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Two Diophantine approaches to the

irreducibility of certain trinomials

by

M. Filaseta (Columbia, SC), F. Luca (Morelia),
P. Stănică (Monterey, CA) and R. G. Underwood (Montgomery, AL)

1. Introduction. In the previous paper [FLSU], we determined the
Galois groups associated with some polynomials constructed through the
use of circulant matrices. In the process of determining the Galois groups,
the irreducibility of the trinomial x2p + xp + mp was established, where p
represents an odd prime and m an integer ≥ 2. The approach there was
based on a method of Lebesgue [Le]. In this paper, we discuss two other
approaches we discovered in our investigations, both relying on the nice
work of Bilu, Hanrot, and Voutier [BHV] (with an appendix by Mignotte)
on Lucas and Lehmer numbers.

In the next section, we consider the more general polynomials tp(x) =
x2p + bxp + c where b and c are nonzero integers. There are four cases where
reducibility is easily established:

(i) If b2 − 4c is a square, then x2 + bx + c factors so that tp(x) is the
product of two polynomials of degree p.

(ii) If p ≥ 5 and b = up for some integer u and c = b2, then tp(x) is
divisible by x2 + ux + u2 (with roots ζ±1

3 u).
(iii) If p ≥ 3 and b = 2(p+1)/2up for some integer u and c = b2/2, then

tp(x) is divisible by one of x2 + 2ux + 2u2 (with roots
√

2 ζ±3
8 u) or

x2 − 2ux+ 2u2 (with roots
√

2 ζ±1
8 u) depending on whether p ≡ ±1

(mod8) or p ≡ ±3 (mod8), respectively.
(iv) If p ≥ 5 and b = 3(p+1)/2up for some integer u and c = b2/3, then

tp(x) is divisible by one of x2 + 3ux + 3u2 (with roots
√

3 ζ±5
12 u) or
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x2 − 3ux+ 3u2 (with roots
√

3 ζ±1
12 u) depending on whether p ≡ ±1

(mod12) or p ≡ ±5 (mod12), respectively.

The last three cases can be shown, for example, by establishing that a root of
the claimed quadratic factor is a root of tp(x). For convenience in a moment,
we note that the condition p 6∈ {2, 3, 5, 7, 13} can be reworded as saying that
p does not divide (q − 1)(q + 1), when q is the prime 181. We establish the
following.

Theorem 1. Let p be a prime and b and c be nonzero integers not

satisfying the conditions in (i)–(iv) above. Then the trinomial tp(x) = x2p +
bxp + c is irreducible provided

p ∤
∏

q prime

q|181b

(q − 1)(q + 1).

The condition in Theorem 1 that p not divide the product appears too
strong as typically the trinomial x2p + bxp + c is irreducible even when p
divides the product. In the case that p ∈ {2, 3, 5, 7, 13}, a closer analysis
based on the work in [BHV] is possible. Also, the argument we will give
implies x2p + bxp + c is irreducible whenever b2 − 4c is not a square and
c is not a pth power, so examples of reducible x2p + bxp + c should take
this into consideration. Among the more interesting examples of reducible
x2p + bxp + c we found are

x10 +2x5 +35, x22 +67x11 +211, x22 +394x11 +311, x34 +101x17 +217.

The factorization of trinomials has been considered in great detail by
Schinzel [Sc2, Sc3, Sc4]. In particular, Lemma 28 in [Sc2] gives a necessary
and sufficient condition for the reducibility over any field K with characteris-
tic different from 2 of the more general trinomial x2m+bxm+c, where m is a
positive integer. This more general trinomial is reducible over K if and only
if b2−4c is a square in K or there is a prime p dividing m with x2p + bxp + c
reducible over K or 4 divides m and x8 + bx4 + c is reducible over K. The
conditions (ii), (iii) and (iv) for the reducibility of x2p + bxp + c above follow
from taking v = 1, 1/2 and 1/3, respectively, in (30) of Lemma 28 in [Sc2].

Theorem 1 implies that if b2−4c is not a square and p is sufficiently large
depending on b, then tp(x) is irreducible. This follows also from Theorem 10
in [Sc2]. To see this, note that a theorem of Capelli implies that if b2 − 4c
is not a square and tp(x) is reducible, then it has an irreducible quadratic
factor. By taking d = 2 in Theorem 10 of [Sc2], one deduces that there are
effective constants c0 and c1 such that if b2 − 4c is not a square and tp(x)
is reducible, then p < max{c0, c1 log |b|}. This result is sometimes stronger
and sometimes weaker than the condition implied by Theorem 1, depending
on the prime factorization of b.
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In the third and final section of this paper, we return to the more specific
trinomials x2p + xp + mp and establish their irreducibility as a consequence
of the following Diophantine result.

Theorem 2. The equation

axn+2l − 1

axn − 1
= y2

holds for some positive integers a, x, n, and l with x > 1 and some rational

number y if and only if

2 | l, a =
3l−1 + 1

4
, x = 3, n = 1, y = ±(3l + 2).

We end the last section by establishing the following related result which
is a fairly direct consequence of work of Bennett [Be].

Theorem 3. Let m ≥ 3, and consider the Diophantine equation

(1)
axr − 1

axn − 1
= ym.

Suppose r and n are integers with r > n > 0. Then there are no solutions

to (1) in integers a, x, and y with a > 0 and x > 1 if also xr−n = zm for

some integer z.

To clarify a connection with Theorem 2, observe that if x is an integer
and m | (r − n), then xr−n = zm for some integer z. Note, however, that y
is restricted to being an integer in Theorem 3 and only restricted to being
a rational number in Theorem 2.

2. More general trinomials. In this section, we discuss the irre-
ducibility of the trinomials ax2p + bxp + c ∈ Z[x], where p is a prime and a,
b, and c are integers with abc 6= 0. One can multiply the trinomial by a2p−1,
and replace x by x/a, obtaining a monic trinomial. So, we assume through-
out that a = 1. Our interest then is in the irreducibility of the trinomial
tp(x) = x2p + bxp + c.

Our approaches in this paper take advantage of recent work of Bilu,
Hanrot, and Voutier [BHV]. A Lucas pair (α, β) is a pair of algebraic integers
for which αβ and α + β are nonzero coprime rational integers and α/β is
not a root of unity. A Lehmer pair (α, β) is a pair of algebraic integers for
which αβ and (α+β)2 are nonzero coprime rational integers and α/β is not
a root of unity. The Lucas numbers un and Lehmer numbers ũn are defined
for nonnegative integers n by

un =
αn − βn

α − β
, ũn =





αn − βn

α − β
if n ≡ 1 (mod2),

αn − βn

α2 − β2
if n ≡ 0 (mod2),
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respectively. A prime p is called a primitive divisor of un provided that p di-
vides un and p does not divide (α−β)2u1 · · ·un−1. A prime p is called a prim-

itive divisor of ũn if p divides ũn and p does not divide (α2 − β2)2ũ1 · · · ũn−1.
The work of Bilu, Hanrot, and Voutier [BHV] settles a long-standing prob-
lem of classifying all cases of α, β, and n where a primitive divisor of un

or a primitive divisor of ũn does not exist. Two consequences of their work
that we will make use of here are as follows. In the next section, we will use

Result 1. For odd n ≥ 5, a Lehmer number ũn defined from a Lehmer

pair of the form

(α, β) = (
√

a +
√

a + 1,
√

a −
√

a + 1)

for some rational integer a has a primitive prime divisor.

In the current section, we will make use of

Result 2. If p 6∈ {2, 3, 5, 7, 13} and p is a prime, then each of u2p and

ũp contains at least one primitive prime divisor.

Both of these follow from Theorems C, 1.3, and 1.4 in [BHV]. Also, it
follows from (3), Proposition 2.1(i) and Corollary 2.2, all from [BHV], that if
p is an odd prime, then every primitive prime divisor q of u2p or ũp satisfies
p | (q − 1)(q + 1).

We are now ready to prove Theorem 1. We consider p not dividing the
product appearing in the theorem. In particular, p 6∈ {2, 3, 5, 7, 13}. Let
γ = (−b +

√
N)/2, where N = b2 − 4c, and let λ be a pth root of γ. Note

that λ is a root of tp(x). Also, the conditions in Theorem 1 imply that N is
not a square. By a theorem of Capelli (see [Sc1] or [Sc2] or, for an alternative
to Capelli’s theorem, see the proof of Lemma 8 in [FLSU]), it suffices to show
that γ is not a pth power in Q(

√
N). Assume otherwise. Then

αp =
−b +

√
N

2
, βp =

−b −
√

N

2

for some distinct α and β in Q(
√

N) with αβ and α + β in Z satisfying
(αβ)p = c and (α+β) | b. In particular, c is a pth power. Our goal is to show
that under the conditions of the theorem, we obtain a contradiction.

We claim that α/β is not a root of unity. Assume otherwise. Since b2−4c
is not a square,

(α/β)p =
−b +

√
N

−b −
√

N
=

b2 + N − 2b
√

N

b2 − N
=

b2 − 2c − b
√

b2 − 4c

2c

is a quadratic irrational that is a root of unity. It follows that the last
expression above is one of the six numbers ±i, (±1±

√
−3)/2. Hence, b2−2c ∈

{0,±c}, so that c ∈ {b2, b2/2, b2/3}. One checks that c being a pth power
now implies that one of the conditions in (ii), (iii), or (iv) holds, contrary
to our conditions on b and c. Thus, α/β is not a root of unity.
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We consider two cases depending on whether the rational integers αβ
and α + β are relatively prime. First, suppose that they are. Consider the
Lucas number

u2p =
α2p − β2p

α − β
=

αp − βp

α − β
(αp + βp) =

αp − βp

α − β
(−b).

As p 6∈ {2, 3, 5, 7, 13}, we deduce from Result 2 that u2p has a primitive
prime divisor q dividing b. As then p | (q − 1)(q + 1) and q | b, we obtain a
contradiction.

Now, suppose that s = αβ and r = α + β are not coprime. Note that α
and β are roots of x2 − rx + s. Let d = gcd(r2, s), and set

α′ =
α

d1/2
, β′ = − β

d1/2
.

Then

s′ = α′β′ = −s

d
and r′ = (α′ + β′)2 =

r2 − 4s

d

are rational coprime integers. Observe that αp − βp =
√

N is nonzero, so
that α− β 6= 0. Hence, r2 − 2s = (α− β)2 6= 0. Therefore, r′ and s′ are also
nonzero. As α′/β′ = −α/β, we furthermore see that α′/β′ is not a root of
unity. Thus, (α′, β′) is a Lehmer pair. Observe that

d(p−1)/2(α + β)ũp = d(p−1)/2(α + β)
(α′)p − (β′)p

α′ − β′
= αp + βp = −b.

It follows that the Lehmer number ũp divides b. As before, we obtain a
contradiction as ũp must have a primitive prime divisor q dividing b for
which p divides (q − 1)(q + 1).

The reduction going from Lucas numbers to Lehmer numbers at the end
of the argument above is not new. The idea is used, for example, by Shorey
and Tijdeman [ST, see Lemma A.10].

3. A Ljunggren-type Diophantine equation. In the previous sec-
tion, we established an irreducibility result for ax2p+bxp+c ∈ Z[x], partially
generalizing our earlier demonstration in [FLSU] of the irreducibility of the
trinomial pm(x) = x2p+xp+mp where m ≥ 2. Our consideration of the more
general trinomial in the last section required some restrictions on the primes
leading to irreducibility. However, it did present an alternative approach to
dealing with the irreducibility of pm(x) as well as a more general class of
similar polynomials. In this section, we present yet another approach which
associates the irreducibility of pm(x) with a certain Diophantine equation.
We will make use of Result 1 of the previous section.

We consider p to be an odd prime and m ≥ 2 an integer. As at the
beginning of the proof of Theorem 1, if pm(x) is reducible, then there are
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α and β in Q(
√

N), where N = 1 − 4mp, that are roots of the quadratic
x2±x+m. The discriminant of the quadratic is D = 1−4m < 0 and, hence,
not a square. We deduce that Q(

√
N) = Q(

√
D). This equality can hold if

and only if there is a rational number x ∈ Q such that

4mp − 1

4m − 1
= x2.

Thus, the irreducibility of pm(x) follows as a consequence of Theorem 2.

A solution to the equation

axn+2l − 1

axn − 1
= y2

implies that there exist positive integers u and v satisfying

axn − 1 = du2, axn+2l − 1 = dv2,

where d is a positive squarefree integer dividing gcd(axn+2l − 1, axn − 1).
We then have the equation

axn(xl)2 − dv2 = 1.

Therefore,

(du2 + 1)(xl)2 − dv2 = 1.

Let A = axn = du2 +1 and B = d, and let (X1, Y1) be the minimal solution
in positive integers to the Pell equation

(2) AX2 − BY 2 = 1.

Define

(3) α0 = X1

√
A + Y1

√
B, β0 = X1

√
A − Y1

√
B.

It is well-known (see [Wal]) that if A 6= 1 and A and B are positive integers
with at least one of A and B not a square, then all the positive integer
solutions of (2) are of the form

(X, Y ) = (Xt, Yt),

for some odd integer t ≥ 1, where

(Xt, Yt) =

(
αt

0 + βt
0

α0 + β0
X1,

αt
0 − βt

0

α0 − β0
Y1

)
.

We now use this description of the solutions to (2). Observe first that
A > 1. Also, d is squarefree, so that B = d is not a square unless d = 1. In
that case, A = u2 + 1 cannot be a square (as both A and A − 1 would be
consecutive positive integral squares, which is impossible). Hence, at least
one of A and B is not a square. It is not difficult to see that (1, u) is the
minimal solution to (2) with A and B as above (both X and Y are larger
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for any other solution in positive integers to (2)); thus, X1 = 1 and Y1 = u.
We deduce that there is an odd positive integer t for which

xl = Xt =
(
√

du2 + 1 + u
√

d)t + (
√

du2 + 1 − u
√

d)t

2
√

du2 + 1
(4)

=
(
√

axn +
√

axn − 1)t + (
√

axn −
√

axn − 1)t

2
√

axn
.

As x > 1 and l > 0, we must have t > 1.

Fix α = α0 and β = −β0. Observe that αβ = −1 and (α + β)2 =
4(axn − 1) are relatively prime nonzero rational integers. One checks that
α/β is a real number less than −1, so clearly α/β is not a root of unity.
Thus, (α, β) is a Lehmer pair. As t is odd, (4) implies xl = ũt, a Lehmer
number as defined in the previous section. We show that t = 3. Assume
t ≥ 5. By Result 1, ũt must have a primitive prime divisor. On the other
hand, x | (α2 − β2)2. By the definition of being a primitive prime divisor of
a Lehmer number, ũt in fact has no primitive prime divisor. We obtain a
contradiction; hence, t = 3.

Using the binomial theorem in (4) and reducing modulo x we get

0 ≡ t(axn − 1)(t−1)/2 (modx).

Hence, x | t. As x > 1 and t = 3, we deduce x = 3. Substituting t = 3
into (4), we obtain

xl = axn + 3(axn − 1) = 4axn − 3.

Therefore, 3l = 4a3n − 3. Working modulo 4, we see that l 6= 1. It follows
that l > 1 and, hence, n = 1. We obtain 3l−1 = 4a − 1, from which we
deduce a = (3l−1 + 1)/4. As 3l−1 + 1 is divisible by 4, we get 2 | l. Rewriting
the equation in the statement of Theorem 2, we have

y2 =
33l + 32l+1 − 4

3l − 1
= (3l + 2)2.

The theorem follows.

We note that Ljunggren [Lj] previously solved the case of a = 1 and
n = 1 of Theorem 2. A related result with y integral can also be obtained
from the following nice theorem of Bennett [Be]:

If a, b and m are integers with ab 6= 0 and m ≥ 3, then the equation

|axm − bym| = 1 has at most one solution in positive integers (x, y).

We now prove Theorem 3. Assume (1) holds with the variables satisfying
the conditions in Theorem 3. In particular, the numerator and denominator
on the left side of (1) are positive. Thus, if m is odd, then y > 0; furthermore,
in the case that m is even, we may suppose y > 0 (by replacing y with −y
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if necessary). Also, as x > 0, we may take z > 0. Rewriting (1), we have

axnzm − (axn − 1)ym = 1.

Therefore, (z, y) is a solution of the Diophantine equation

AXm − BY m = 1,

where A = axn and B = axn − 1. But (1, 1) is also a solution of the above
equation. Observe that the conditions x > 1 and xr−n = zm imply z 6= 1. In
particular, (z, y) 6= (1, 1). By Bennett’s theorem, we obtain a contradiction.
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