Prime numbers of the form $p=m^{2}+n^{2}+1$ in short intervals

by
Kaisa Matomäki (Egham)

1. Introduction. In 1960 Linnik [5] proved an asymptotic formula for

$$
\sum_{p \leq N} r(p-a)
$$

where the summation runs over primes, a is a fixed non-zero integer and $r(n)$ is the number of representations of n as a sum of two squares. This implies the first unconditional proof that there are infinitely many primes of the form $p=m^{2}+n^{2}+1$. Huxley and Iwaniec [1] considered primes of the form $m^{2}+n^{2}+1$ with $(m, n)=1$ in the short interval $\left(x, x+x^{\theta}\right]$. They proved that for $\theta=99 / 100$ this interval contains primes of this type for every sufficiently large x and more precisely that the number of them is of the expected order of magnitude, that is, $\gg x^{\theta} /(\log x)^{3 / 2}$. Wu [7] improved this result to $\theta=115 / 121 \approx 0.9504$.

In this paper, we prove the following theorem.
ThEOREM 1. For every $\theta \geq 10 / 11=0.9090 \ldots$ and $x \geq x_{0}(\theta)$, we have

$$
\begin{equation*}
\sum_{x<p \leq x+x^{\theta}} b^{*}(p-1) \gg x^{\theta} /(\log x)^{3 / 2} \tag{1}
\end{equation*}
$$

where

$$
b^{*}(a)= \begin{cases}1 & \text { if } a=m^{2}+n^{2} \text { with }(m, n)=1 \\ 0 & \text { otherwise }\end{cases}
$$

Since the set $\left\{m^{2}+n^{2} \mid(m, n)=1\right\}$ consists of numbers with no prime factors belonging to $\mathcal{P}_{3}=\{p \mid p \equiv 3(\bmod 4)\}$, it is natural to attack this problem by applying the half-dimensional sieve to the set

$$
\mathcal{A}=\left\{p-1 \mid x<p \leq x+x^{\theta}, p \equiv 3(\bmod 8)\right\}
$$

As usual, for a finite set $\mathcal{F} \subset \mathbb{N}$ and a set \mathcal{P} of primes we write

$$
P(z)=\prod_{p \in \mathcal{P}, p<z} p, \quad S(\mathcal{F}, \mathcal{P}, z)=|\{a \in \mathcal{F} \mid(a, P(z))=1\}| .
$$

Then

$$
\begin{equation*}
\sum_{x<p \leq x+x^{\theta}} b^{*}(p-1)=S\left(\mathcal{A}, \mathcal{P}_{3}, x+x^{\theta}\right) \tag{2}
\end{equation*}
$$

As in previous works, for $z=x^{1 / \alpha}, \alpha \in[2,4)$, we write

$$
\begin{equation*}
S\left(\mathcal{A}, \mathcal{P}_{3}, x+x^{\theta}\right)=S\left(\mathcal{A}, \mathcal{P}_{3}, z\right)-T \tag{3}
\end{equation*}
$$

A lower bound for $S\left(\mathcal{A}, \mathcal{P}_{3}, z\right)$ is obtained by the half-dimensional sieve as in [1] and [7]. To get an upper bound for T we use the method of [7] but take advantage of an averaging over a parameter l by using a more flexible error term in the linear sieve. This idea of the proof goes back to Iwaniec [2].

Since each element $a \in \mathcal{A}$ has an even number of prime factors belonging to \mathcal{P}_{3} and $2 \| a$, for $\alpha<4$ we have

$$
T=\sum_{\substack{x<p \leq x+x^{\theta} \\ p=1+2 n p_{1} p_{2}}} 1,
$$

where $p_{1}, p_{2} \in \mathcal{P}_{3}, p_{1} \geq p_{2} \geq x^{1 / \alpha}$ and n is an integer divisible only by primes of the form $p \equiv 1(\bmod 4)$. Define

$$
\begin{aligned}
\mathcal{L}=\left\{l=n p_{2}\left|n \leq x^{1-2 / \alpha}, p\right| n \Rightarrow p \equiv\right. & 1(\bmod 4) \\
& \left.x^{1 / \alpha} \leq p_{2}<(x / n)^{1 / 2}, p_{2} \in \mathcal{P}_{3}\right\}
\end{aligned}
$$

and, for each $l \in \mathcal{L}$,

$$
\mathcal{M}(l)=\left\{m=2 l p_{1}+1 \mid x / 2 \leq p_{1} l<\left(x+x^{\theta}\right) / 2, l p_{1} \equiv 1(\bmod 4)\right\}
$$

Then T is at most the number of primes in $\bigcup_{l \in \mathcal{L}} \mathcal{M}(l)$. Thus

$$
\begin{equation*}
T \leq \sum_{l \in \mathcal{L}}\left(S\left(\mathcal{M}(l), \mathcal{P}(l), x^{\theta_{0}}\right)+O\left(x^{\theta_{0}}\right)\right) \tag{4}
\end{equation*}
$$

where $\mathcal{P}(l)=\{p \mid(p, 2 l)=1\}$.
2. Auxiliary results. To get an upper bound for T we need two lemmata. The first one is the linear sieve with a flexible error term, and the second one gives the required estimation for the error term arising from the sieve.

Before stating these lemmata we introduce some more sieve notation. For a square-free d with prime factors in \mathcal{P}, we let $\mathcal{F}_{d}=\{n \mid d n \in \mathcal{F}\}$. Let

$$
\left|\mathcal{F}_{d}\right|=\frac{\omega(d)}{d} X+r(\mathcal{F}, d)
$$

where $X>1$ is independent of d and $\omega(d)$ is a multiplicative function. Define further

$$
V(z)=\prod_{p<z, p \in \mathcal{P}}\left(1-\frac{\omega(p)}{p}\right)
$$

Now we are ready to state the upper bound of the linear sieve. It follows as Theorem 1 of [4] by an obvious modification to the argument in Section 3 of [4].

Lemma 2. Assume that

$$
\begin{equation*}
\prod_{\substack{w \leq p<z \\ p \in \mathcal{P}}}\left(1-\frac{\omega(p)}{p}\right)^{-1}<\frac{\log z}{\log w}\left(1+\frac{K}{\log w}\right) \tag{5}
\end{equation*}
$$

holds for all $z>w \geq 2$ with some constant K independent of w and z. Let further $s=\log Q / \log z$. Then

$$
S(\mathcal{F}, \mathcal{P}, z) \leq X V(z)\left(F(s)+o_{K}(1)\right)+\sum_{d<Q, d \mid P(z)} a_{d} r(\mathcal{F}, d)
$$

where $a_{d} \ll 1$ depend only on Q but not on $|\mathcal{F}|, \mathcal{P}$ or ω. If $1 \leq s \leq 3$, then $F(s)=2 e^{\gamma} / s$, where γ is Euler's constant.

The next lemma is a generalisation of the Bombieri-Vinogradov theorem in short intervals. It follows from Theorem 2 of [6].

Lemma 3. Let $g(l)$ be an arithmetic function satisfying $g(l) \ll 1$ and let

$$
H\left(x^{\prime}, h, q, a, l\right)=\sum_{\substack{x^{\prime} \leqq l p<x^{\prime}+h \\ l p \equiv a(\bmod q)}} 1-\frac{1}{\phi(q)} \int_{x^{\prime} / l}^{\left(x^{\prime}+h\right) / l} \frac{d t}{\log t}
$$

Then for every $A>0$ there exists a positive constant $B=B(A)$ such that

$$
\sum_{q \leq Q} \max _{(a, q)=1} \max _{h \leq x^{\theta}} \max _{x / 2<x^{\prime} \leq x}\left|\sum_{l \leq L,(l, q)=1} g(l) H\left(x^{\prime}, h, q, a, l\right)\right| \ll \frac{x^{\theta}}{(\log x)^{A}}
$$

for $Q=x^{\theta-1 / 2}(\log x)^{-B}$ and $L=x^{(5 \theta-3) / 2-\varepsilon}$ with $3 / 5+\varepsilon \leq \theta \leq 1$.
To evaluate the upper bound for T which we get from the linear sieve, we need two more lemmata. The first one is Lemma 3 of [7].

Lemma 4. Let $u(n)$ be the characteristic function of the integers having all prime factors of the form $4 m+1$. Let $f(n)=\prod_{p \mid n, p>2}(1-1 /(p-1))^{-1}$. Then

$$
\sum_{n \leq x} u(n) f(n)=\frac{A}{C_{1}} \frac{x}{(\log x)^{1 / 2}}+O\left(\frac{x}{(\log x)^{3 / 2}}\right)
$$

where

$$
A=\frac{1}{2 \sqrt{2}} \prod_{p \equiv 3(\bmod 4)}\left(1-\frac{1}{p^{2}}\right)^{1 / 2}, \quad C_{1}=\prod_{p \equiv 1(\bmod 4)}\left(1-\frac{1}{(p-1)^{2}}\right)
$$

The second lemma corresponds to Lemma 4 of [7].

Lemma 5. Let $\mathcal{L}, f(n), A$ and C_{1} be defined as above. Then

$$
\begin{equation*}
\sum_{l \in \mathcal{L}} \frac{f(l)}{l \log (x / l)}=\frac{1+o(1)}{(\log x)^{1 / 2}} \frac{A}{2 C_{1}} \int_{2}^{\alpha} \frac{\log (t-1)}{t(1-t / \alpha)^{1 / 2}} d t \tag{6}
\end{equation*}
$$

Proof. We follow the proof of Lemma 4 of [7]. Our situation is easier, because we have $\log (x / l)$ instead of $(\log (x / l))^{2}$. Write Y for the left hand side of (6) and let $u(n)$ be defined as above. Then

$$
Y=(1+o(1)) \sum_{n \leq x^{1-2 / \alpha}} \frac{u(n) f(n)}{n} \sum_{\substack{x^{1 / \alpha} \leq p_{2}<(x / n)^{1 / 2} \\ p_{2} \equiv 3(\bmod 4)}} \frac{1}{p_{2} \log \left(x /\left(n p_{2}\right)\right)}
$$

By the Siegel-Walfisz theorem

$$
\sum_{\substack{p \leq t \\ \equiv 3(\bmod 4)}} 1=\pi(t ; 4,3)=\frac{1}{2} \int_{2}^{t} \frac{d v}{\log v}+O\left(t e^{-\sqrt{\log t}}\right)
$$

Thus by partial integration

$$
\begin{align*}
Y & =(1+o(1)) \sum_{n \leq x^{1-2 / \alpha}} \frac{u(n) f(n)}{n} \int_{x^{1 / \alpha}}^{(x / n)^{1 / 2}} \frac{d \pi(t ; 4,3)}{t \log (x /(n t))} \tag{7}\\
& =\frac{1+o(1)}{2} \sum_{n \leq x^{1-2 / \alpha}} \frac{u(n) f(n)}{n} \int_{x^{1 / \alpha}}^{(x / n)^{1 / 2}} \frac{d t}{t \log t \log (x /(n t))} \\
& =\frac{1+o(1)}{2 \log x} \sum_{n \leq x^{1-2 / \alpha}} \frac{u(n) f(n)}{n} \frac{\log (\alpha h(n)-1)}{h(n)}
\end{align*}
$$

where $h(n)=1-\log n / \log x$. Define

$$
U(t)=\sum_{n \leq t} u(n) f(n), \quad K(t)=\frac{\log (\alpha h(t)-1)}{t h(t)}
$$

Then for $x \geq 10$ and $1 \leq t \leq x^{1-2 / \alpha}$ we have

$$
K^{\prime}(t)=-\frac{1}{t^{2} h(t)} \log (\alpha h(t)-1)+O\left(\frac{1}{t^{2} \log x}\right)
$$

because $h^{\prime}(t)=-1 /(t \log x)$ and $2 / \alpha \leq h(t) \leq 1$ under these restrictions.
Since $U(1-)=K\left(x^{1-2 / \alpha}\right)=0$, by partial integration the last sum in (7) equals

$$
\begin{aligned}
\int_{1-}^{x^{1-2 / \alpha}} K(v) d U(v) & =-\int_{1}^{x^{1-2 / \alpha}} U(v) K^{\prime}(v) d v \\
& =\frac{A}{C_{1}} \int_{1}^{x^{1-2 / \alpha}} \frac{\log (\alpha h(v)-1)}{v h(v)(\log v)^{1 / 2}} d v+O(1) \\
& =\frac{A}{C_{1}} \sqrt{\log x} \int_{2}^{\alpha} \frac{\log (t-1)}{t(1-t / \alpha)^{1 / 2}} d t+O(1)
\end{aligned}
$$

where the last equality is due to the change of variables $t=\alpha h(v)$.
3. Application of sieves. First we state a lower bound for $S\left(\mathcal{A}, \mathcal{P}_{3}, z\right)$.

Proposition 6. Let $1 / 2 \leq \theta \leq 1$ and $2 /(2 \theta-1) \leq \alpha \leq 6 /(2 \theta-1)$. Then

$$
S\left(\mathcal{A}, \mathcal{P}_{3}, x^{1 / \alpha}\right) \geq\left(W_{1}(\theta, \alpha)+o(1)\right) \frac{x^{\theta}}{(\log x)^{3 / 2}}
$$

where

$$
W_{1}(\theta, \alpha)=\frac{A C_{3}}{\sqrt{4 \theta-2}} \int_{1}^{\alpha(\theta-1 / 2)} \frac{d t}{\sqrt{t(t-1)}}
$$

$C_{3}=\prod_{p \equiv 3(\bmod 4)}\left(1-1 /(p-1)^{2}\right)$ and A is defined as above.
Proof. The proof is an application of the half-dimensional sieve [3]. The estimation of the error term comes from the Bombieri-Vinogradov theorem in short intervals (Lemma 3). For details, see [7, Proposition 1].

Next we find an upper bound for T.
Proposition 7. Let $3 / 5<\theta<1$ and let $2 \leq \alpha<\min \{4,2 /(5-5 \theta)$, $6 /(5-4 \theta)\}$. Then

$$
T \leq\left(W_{2}(\theta, \alpha)+o(1)\right) \frac{x^{\theta}}{(\log x)^{3 / 2}}
$$

where

$$
W_{2}(\theta, \alpha)=\frac{A C_{3}}{2 \theta-1} \int_{2}^{\alpha} \frac{\log (t-1)}{t(1-t / \alpha)^{1 / 2}} d t
$$

Proof. For each $l \in \mathcal{L}$, in Lemma 2 choose

$$
\mathcal{F}=\mathcal{M}(l), \quad \mathcal{P}=\mathcal{P}(l), \quad X=\frac{1}{2} \int_{x /(2 l)}^{\left(x+x^{\theta}\right) /(2 l)} \frac{d t}{\log t}=\frac{x^{\theta}}{4 l \log (x / l)}(1+o(1))
$$

and

$$
\omega(p)= \begin{cases}p /(p-1) & \text { if } p \in \mathcal{P}(l) \\ 0 & \text { otherwise }\end{cases}
$$

Let d be a square-free integer with all the prime factors belonging to $\mathcal{P}(l)$. Let a_{d}^{*} be the unique $(\bmod 4 d)$ solution to the system of congruences

$$
\left\{\begin{array}{l}
2 x \equiv-1(\bmod d) \\
x \equiv 1(\bmod 4)
\end{array}\right.
$$

Then

$$
\left|\mathcal{M}(l)_{d}\right|=\sum_{\substack{x / 2 \leq p_{1} l<\left(x+x^{\theta}\right) / 2 \\ p_{1} l \equiv a_{d}^{*}(\bmod 4 d)}} 1, \quad r(\mathcal{M}(l), d)=H\left(x / 2, x^{\theta} / 2,4 d, a_{d}^{*}, l\right)
$$

By Lemma 2 we obtain

$$
\begin{align*}
S\left(\mathcal{M}(l), \mathcal{P}(l), x^{\theta_{0}}\right) \leq & X V\left(x^{\theta_{0}}\right)\left(F\left(\frac{\log Q}{\theta_{0} \log x}\right)+o(1)\right) \tag{8}\\
& +\sum_{d<Q, d \mid P\left(l, x^{\theta_{0}}\right)} a_{d} H\left(x / 2, x^{\theta} / 2,4 d, a_{d}^{*}, l\right)
\end{align*}
$$

where

$$
P(l, z)=\prod_{p \in \mathcal{P}(l), p<z} p
$$

The implied constant here does not depend on l since we can choose the constant K in (5) independently of l : We simply drop out the condition $(p, 2 l)=1$ when we look for this constant.

Now

$$
\begin{align*}
V\left(x^{\theta_{0}}\right) & =\prod_{p<x^{\theta_{0},(p, 2 l)=1}}\left(1-\frac{1}{p-1}\right) \tag{9}\\
& =2(1+o(1)) C_{1} C_{3} f(l) \prod_{p<x^{\theta_{0}}}\left(1-\frac{1}{p}\right)=(1+o(1)) \frac{2 C_{1} C_{3} e^{-\gamma} f(l)}{\theta_{0} \log x}
\end{align*}
$$

by Mertens' formula.
By choosing $Q=x^{\theta-1 / 2} /(\log x)^{B}$ and $\theta_{0}=(\theta-1 / 2) / 3$, and summing over all $l \in \mathcal{L}$, from (4), (8) and (9) by Lemma 5 we get

$$
\begin{aligned}
T \leq & \left(W_{2}(\theta, \alpha)+o(1)\right) \frac{x^{\theta}}{(\log x)^{3 / 2}}+O\left(|\mathcal{L}| x^{\theta_{0}}\right) \\
& +\sum_{l \in \mathcal{L}} \sum_{d<Q, d \mid P\left(l, x^{\theta_{0}}\right)} a_{d} H\left(x / 2, x^{\theta} / 2,4 d, a_{d}^{*}, l\right)
\end{aligned}
$$

Here the second term is

$$
\ll x^{1-1 / \alpha+\theta_{0}} \leq x^{1-(5-4 \theta) / 6-\varepsilon+(\theta-1 / 2) / 3}=o\left(x^{\theta} /(\log x)^{3 / 2}\right)
$$

The third term is

$$
\ll \sum_{d<Q, 2 \nmid d}\left|\sum_{l \in \mathcal{L},(l, d)=1} H\left(x / 2, x^{\theta} / 2,4 d, a_{d}^{*}, l\right)\right|=o\left(x^{\theta} /(\log x)^{3 / 2}\right)
$$

by choosing $g(l)$ to be the characteristic function of \mathcal{L} in Lemma 3. Here we have noticed that $|\mathcal{L}| \leq x^{1-1 / \alpha} \leq x^{1-(5-5 \theta) / 2-\varepsilon}=x^{(5 \theta-3) / 2-\varepsilon}$.
4. Proof of the theorem. Assume that $3 / 5<\theta<1$ and $2 /(2 \theta-1) \leq$ $\alpha<\min \{4,2 /(5-5 \theta), 6 /(5-4 \theta)\}$. Then, by equations (2) and (3) and Propositions 6 and 7 ,

$$
\sum_{x<p \leq x+x^{\theta}} b^{*}(p-1) \geq\left(\frac{A C_{3}}{2 \theta-1} W(\theta, \alpha)+o(1)\right) \frac{x^{\theta}}{(\log x)^{3 / 2}}
$$

where

$$
W(\theta, \alpha)=\sqrt{\theta-1 / 2} \int_{1}^{\alpha(\theta-1 / 2)} \frac{d t}{\sqrt{t(t-1)}}-\int_{2}^{\alpha} \frac{\log (t-1)}{t(1-t / \alpha)^{1 / 2}} d t
$$

The choice $\theta=10 / 11$ and $\alpha=11 / 4$ satisfies the assumptions. Evaluation of the integrals gives

$$
W\left(\frac{10}{11}, \frac{11}{4}\right)>0.005
$$

which completes the proof.
Numerical calculation gives $\max _{\alpha} W(0.908, \alpha)<0$. So there is no possibility to improve the exponent substantially without a new idea.

Acknowledgments. The author thanks Glyn Harman for his helpful comments and suggestions. The author was supported by EPSRC grant GR/T20236/01.

References

[1] M. N. Huxley and H. Iwaniec, Bombieri's theorem in short intervals, Mathematika 22 (1975), 188-194.
[2] H. Iwaniec, Primes of the type $\varphi(x, y)+A$ where φ is a quadratic form, Acta Arith. 21 (1972), 203-234.
[3] —, The half dimensional sieve, ibid. 29 (1976), 69-95.
[4] -, Rosser's sieve, ibid. 36 (1980), 171-202.
[5] Yu. V. Linnik, An asymptotic formula in an additive problem of Hardy and Littlewood, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 629-706 (in Russian); English transl.: Amer. Math. Soc. Transl. 46 (1965), 65-148.
[6] J. Wu, Théorèmes généralisés de Bombieri-Vinogradov dans les petits intervalles, Quart. J. Math. Oxford 44 (1993), 109-128.
[7] J. Wu, Primes of the form $p=1+m^{2}+n^{2}$ in short intervals, Proc. Amer. Math. Soc. 126 (1998), 1-8.

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, United Kingdom
E-mail: k.s.matomaki@rhul.ac.uk

