n by n + ptk , we may ensure that log(−Dk/Ck) 6=
2n log ω, hence Dk/Ck + ω2n 6= 0. Taking either n(k) = n or n(k) = n + ptk ,
we have thus constructed an integer n(k) satisfying 0 ≤ n(k) < hk, Qk,n(k)

6= 0 and

(27) |Qk,n(k)| · |Qk,n(k)|p · ‖Qk,n(k)α‖ ≪ p−tk ≪ 1

hk
.

Since the sequence (hk)k≥1 is unbounded, we have

inf
k≥1

|Qk,n(k)| · |Qk,n(k)|p · ‖Qk,n(k)α‖ = 0.

It remains for us to prove that the estimate (7) holds when (6) is satisfied.
Note that as the partial quotients of α are bounded, by (23) we have

log |Qk,n(k)| ≪ log max{|xk|, |yk|} + mk + n(k),

hence

log |Qk,n(k)| ≪ log max{|xk|, |yk|} + mk + hk.

Now, by (15) and Lemma 2, we have

max{|xk|, |yk|} ≪ |qmk+T − ωqmk
|−1/2
p ≪ qmk

.

Thus, log max{|xk|, |yk|} ≪ mk and so

log |Qk,n(k)| ≪ mk + hk.

Accordingly, if (6) is satisfied, then log |Qk,n(k)| ≪ hk, and (7) follows
from (27).

The case y 6= 0. We shall prove that for any non-zero y in Zp, there
exists an infinite set Q of positive integers Q satisfying

(28) Q · ‖Qα‖ ≪ 1
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and

(29) lim inf
Q∋Q→∞

|Q − y|p = 0.

Note that if (29) is true for y, then it is true for My, where M is any positive
integer. Indeed, we may replace Q by MQ, while preserving (28). Thus it
is enough to prove (29) when |y|p = 1. Actually we shall construct a set
of positive integers Q, with (28), such that the p-adic topological closure of
this set contains the unit circumference |y − 1|p = 1. For this purpose, it is
enough to construct a set of Q, with (28), whose p-adic closure contains the
ball |y − 1|p ≤ p−λ for some positive integer λ. Indeed, if we replace the set
of Q by the set of µQ, where µ runs through the integers 0 < µ < pλ with
|µ|p = 1, the p-adic closure of this last set will contain the unit circumference
|y − 1|p = 1.

First, suppose that p 6= 2. Let (mk)k≥1 and (hk)k≥1 be as in the statement
of the theorem. Define Ak and Bk by (12) and (13). Recall that we suppose
that |qmk

|p = 1 and |Ak|p ≥ |Bk|p, hence |Ak|p ≥ 1. We may also suppose
that |Ak−Bk|p ≥ |ω−1|p. Indeed, we may replace qmk

by qmk+T or qmk+2T ,
preserving the condition |qmk

|p = 1, since (10) ensures that if qmk
is not

divisible by p, then neither is qmk+T or qmk+2T . Now, if we replace qmk
by

qmk+T (resp. qmk+2T ), then Ak is replaced by Akω (resp. Akω
2), and Bk is

replaced by Bkω
−1 (resp. Bkω

−2). If |Ak − Bk|p < |ω − 1|p, then

|Akω − Bkω
−1|p = |Ak(ω − ω−1) + (Ak − Bk)ω

−1|p = |Ak(ω − ω−1)|p
≥ |ω2 − 1|p = |ω − 1|p

in view of the properties of the logarithm function, since |ω−1|p < p−1/(p−1).
In the same way, if |Ak −Bk|p < |ω − 1|p, then |Akω

2 −Bkω
−2|p ≥ |ω − 1|p.

Accordingly, by these changes, we may suppose that |qmk
|p = 1 and

(30) |Ak − Bk|p ≥ |ω − 1|p.
Let λ be the positive integer such that

|ω − 1|2p = p−λ+1.

As |qmk
|p = 1 there exists an integer Lk with 0 < Lk < pλ and |Lk|p = 1

such that

(31) Lk(Ak + Bk) ≡ 1 mod pλ.

We shall prove that the p-adic closure of the set composed by the integers
Lkqmk+nT for k ≥ 1 and 0 ≤ n ≤ hk contains the ball |y − 1|p ≤ p−λ. Note
that, Lk being bounded, the integers Lkqmk+nT satisfy (28), and thus the
result will be proved.

Set LkAk = A′
k and LkBk = B′

k. For 0 ≤ n ≤ hk, we have

Lkqmk+nT = A′
kω

n + B′
kω

−n.
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Consider the map ϕk from the ball {x : |x − 1|p < 1} of Qp(ω) into Qp(ω)
such that

ϕk(x) = A′
kx + B′

kx
−1.

Let y ∈ Qp with

(32) |y − 1|p ≤ p−λ.

We shall find x ∈ Qp(ω) such that ϕk(x) = y. We must have A′
kx

2−yx+B′
k

= 0. Accordingly we take

(33) x =
y +

√

y2 − 4A′
kB

′
k

2A′
k

·

However, we must make precise the meaning of the symbol
√·. We define

the function
√· over the ball {z : |z − 1|p ≤ p−1} in Qp, with values in the

same ball, by the equality log
√

z = 1
2 log z (that is to say,

√
z = exp log z

2 ,
where expu =

∑∞
n=0 un/n! for |u|p ≤ p−1). Therefore we have

(34) |
√

z − 1|p = |z − 1|p.
Now, by (31) and (32), we have

(35) |y2 − 4A′
kB

′
k − (A′

k − B′
k)

2|p = |y2 − (A′
k + B′

k)
2|p ≤ p−λ,

and, by (30) and |A′
k − B′

k|2p ≥ p−λ+1, we get

(36)

∣

∣

∣

∣

y2 − 4A′
kB

′
k

(A′
k − B′

k)
2
− 1

∣

∣

∣

∣

p

≤ p−1.

Moreover the number (y2 − 4A′
kB

′
k)/(A′

k −B′
k)

2 lies in Qp, since in the case
where ω 6∈ Qp, it is invariant under the above automorphism σ. Inequality
(36) allows us to define the number

√

(y2 − 4A′
kB

′
k)/(A′

k − B′
k)

2 in Qp, and
we put in (33)

√

y2 − 4A′
kB

′
k = (A′

k − B′
k)

√

y2 − 4A′
kB

′
k

(A′
k − B′

k)
2
.

Thus x (see (33)) is well defined in Qp(ω). Further, let us prove that

(37) |x − 1|p ≤ |ω − 1|p.
Indeed, writing

∣

∣

√

y2 − 4A′
kB

′
k − (A′

k − B′
k)
∣

∣

p
= |A′

k − B′
k|p ·

∣

∣

∣

∣

√

y2 − 4A′
kB

′
k

(A′
k − B′

k)
2
− 1

∣

∣

∣

∣

p

,

we deduce from (34) that

∣

∣

√

y2 − 4A′
kB

′
k − (A′

k − B′
k)
∣

∣

p
=

|y2 − 4A′
kB

′
k − (A′

k − B′
k)

2|p
|A′

k − B′
k|p

,
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and from (35) that

∣

∣

√

y2 − 4A′
kB

′
k − (A′

k − B′
k)
∣

∣

p
≤ p−λ

|A′
k − B′

k|p
.

Since |A′
k − B′

k|p ≥ p−λ/2, it follows that
∣

∣

√

y2 − 4A′
kB

′
k − (A′

k − B′
k)
∣

∣

p
≤ p−λ/2.

As |y − (A′
k + B′

k)|p ≤ p−λ, we thus get
∣

∣y +
√

y2 − 4A′
kB

′
k − 2A′

k

∣

∣

p
≤ p−λ/2,

which leads to (37) since |A′
k|p ≥ 1.

Lastly we prove that log x/log ω belongs to Qp. Indeed, in the case where
ω 6∈ Qp, we have

σ

(

√

y2 − 4A′
kB

′
k

(A′
k − B′

k)
2

)

=

√

y2 − 4A′
kB

′
k

(A′
k − B′

k)
2

since this number lies in Qp. Hence, as σ(A′
k − B′

k) = B′
k − A′

k, we get

σ(
√

y2 − 4A′
kB

′
k) = −

√

y2 − 4A′
kB

′
k. We thus have

σ

(

y +
√

y2 − 4A′
kB

′
k

2A′
k

)

=
y −

√

y2 − 4A′
kB

′
k

2B′
k

.

It follows immediately that

(38) σ(x) = 1/x

and as ω also satisfies (38), we conclude as above that log x/log ω belongs
to Qp. Moreover, as |log x/log ω|p = |x−1|p/|ω−1|p, we conclude from (37)
that log x/log ω belongs to Zp. Accordingly, given a positive integer N , there
exists an integer n, with 0 ≤ n < pN , such that

∣

∣

∣

∣

log x

log ω
− n

∣

∣

∣

∣

p

≤ p−N ,

i.e., |log x − log ωn|p ≤ p−N |ω − 1|p, and thus |x − ωn|p ≤ p−N |ω − 1|p. As
|B′

k| ≤ |A′
k| ≤ 1/|ω − 1|p, we thus get

|ϕk(x) − ϕk(ω
n)|p ≤ p−N .

Now ϕk(x) = y, and if 0 ≤ n ≤ hk, then ϕk(ω
n) = Lkqmk+nT . Let us select

k such that hk ≥ pN ; we have thus found an integer n, with 0 ≤ n ≤ hk,
such that

(39) |Lkqmk+nT − y| ≤ p−N .

Accordingly, the p-adic closure of the set of Lkqmk+nT with k ≥ 1 and
0 ≤ n ≤ hk contains the ball |y − 1|p ≤ p−λ.
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There are some minor changes when p = 2. First note that, using the
logarithm function over Q2 for |z−1| ≤ 1/4, we get |z2−1|2 = 1

2 |z−1|2. The
function

√· is then defined over the ball |z − 1|2 ≤ 1/8 in Q2, and satisfies
|√z−1|2 = 2|z−1|2. Also note that if |Ak−Bk|2 < 1, then |Ak|2 = |Bk|2 = 2,
since |Ak + Bk|2 = 1. Reasoning as above, we may thus suppose that

|Ak − Bk|2 ≥ 1

2
|ω − 1|2.

The number λ is then determined by

2−λ =
1

16
|ω − 1|22,

and Lk is determined by

Lkqmk
≡ 1 mod 2λ

and 0 < Lk < 2λ. Then the 2-adic closure of the set of integers Lkqmk+nT

contains the ball {y : |y − 1|2 ≤ 2−λ}, and (39) holds.
In order to obtain (7), it is enough to note that log |Lkqmk+nT | ≪ mk+n,

and thus, if condition (6) is satisfied, then

log |Lkqmk+nT | ≪ hk.

We may choose the integer N above such that hk/p < pN ≤ hk, i.e., pN ≍ hk,
and from (39), we get (7).

4. Proof of Theorem 3. Let α be as in the statement of Theorem 3.
Let p be a prime number. First, notice that if ω is any quadratic unit, then
the index of the multiplicative group G = {x ∈ Qp(ω) : |x−1|p < p−1/(p−1)}
in the unit ball {x ∈ Qp(ω) : |x − 1|p = 1} is a divisor of p2(p2 − 1). Hence,

|ωp2(p2−1) − 1|p < p−1/(p−1). Accordingly, in the statement of Theorem 3, if
we replace T by p2(p2 − 1)T , we can suppose, as in the proof of Theorem 1,
that the eigenvalues ωT , 1/ωT of the matrix M = MT . . .M1 are quadratic

units with |ωp2(p2−1)
T − 1|p < p−1/(p−1).

Thus, in order to prove Theorem 3 for y = 0 it is enough to consider
Qn = qnT−1 for 0 ≤ n ≤ h. This sequence satisfies (10), hence we can write

Qn = A(ωn
T − ω−n

T )

since Q0 = 0. We have
|A|p ≤ 1/|ω2

T − 1|p.
Hence, for 0 < s ≤ log h/log p, we have

|Qps |p ≤ |ω2ps

T − 1|p
|ω2

T − 1|p
= p−s.

Taking s such that h/p < ps ≤ h, we get |Qps |p ≪ 1/h. This proves the
result, in view of (28).
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Let y be a non-zero integer. Consider Q′
n = yqnT = Eωn

T +Fω−n
T , where

max{|E|p, |F |p} ≤ 1/|ω2
T − 1|p.

Since Q′
0 = y, we have as above

|Q′
2ps − y|p ≤ |ω2ps

T − 1|p
|ω2

T − 1|p
= p−s,

which again proves the result by (28).

Remarks on the proofs. Although Theorem 2 for y = 0 is a consequence
of Theorem 1, and was already proved in [12], we would like to note that in
this case, the proof of (7) is very simple, and the use of the p-adic logarithm
function is actually not necessary. Indeed, the assumptions of Theorem 1
are satisfied for some positive integer m, and we have am+j+nT = bj for
every non-negative integer n and for any j = 1, . . . , T . For any k ≥ 1, we
set mk = m, and we choose the integers xk = qm+T and yk = −qm. Then,
as in the proof of Theorem 1, we consider the integers Qn = qm+T qm+nT −
qmqm+(n+1)T . They satisfy (28) since m is now a fixed number. In this case,
as Q0 = 0, we have Ck = −Dk, that is to say, we can write Qn = C(ωn−ω−n)
with C 6= 0 since qm+T − ωqm 6= 0. Hence, Qn 6= 0 for n > 0, and

|Qn|p ≪ |ω2n − 1|p.
Therefore, we only have to check that

|ω2ps − 1|p ≤ p−s|ω2 − 1|p.
This follows from an elementary induction by writing ω2ps

= 1+us and using
Newton’s formula. As log Qn ≪ n, we thus see that the integers Qps satisfy
(28) with log |Qps | ≪ ps and |Qps |p ≪ p−s. This provides the estimate (7).
The same holds when y 6= 0 is an integer. Indeed, by the Bézout theorem,
qm and qm+1 being coprime, we can take integers x′ and y′ such that x′qm +
y′qm+1 = y (where m ≥ 0 is chosen in a such way that am+j+nT = bj

for every non-negative integer n and for any j = 1, . . . , T ). Since both the
sequences (qm+nT )n≥0 and (qm+1+nT )n≥0 satisfy (10), for every non-negative
integer n we can write

x′qm+nT + y′qm+1+nT = Eωn + Fω−n

where E and F are in Qp(ω) with |E|p ≤ 1/|ω2−1|p and |F |p ≤ 1/|ω2−1|p.
The integers Q′

n = x′qm+nT + y′qm+1+nT satisfy (28). Since |ω2ps − 1|p ≤
p−s|ω2 − 1|p, we see that for n = 2ps we have |Q′

2ps −Q′
0|p ≤ p−s, that is to

say,

|Q′
2ps − y|p ≤ p−s.

Further, it is easy to see that Theorems 2 and 3 remain valid upon replacing
in (8) the p-adic absolute value | · |p by | · |D, if we take y ∈ Z.
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In the other parts of the proof, the role played by the p-adic logarithm
function seems deeper. For instance, it is easy to prove the analogue of
Theorem 2 for formal power series over a finite field, when y is a polynomial.
But we do not know whether Theorem 1 has an analogue in this setting.
The crucial point is the use of the p-adic logarithm function, which we lose
in the formal power series case.

5. Proof of Theorem 4. Let p be a prime number and y be an integer.
Let µ denote the Kaufman measure, whose existence has been proved in [7].
The measure µ is supported on the set Bad. For any n ≥ 1, set qn := pn +y.
For any real number α we have

|qn| · ‖qnα‖ · |qn − y|p = |qn| · ‖qnα‖ · |pn|p ≤ (1 + |y|)‖qnα‖.
Thus, (4) holds as soon as α satisfies

(40) inf
n≥1

‖qnα‖ = 0.

Using the exponential growth of the sequence (qn)n≥1 and a result of Dav-
enport, Erdős, and LeVeque [4], as explained in Section 4 of [13], we infer
that (40) holds for µ-almost all α. Hence, µ-almost all α satisfy (4) for any
prime p and any integer y. Arguing then as on p. 294 of [13], we conclude
that the Hausdorff dimension of the set of real numbers α in Bad for which
(4) holds for any prime p and any integer y is equal to 1, as claimed.

6. Proof of Theorem 5. Our proof is very much inspired by [8]. It
rests on the folding lemma, recalled below.

Lemma F. If pn/qn = [a0; a1, a2, . . . , an] with an ≥ 2, then

pn

qn
+

(−1)n

q2
n

= [a0; a1, a2, . . . , an−1, an + 1, an − 1, an−1, . . . , a2, a1].

Lemma F follows from Propositions 2 and 3 of [14].

Recall that [0; a1, . . . , an, 1, 1] = [0; a1, . . . , an, 2] for any positive integers
a1, . . . , an. We display an immediate consequence of Lemma F.

Lemma 3. If a/m = [0; 1, 1, a3, . . . , ah−1, ah] with h ≥ 4 and ah ≥ 2,
then

ma + (−1)h

m2
= [0; 1, 1, a3, . . . , ah−1, ah + 1, ah − 1, ah−1, . . . , a3, 2].

Lemma 3 is the main tool for the proof of Theorem 5. Let p be a prime
number. Observe that in the open real interval with endpoints [0; 1, 1, 1, 2]
and [0; 1, 1, 1, 3] there are rational numbers whose denominator is a power
of p. Consequently, there exist positive integers a and b, with 1 ≤ a ≤ pb
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and a coprime with p, such that
a

pb
= [0; 1, 1, a3, . . . , ah−1, ah]

with h ≥ 4 and ah ≥ 2. Set

M = max{a3, . . . , ah−1, ah + 1}.
By repeated application of Lemma 3, we see that, for any j ≥ 2, the con-
tinued fraction of the rational number

αj :=
a

pb
+

(−1)h

p2b
− 1

p22b
− · · · − 1

p2jb

reads [0; 1, 1, . . . , 2] and has all its partial quotients bounded by M .
Set

α = lim
j→∞

αj =
a

pb
+

(−1)h

p2b
−
∑

j≥2

1

p2jb
.

By construction, all the partial quotients of α are less than or equal to M ,
hence α is in Bad. Furthermore, it is easily checked that, for any j ≥ 2, we
have

p2jb · ‖p2jbα‖ ≤ 1 + 2p−2j+1b.

This implies that

lim inf
q→∞

q2 · ‖qα‖ · |q|p ≤ 1,

as asserted.
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