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A new construction of (t, s)-sequences and some

improved bounds on their quality parameter

by

David J. S. Mayor and Harald Niederreiter (Singapore)

1. Introduction. For a given dimension s ≥ 1, let J be a subinter-
val of [0, 1]s and let x1, . . . , xN be a multiset of points in [0, 1]s. We write
A(J ; x1, . . . , xN ) for the number of integers n with 1 ≤ n ≤ N for which
xn ∈ J and put

D∗
N (x1, . . . , xN ) = sup

J

∣

∣

∣

∣

A(J ; x1, . . . , xN )

N
− Vol(J)

∣

∣

∣

∣

,

where the supremum is extended over all subintervals J of [0, 1]s with one
vertex at the origin. For a sequence S of points x1, x2, . . . in [0, 1]s, the star

discrepancy of the first N terms of S is defined as D∗
N (S) = D∗

N (x1, . . . , xN ).
We say that S is a low-discrepancy sequence if

D∗
N (S) = O(N−1(log N)s) for all N ≥ 2.

This is conjectured to be the least possible order of magnitude of the star
discrepancy that can be obtained, and the conjecture has been proved for
s = 1 by Schmidt [21] (see also [8, Section 2.2]).

Currently, the most powerful methods of constructing low-discrepancy
sequences are built on the theory of (t, s)-sequences which was developed by
Niederreiter [11] on the basis of earlier work by Sobol’ [24] and Faure [3].
We refer to the monographs [13, Chapter 4] and [20, Chapter 8] as well as
to the recent survey article [14] for general background on this theory. The
fact that, for any integers s ≥ 1 and b ≥ 2, there exists a (t, s)-sequence in
base b for some integer t ≥ 0 was first shown by Niederreiter [12].

The star discrepancy of a (t, s)-sequence S in base b satisfies the following
bound (see [11] and [13, Chapter 4]):

D∗
N (S) ≤ Cb(s, t)N

−1(log N)s + O(N−1(log N)s−1) for all N ≥ 2,
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where

(1) Cb(s, t) =
bt

s!
·

b − 1

2⌊b/2⌋

(

⌊b/2⌋

log b

)s

.

The nonnegative integer t is called the quality parameter of the sequence.
It is clear from (1) that smaller values of t lead to smaller bounds on the star
discrepancy of a (t, s)-sequence in a fixed base b and for a fixed dimension s.
Therefore it is of great interest to consider the number tb(s) which is defined
to be the least value of t such that there exists a (t, s)-sequence in base b.

Niederreiter and Xing collaborated on a series of papers [15], [16], [17],
[26] which used global function fields to produce (t, s)-sequences. The last
three of these constructions showed that tb(s) = O(s), which is the best
possible asymptotic bound for s → ∞ and fixed b in view of [17, Theorem 8].
Putting Cb(s) := Cb(s, tb(s)), we deduce from (1) and Stirling’s formula that

lim sup
s→∞

log Cb(s) + s(log s − 1)

s
= C(b) := log b · lim sup

s→∞

tb(s)

s
+ log

⌊b/2⌋

log b
.

Therefore, using tb(s) = O(s) we see that, for fixed b, the coefficient of the
leading term of the bound on the star discrepancy of a (tb(s), s)-sequence in
base b converges to 0 at a superexponential rate as s → ∞.

In this paper we fulfill several objectives. Firstly, we introduce a new
construction of (t, s)-sequences using global function fields (see Section 3). It
will be analogous to the construction of Xing and Niederreiter [26] which uses
places of arbitrary degree to produce the strongest construction. However, in
contrast to the previous constructions which used functions in a Riemann–
Roch space, our construction will employ differentials. In the decade since
the last construction of (t, s)-sequences using global function fields, there has
been progress in the area of global function fields with many rational places.
In Sections 4 and 5 of this paper we show that these new developments
have implications for the quality parameter of (t, s)-sequences. Finally, we
demonstrate in Section 6 that these results lead to improved bounds on the
quantity C(b) introduced above.

2. Global function fields and (t, s)-sequences. In this section we re-
call some basic facts on global function fields and (t, s)-sequences. Concern-
ing algebraic function fields, we mostly follow the terminology and notation
in the book [25].

We write F/Fq for a global function field F with full constant field Fq

and we denote by PF the set of places of F . For a global function field F/Fq,
we define its set of differentials as

ΩF = {xdz : x ∈ F, z is a separating element for F/Fq},

and for any differential ω ∈ ΩF and separating element z we can write
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ω = xdz with a unique x ∈ F . If ω is a nonzero differential, then for every
P ∈ PF let ω = xP dtP where tP is a local parameter at P (and hence a
separating element). Then we can associate ω with the divisor

(ω) :=
∑

P∈PF

νP ((ω))P :=
∑

P∈PF

νP (xP )P,

which is meaningful since it is independent of the choices of tP . Here νP

denotes the normalized valuation of F corresponding to the place P .
For any divisor D of F , we define the following sets of functions and

differentials:

L(D) = {f ∈ F ∗ : div(f) ≥ −D} ∪ {0},

Ω(D) = {ω ∈ ΩF \ {0} : (ω) ≥ D} ∪ {0}.

Both L(D) and Ω(D) are finite-dimensional vector spaces over Fq and their
dimensions are related by the identity

dimΩ(D) = dimL(D) − deg(D) + g − 1,

where g is the genus of F .
For r ≥ 1, we let Br(F/Fq) be the number of places of F/Fq of degree r.

Let N(F/Fq) := B1(F/Fq) be the number of rational places of F/Fq. For a
given prime power q and an integer g ≥ 0, we let Nq(g) be the maximum
number of rational places that a global function field F/Fq of genus g can
have. Finally, we let g(F/Fq) be the genus of a global function field F/Fq.

Most of the known constructions of (t, s)-sequences are based on the
so-called digital method, which was developed by Niederreiter [11]. We refer
to (t, s)-sequences which are constructed via the digital method as digital

(t, s)-sequences, and we define dq(s) to be the least value of t such that
there exists a digital (t, s)-sequence constructed over Fq. We trivially have
tq(s) ≤ dq(s), but it is not known whether there exist q and s such that
tq(s) < dq(s). We do not replicate the digital method here, since for our
construction we only need Proposition 2.1 below.

Let s ≥ 1 be given and choose elements c
(i)
r,j ∈ Fq for 1 ≤ i ≤ s, j ≥ 1,

and r ≥ 0. Let

c
(i)
j = (c

(i)
0,j , c

(i)
1,j, . . .) ∈ F

∞
q for 1 ≤ i ≤ s and j ≥ 1,

which are collected in the two-parameter system

C(∞) = {c
(i)
j ∈ F

∞
q : 1 ≤ i ≤ s and j ≥ 1}.

For m ≥ 1 we define the projection

πm : (c0, c1, . . .) ∈ F
∞
q 7→ (c0, . . . , cm−1) ∈ F

m
q

and put

C(m) = {πm(c
(i)
j ) ∈ F

m
q : 1 ≤ i ≤ s, 1 ≤ j ≤ m}.
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Then we have the following result which is a consequence of [20, Theorem
8.2.10].

Proposition 2.1. The system C(∞) can be used to construct a digi-

tal (t, s)-sequence over Fq if , for any m > t and any nonnegative integers

d1, . . . , ds with
∑s

i=1 di = m − t, the vectors πm(c
(i)
j ) ∈ C(m), 1 ≤ j ≤ di,

1 ≤ i ≤ s, are linearly independent over Fq.

3. The new construction of sequences. In this section we introduce
the first new construction of (t, s)-sequences using global function fields since
the construction of Niederreiter and Xing [17]. It is the first to make use
of differentials, and it is based on the most general construction of (t, s)-
sequences using global function fields due to Xing and Niederreiter [26].

Let F/Fq be a global function field of genus g and with at least one
rational place P∞. Let D be a divisor of F with deg(D) = −2 and P∞ 6∈
supp(D). Furthermore, let P1, . . . , Ps be distinct places of F with Pi 6= P∞

for 1 ≤ i ≤ s, and put ei = deg(Pi) for 1 ≤ i ≤ s.

Note that the Riemann–Roch theorem can be used to show that we have
dimΩ(D) = g + 1, dimΩ(D + P∞) = g, and dimΩ(D + (2g + 1)P∞) = 0.
Hence there exist integers 0 = n0 < n1 < · · · < ng ≤ 2g such that

dim Ω(D + nuP∞) = dimΩ(D + (nu + 1)P∞) + 1 for 0 ≤ u ≤ g.

Now we choose

wu ∈ Ω(D + nuP∞) \ Ω(D + (nu + 1)P∞) for 0 ≤ u ≤ g.

It is easily seen that {w0, w1, . . . , wg} is a basis of Ω(D). For i = 1, . . . , s,
consider the chain

Ω(D) ⊂ Ω(D − Pi) ⊂ Ω(D − 2Pi) ⊂ · · ·

of vector spaces over Fq. By starting from the basis {w0, w1, . . . , wg} of Ω(D)
and successively adding basis vectors at each step of the chain, we obtain
for each integer n ≥ 1 a basis

{w0, w1, . . . , wg, ω
(i)
1 , ω

(i)
2 , . . . , ω(i)

nei
}

of Ω(D − nPi).

Now let z be a local parameter at P∞. For r = 0, 1, . . . we put

zr =

{

zrdz if r 6∈ {n0, n1, . . . , ng},

wu if r = nu for some u ∈ {0, 1, . . . , g}.

Note that νP∞((zr)) = r for all r ≥ 0. For 1 ≤ i ≤ s and j ≥ 1, we have

ω
(i)
j ∈ Ω(D − kPi) for some k ≥ 1 and also P∞ 6∈ supp(D − kPi), hence
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νP∞((ω
(i)
j )) ≥ 0. Thus, we have expansions at P∞ of the form

ω
(i)
j =

∞
∑

r=0

a
(i)
r,jzr for 1 ≤ i ≤ s and j ≥ 1,

where all coefficients a
(i)
r,j ∈ Fq. For 1 ≤ i ≤ s and j ≥ 1, we define the

sequence of elements c
(i)
r,j ∈ Fq, r = 0, 1, . . . , by considering the sequence

of elements a
(i)
r,j , r = 0, 1, . . . , and then deleting the terms with r = nu for

some u ∈ {0, 1, . . . , g}. Finally, we set up the system

C(∞) = {c
(i)
j = (c

(i)
0,j, c

(i)
1,j , . . .) ∈ F

∞
q : 1 ≤ i ≤ s and j ≥ 1}.

We write SΩ(P∞, P1, . . . , Ps; D) for a sequence obtained from this system
by the digital method.

Theorem 3.1. Let F/Fq be a global function field of genus g and with

at least one rational place P∞, let D be a divisor of F with deg(D) = −2
and P∞ 6∈ supp(D), and let P1, . . . , Ps be distinct places of F with Pi 6=
P∞ for 1 ≤ i ≤ s. Then SΩ(P∞, P1, . . . , Ps; D) is a digital (t, s)-sequence

constructed over Fq with

t = g +
s

∑

i=1

(ei − 1),

where ei = deg(Pi) for 1 ≤ i ≤ s.

Proof. By Proposition 2.1, it suffices to show that for any m > t and
any nonnegative integers d1, . . . , ds with

∑s
i=1 di = m − t, the vectors

πm(c
(i)
j ) = (c

(i)
0,j, . . . , c

(i)
m−1,j) ∈ F

m
q for 1 ≤ j ≤ di, 1 ≤ i ≤ s

are linearly independent over Fq. Fix integers m, d1, . . . , ds satisfying the
above conditions. Let H be the set of i with 1 ≤ i ≤ s for which di ≥ 1, and
suppose that we have

∑

i∈H

di
∑

j=1

b
(i)
j πm(c

(i)
j ) = 0 ∈ F

m
q

for some b
(i)
j ∈ Fq. With R = {n0, n1, . . . , ng} this means that

(2)
∑

i∈H

di
∑

j=1

b
(i)
j a

(i)
r,j = 0

for the first m nonnegative integers r that are not in R. Now consider the
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differential ω of F given by

ω =
∑

i∈H

di
∑

j=1

b
(i)
j

(

ω
(i)
j −

g
∑

u=0

a
(i)
nu,jwu

)

=
∞
∑

r=0
r 6∈R

(

∑

i∈H

di
∑

j=1

b
(i)
j a

(i)
r,j

)

zr.

Since ng ≤ 2g and g ≤ m − 1, we have νP∞((ω)) ≥ m + g + 1 by (2), and

together with the choice of the ω
(i)
j this shows that

ω ∈ Ω

(

D −
s

∑

i=1

(⌊

di − 1

ei

⌋

+ 1

)

Pi + (m + g + 1)P∞

)

.

Note that

deg

(

D −
s

∑

i=1

(⌊

di − 1

ei

⌋

+ 1

)

Pi + (m + g + 1)P∞

)

= −2 −
s

∑

i=1

(⌊

di − 1

ei

⌋

+ 1

)

ei + (m + g + 1)

≥ m − t −
s

∑

i=1

di + 2g − 1 = 2g − 1.

Therefore ω = 0, and so we have

∑

i∈H

di
∑

j=1

b
(i)
j ω

(i)
j =: w ∈ Ω(D).

Fix an h ∈ H. We claim that b
(h)
j = 0 for 1 ≤ j ≤ dh. Suppose, on the

contrary, that some b
(h)
j 6= 0. Then by choice of the ω

(h)
j we have

dh
∑

j=1

b
(h)
j ω

(h)
j ∈ Ω(D − kPh) \ Ω(D) for some k ≥ 1,

and so

νPh

((

dh
∑

j=1

b
(h)
j ω

(h)
j

))

≤ νPh
(D) − 1.

However, we also know that

νPh

((

dh
∑

j=1

b
(h)
j ω

(h)
j

))

= νPh

((

w −
∑

i∈H\{h}

di
∑

j=1

b
(i)
j ω

(i)
j

))

≥ νPh
(D),

a contradiction. Thus, for any i ∈ H, we get b
(i)
j = 0 for 1 ≤ j ≤ di.

Remark 3.2. Note that the only condition in our construction different
from that of Xing and Niederreiter [26] is that we use a divisor D with
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deg(D) = −2, whereas they use a divisor D′ with deg(D′) = 2g. Such
divisors can always be found and hence any global function field F/Fq with
places P∞, P1, . . . , Ps can be used to construct two different digital (t, s)-
sequences over Fq, where t = g +

∑s
i=1(deg(Pi) − 1).

A project of cataloging upper bounds on dq(s) for q = 2, 3, 5 and 1 ≤
s ≤ 50 was begun by Niederreiter and Xing (see, for example, [17, Table 4],
[19, Table 5]) and has been continued by Niederreiter (see, for example, [14,
Table 1]). We now provide an example which demonstrates that it is possible
to use nonrational places to gain improved bounds on dq(s).

Example 3.3. Let F/F5 be the global function field given in [18, Ex-
ample 4], i.e., F = F5(x, y1, y2) with

y2
1 = x(x2 − 2), y5

2 − y2 =
x4 − 1

y1 − 1
.

We have g(F/F5) = 11 and N(F/F5) = 32. Consider the place Q of F5(x)
corresponding to the irreducible polynomial x2 + 2x − 2 over F5. If α ∈ F25

is a root of x2 + 2x − 2, then in F25[y] we have the factorization

y2 − α(α2 − 2) = (y − α + 2)(y + α − 2).

Hence by Kummer’s theorem [25, Theorem III.3.7], there is a place Q1 of
K := F5(x, y1) of degree 2 lying over Q, with y1 ≡ α − 2 mod Q1. Next we
consider the factorization of

f(y) := y5 − y −
α4 − 1

(α − 2) − 1
= y5 − y − (−α − 1)

in F25[y]. A trace calculation shows that

TrF25/F5
(−α − 1) = −TrF25/F5

(α) − 2 = 0

since TrF25/F5
(α) = −2. Thus, f(y) splits into five distinct monic linear

factors over F25 by [10, Theorem 2.25], and so by Kummer’s theorem Q1

splits completely in the extension F/K. Therefore F contains at least five
places of degree 2. Combining this with Theorem 3.1, we obtain

d5(32) ≤ 12,

which is an improvement on the bound d5(32) ≤ 13 given in [14, Table 1].

4. Explicit bounds on the quality parameter. In the next two
sections, for certain values of b, we will improve the upper bound on the
quantity

lim sup
s→∞

tb(s)

s

whose existence is implied by the result tb(s) = O(s) mentioned in Section 1.
We start by introducing some explicit bounds.
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We can bound dq(s) for arbitrary s by finding towers of global function
fields with many places of small degree. For example, Niederreiter and Xing
[16], [26] made use of the tower of global function fields due to Garcia and
Stichtenoth [4], which was the first explicit tower of function fields that was
asymptotically good, i.e., it is a tower F = (F1, F2, . . .) of function fields
over Fq satisfying the condition

lim
i→∞

N(Fi/Fq)

g(Fi/Fq)
> 0.

In the decade since the last construction of (t, s)-sequences in [17], Gar-
cia, Stichtenoth, and Thomas [6], Li, Maharaj, Stichtenoth, and Elkies [9],
Garcia and Stichtenoth [5], and Bezerra, Garcia, and Stichtenoth [1] were
among the mathematicians who have constructed new explicit towers which
are asymptotically good. We will now utilise these new results to produce
improved bounds on dq(s) for arbitrary s.

Theorem 4.1. For every odd prime p and every dimension s ≥ 1 we

have

dp2(s) ≤
2

p − 1
s + 1.

Proof. Let F1 ⊆ F2 ⊆ · · · be the tower of function fields over Fp2 con-
structed by Garcia and Stichtenoth [5], that is, for n ≥ 1 we have

Fn = Fp2(x1, . . . , xn), where x2
n+1 =

x2
n + 1

2xn
.

Then it is known from [5] that

N(Fn/Fp2) ≥ (p − 1)2n, g(Fn/Fp2) ≤ 2n + 1.

Suppose that 1 ≤ s ≤ p2. Then N(F1/Fp2) ≥ s + 1 and hence

dp2(s) ≤ g(F1/Fp2) = 0

by Theorem 3.1. Now let s ≥ p2 + 1. Then (p − 1)2n−1 ≤ s ≤ (p − 1)2n − 1
for some n ≥ 2. Therefore Theorem 3.1 yields

dp2(s) ≤ g(Fn/Fp2) ≤ 2n + 1 ≤
2

p − 1
s + 1.

Remark 4.2. It is possible to obtain the bounds for p = 5 and p = 7
using earlier towers of function fields [9, Theorem 2], and it is possible to
obtain the bound for p = 3 using two earlier towers of function fields [6,
Example 2.4], [9, Theorem 2].

For odd q = p2, these bounds represent improvements on the previously
known theory, namely a special case of a result due to Xing and Niederreiter
[26, Theorem 4] stating that for any prime p and integer e ≥ 1 we have

(3) dp2e(s) ≤
p

pe − 1
s for all s ≥ 1.
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Example 4.3. For a future comparison, we note that we have proved

d9(s) ≤ s + 1, d25(s) ≤ s/2 + 1, d49(s) ≤ s/3 + 1

for all s ≥ 1.

Theorem 4.4. For every odd prime p and every dimension s ≥ 1 we

have

dp(s) ≤
p + 3

p − 1
s +

p − 5

p − 1
.

Proof. Let E1 ⊆ E2 ⊆ · · · be the tower of function fields over Fp con-
structed by Garcia and Stichtenoth [5], that is, for n ≥ 1 we have

En = Fp(x1, . . . , xn), where x2
n+1 =

x2
n + 1

2xn
.

Now let Fn = En ·Fp2 . Then, because of results on constant field extensions
[25, Lemma V.1.9], we know that

N(En/Fp) + 2B2(En/Fp) = N(Fn/Fp2) ≥ (p − 1)2n

and

g(En/Fp) = g(Fn/Fp2) ≤ 2n + 1.

Note that it is shown in [5, Proposition 4.1] that the place 1/x1 of E1 is
totally ramified in all extensions En/E1. Hence N(En/Fp) ≥ 1 and therefore

N(En/Fp) + B2(En/Fp) ≥ (p − 1)2n−1 + 1.

Suppose that 1 ≤ s ≤ p. Then N(E1/Fp) ≥ s + 1 and hence

dp(s) ≤ g(E1/Fp) = 0

by Theorem 3.1. Now let s ≥ p + 1. Then (p− 1)2n−2 + 1 ≤ s ≤ (p− 1)2n−1

for some n ≥ 2. Therefore Theorem 3.1 yields

dp(s) ≤ g(En/Fp) + s ≤ 2n + 1 + s ≤
p + 3

p − 1
s +

p − 5

p − 1
.

For odd primes, these bounds represent improvements on the previous
best bounds. For most odd primes p, this was a special case of a result due to
Xing and Niederreiter [26, Theorem 3] which says that for any prime power
q and s ≥ 1 we have

(4) dq(s) ≤
3q − 1

q − 1
(s − 1) −

(2q + 4)(s − 1)1/2

(q2 − 1)1/2
+ 2.

In particular,

d3(s) ≤ 4s −
5

21/2
(s − 1)1/2 − 2, d7(s) ≤

10

3
s −

33/2

2
(s − 1)1/2 −

4

3

for all s ≥ 1. For q = 5, the previous best bound was obtained by Niederreiter
and Xing [20, Remark 8.4.5] who used the rational places of a Hilbert class
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field tower to prove that

d5(s) ≤
11

4
s + 1 for all s ≥ 1.

Example 4.5. For a future comparison, we note that we have proved

d3(s) ≤ 3s − 1, d5(s) ≤ 2s, d7(s) ≤
5

3
s +

1

3

for all s ≥ 1.

Theorem 4.6. For every prime power q and every dimension s ≥ 1 we

have

dq3(s) ≤
q(q + 2)

2(q2 − 1)
s.

Proof. Let F1 ⊆ F2 ⊆ · · · be the tower of function fields over Fq3 con-
structed by Bezerra, Garcia, and Stichtenoth [1], that is, for n ≥ 1 we have

Fn = Fq3(x1, . . . , xn), where
1 − xn+1

xq
n+1

=
xq

n + xn − 1

xn
.

Then it is known from [1] that

N(Fn/Fq3) ≥ (q + 1)qn, g(Fn/Fq3) ≤
(q + 2)qn

2(q − 1)
.

Suppose that 1 ≤ s ≤ q3. Then N(F1/Fq3) ≥ s + 1 and hence

dq3(s) ≤ g(F1/Fq3) = 0

by Theorem 3.1. Now let s ≥ q3 + 1. Then (q + 1)qn−1 ≤ s ≤ (q + 1)qn − 1
for some n ≥ 2. Therefore Theorem 3.1 yields

dq3(s) ≤ g(Fn/Fq3) ≤
(q + 2)qn

2(q − 1)
≤

q(q + 2)

2(q2 − 1)
s.

For small q, these bounds can offer improvements on the previous best
bounds. For example, when q3 = 8 this was the result (4) of Xing and
Niederreiter which in this case yields

d8(s) ≤
23

7
s −

20

3 · 71/2
(s − 1)1/2 −

9

7
.

Note that Theorem 4.6 provides the better bound

d8(s) ≤
4

3
s for all s ≥ 1.

For q3 = 27, the previous best bound was obtained by Niederreiter and Xing
[19, Theorem 7] who used the rational places of a Hilbert class field tower
to prove that

d27(s) ≤
12

5
s + 1 for all s ≥ 1.
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Note that Theorem 4.6 provides the better bound

d27(s) ≤
15

16
s for all s ≥ 1.

Remark 4.7. Note that Theorem 4.6 is not always the strongest bound
available in the cubic case. When q3 is a square we can use (3), and in the
case where q3 is not a square, the bound could still be improved upon in
many cases by using [19, Theorem 6].

Recently, a new website was launched by Schürer and Schmid [22] with
the aim of cataloging (t, s)-sequences and their point set analogues, (t, m, s)-
nets. The values of q for which the website is valid are 2, 3, 4, 5, 7, 8, 9, 16,
25, 27, and 32. We note that in this section we have introduced improved
bounds on dq(s) for all the odd prime powers mentioned above, namely
q = 3, 5, 7, 9, 25, and 27. Furthermore, we improved the bound for q = 8.
The known bounds for q = 2, 4, and 16 seem strong, whilst the known
bound for q = 32 is weak due to the lack of knowledge about explicit towers
of function fields over Fq in the case where q is quintic.

5. Asymptotic bounds on the quality parameter. In all previous
attempts to use global function fields to bound dq(s) for large s, the method
has involved using towers of global function fields. However, it is apparent
that if we can find global function fields of every genus with many rational
places, then we can also gain bounds on dq(s). When Niederreiter and Xing
[17] obtained their last construction of (t, s)-sequences in 1996, this was a
barren area of research. Serre [23] had previously posed the question as to
whether

lim inf
g→∞

Nq(g)

g
> 0,

but it was only recently that Elkies et al. [2] showed that the above inequality
holds for every prime power q. Furthermore, in the case where q is a square,
strong explicit bounds [2, Theorem 1.2 and Corollary 6.2] were obtained,
which we now reproduce.

Proposition 5.1. We have

lim inf
g→∞

Nq(g)

g
≥







































q1/2 − 1

2 + logq 2
if q is an even square,

q1/2 − 1

2 + logq 4
if q is an odd square,

2(q1/2 − 1)

2 + (q1/2 + 1) · logq 2
if q is an odd square.
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Whilst this result does not provide bounds on dq(s) for individual s,
it does produce strong asymptotic bounds on dq(s). To wit, we have the
following result.

Corollary 5.2. We have

lim sup
s→∞

dq(s)

s
≤



































2 + logq 2

q1/2 − 1
if q is an even square,

2 + logq 4

q1/2 − 1
if q is an odd square,

2 + (q1/2 + 1) · logq 2

2(q1/2 − 1)
if q is an odd square.

Proof. Note that
(

lim inf
g→∞

Nq(g)

g

)−1

= lim sup
g→∞

g

Nq(g)
= lim sup

g→∞

g + 1

Nq(g)
.

Therefore it suffices to show that

(5) lim sup
s→∞

dq(s)

s
≤ lim sup

g→∞

g + 1

Nq(g)
.

Choose a sequence q + 1 ≤ s1 < s2 < · · · of integers with

lim
i→∞

dq(si)

si
= lim sup

s→∞

dq(s)

s
.

For each i = 1, 2, . . . , let gi be the least nonnegative integer such that

Nq(gi) ≤ si and Nq(gi + 1) ≥ si + 1.

Then dq(si) ≤ gi + 1 by Theorem 3.1, and so

dq(si)

si
≤

gi + 1

Nq(gi)
.

Since gi → ∞ as i → ∞, we obtain (5) by letting i → ∞.

We know by (3) that if we have q = p2e where p is a prime and e ≥ 1 is
an integer, then

dq(s) ≤
p

q1/2 − 1
s for all s ≥ 1.

Hence, we gain no improvement for even values of q. However, for odd values
of q we can obtain improvements.

Example 5.3. Corollary 5.2 provides the bounds

lim sup
s→∞

d9(s)

s
≤

1

2
+ log9 2 = 0.8154 . . . ,

lim sup
s→∞

d25(s)

s
≤

1

4
+

3

4
log25 2 = 0.4115 . . . ,
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lim sup
s→∞

d49(s)

s
≤

1

6
+

2

3
log49 2 = 0.2854 . . . .

Note that these bounds offer asymptotic improvements on the new results
presented in Example 4.3.

Example 5.4. We note a result of Niederreiter and Xing [16, Propo-
sition 4] which states that for all integers b ≥ 2, h ≥ 1, and s ≥ 1 we
have

tb(s) ≤ htbh(s) + (h − 1)s.

Hence, we also gain the bounds

lim sup
s→∞

t3(s)

s
≤ 2(1 + log9 2) = 2.6309 . . . ,

lim sup
s→∞

t5(s)

s
≤

3

2
(1 + log25 2) = 1.8230 . . . ,

lim sup
s→∞

t7(s)

s
≤

4

3
(1 + log49 2) = 1.5708 . . . .

Note that these bounds offer asymptotic improvements on the new results
presented in Example 4.5.

6. Implications for the star discrepancy. In this section we examine
the quantity

C(b) = log b · lim sup
s→∞

tb(s)

s
+ log

⌊b/2⌋

log b
,

which was introduced in Section 1. We start by noting the best currently
known bounds for some interesting values of b:

C(2) ≤ 3.8323,

C(3) ≤ 2.7964,

C(4) ≤ 3.1392,

C(5) ≤ 3.1513,

C(7) ≤ 3.4896,

C(8) ≤ 3.4268,

C(9) ≤ 2.3909,

C(11) ≤ 4.0283,

C(16) ≤ 2.9081,

C(25) ≤ 2.6405,

C(27) ≤ 4.4622,

C(32) ≤ 5.4426,

C(49) ≤ 2.9300,

C(64) ≤ 3.2288,

C(81) ≤ 3.1911.

Hence, the value of b which currently provides the strongest bound on the
star discrepancy of a low-discrepancy sequence for high dimensions is b = 9,
where we have

C(9) ≤ log 12 − log log 3 = 2.3908 . . .

by Example 5.3.

Remark 6.1. There is currently no prior research on the quantity C(b)
available in the literature. However, using previously known bounds on tb(s),
the best bound that could be obtained for C(b) was in the case b = 16, where
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we have

lim sup
s→∞

d16(s)

s
≤

2

3

by (3) and hence

C(16) ≤
11

3
log 2 − log log 2 = 2.9080 . . . .

Thus, the new bound on C(9) reported above yields an improvement.

Remark 6.2. Note that the weaker explicit bound for d9(s) presented
in Example 4.3 would also have produced a stronger bound than that for
b = 16.

Remark 6.3. Recently, the function Cb(s, t) that was provided by Nie-
derreiter in (1) has been improved upon by Kritzer [7], who replaced Cb(s, t)
with a function Fb(s, t) which provides a stronger bound. However, this does
not affect our asymptotic analysis, as it is easily seen that

lim sup
s→∞

log Cb(s, tb(s)) + s log s

s
= lim sup

s→∞

log Fb(s, tb(s)) + s log s

s
.
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