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Prime numbers of the form p = m? + n? + 1 in short intervals
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Ka1sa MATOMAKI (Egham)

1. Introduction. In 1960 Linnik [5] proved an asymptotic formula for
Z T(p - a)7
p<N
where the summation runs over primes, a is a fixed non-zero integer and
r(n) is the number of representations of n as a sum of two squares. This
implies the first unconditional proof that there are infinitely many primes
of the form p = m? + n? + 1. Huxley and Iwaniec [1] considered primes of
the form m? +n? + 1 with (m,n) = 1 in the short interval (x, 2 + 2]. They
proved that for # = 99/100 this interval contains primes of this type for
every sufficiently large x and more precisely that the number of them is of
the expected order of magnitude, that is, > 2%/(log z)3/2. Wu [7] improved
this result to # = 115/121 ~ 0.9504.

In this paper, we prove the following theorem.
THEOREM 1. For every 6 > 10/11 = 0.9090... and x > z¢(0), we have
(1) > bp—1)>a"/(logx)*?,
z<p<z4az?
where
b (a) = { 1 ifa=m?+n? with (m,n) =1,
0 otherwise.

Since the set {m? 4+ n? | (m,n) = 1} consists of numbers with no prime
factors belonging to P3 = {p | p = 3 (mod4)}, it is natural to attack this
problem by applying the half-dimensional sieve to the set

A={p—-1]| r<p<z+a2’ p=3 (mod 8)}.
As usual, for a finite set 7 C N and a set P of primes we write
Pz)= [[ » SEFP2)={acF|(aP(x)=1}|
pEP, p<lz
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Then
(2) > bp—1)=S(APs,x+a?).

r<p<zta?
As in previous works, for z = 21/, a € [2,4), we write
(3) S(A,P3,$+$e):S(.A,Pg,z)—T.
A lower bound for S(A, Ps, z) is obtained by the half-dimensional sieve as in
[1] and [7]. To get an upper bound for T we use the method of [7] but take
advantage of an averaging over a parameter [ by using a more flexible error
term in the linear sieve. This idea of the proof goes back to Iwaniec [2].

Since each element a € A has an even number of prime factors belonging
to P3 and 2| a, for o < 4 we have

T= > 1,

z<p<z+a?
p=1+2np1p2

where p1,ps € P3, p1 > po > 2V and n is an integer divisible only by
primes of the form p =1 (mod4). Define
L={l=nps|n<z"% pln=p=1 (mod4),
2! < py < (x/n)'?, py € Ps}
and, for each [ € L,
M) ={m=2lp; +1|z/2 <pl < (x+2%)/2, Ipy =1 (mod4)}.
Then T is at most the number of primes in | J;c, M(l). Thus
(4) T <) (SM©D),P1),z") +0@"™)),
lel
where P(l) = {p| (p,2l) = 1}.

2. Auxiliary results. To get an upper bound for T' we need two lem-
mata. The first one is the linear sieve with a flexible error term, and the
second one gives the required estimation for the error term arising from the
sieve.

Before stating these lemmata we introduce some more sieve notation.
For a square-free d with prime factors in P, we let Fy = {n | dn € F}. Let

7 =D x oz 0),

where X > 1 is independent of d and w(d) is a multiplicative function.

Define further
viz)= ]I (1_%)

p<z,pEP
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Now we are ready to state the upper bound of the linear sieve. It follows

as Theorem 1 of [4] by an obvious modification to the argument in Section 3
of [4].

LEMMA 2. Assume that
-1
1 K
(5) 11 ( ——”<p)> <10gz(1+l )
WSy D og w ogw
peEP

holds for all z > w > 2 with some constant K independent of w and z. Let
further s =log Q/log z. Then

S(F,P,2) < XV(2)(F(s) +ox())+ > aar(F,d),
d<Q,d|P(z)

where ag < 1 depend only on @ but not on |F|, P orw. If 1 < s < 3, then
F(s) = 2¢e7/s, where v is Euler’s constant.

The next lemma is a generalisation of the Bombieri—Vinogradov theorem
in short intervals. It follows from Theorem 2 of [6].

LEMMA 3. Let g(1) be an arithmetic function satisfying g(1) < 1 and let
(z'+h)/l

1 dt
H(z',h,q,a,l) = Z 1—— S —.
z'<lp<z'+h ¢(q) z' /1 logt
Ip=a (mod q)

Then for every A > 0 there exists a positive constant B = B(A) such that
0
x
max max —max Z g(O)H (', h,q, a,l)‘ < v
= (a,q)=1 h<z0 z/2<z'<z <L (o=t (log x)
for @ =z~ 12(logx) B and L = z0=3)/2=¢ with 3/5 + <0 < 1.

To evaluate the upper bound for 7" which we get from the linear sieve,
we need two more lemmata. The first one is Lemma 3 of [7].

LEMMA 4. Let u(n) be the characteristic function of the integers having
all prime factors of the form 4m+1. Let f(n) =[], ,>2(1—1/(p — 1)L

Then
A T z
Zu(n)f(n) -0 (log )1/2 +O((logﬂﬁ)?’/2>7

n<x

e 03 s I (-5te)

p=3 (mod4) p=1(mod4)

The second lemma corresponds to Lemma 4 of [7].
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LEMMA 5. Let L, f(n), A and Cy be defined as above. Then

67

 1+0(1 log(t
(6) lezﬁ log(z/l)  (logz) 1/2 2C ét 1 —t/a

Proof. We follow the proof of Lemma 4 of [7]. Our situation is easier,
because we have log(x/l) instead of (log(z/l))?. Write Y for the left hand
side of (6) and let u(n) be defined as above. Then

o u(n)f(n) .
Y= elt) néxlz—:Q/a K ml/agpgz/n)l/z palog(z/(np2)) |

p2=3 (mod 4)

By the Siegel-Walfisz theorem

t
Z 1277(15;4,3)2%& dv + O(te~Viost),
2

p<t
p=3 (mod4)

Thus by partial integration

(z/n)Y/ .
(7) Y = (14 0(1)) 21:2/ u(n)nf(n) }/ %
_Lbol) 3 MW?W i
o 2 n<gl—2/o " 1/ tlog tlog(x/(nt))
 1+0(1) u(n)f(n) log(ah(n) — 1)
—m Z n h(n) 7

n§I172/a

where h(n) = 1 —logn/logx. Define

n<t

Then for £ > 10 and 1 < ¢ < 2172/% we have

K'(t) = tQ;( ) log(ah(t) — 1) + O<#>,

t2logx

because h/(t) = —1/(tlogz) and 2/« < h(t) < 1 under these restrictions.

Since U(1—) = K (2'72/®) = 0, by partial integration the last sum in (7)
equals
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pl—2/a pl—2/a
| Kwavw)=- | U@K(@)dv
1— 1
pl—2/a
A log(ah(v) — 1)
"o ) e ><1ogv>1/2 o
A lo

where the last equality is due to the change of variables t = ah(v). u

3. Application of sieves. First we state a lower bound for S(A, Ps, z).

PROPOSITION 6. Let 1/2 < 0 <1 and 2/(20 —1) < a < 6/(20 —1).

Then

29

S(A, P3,z'/*) = (Wi(0, @) + o(1)) (log2)372’

where

AC a(9—81/2) "
Vag—2 tt—1)
Cs = [1p=3 (moany(1 —1/(p — 1)?) and A is defined as above.

Proof. The proof is an application of the half-dimensional sieve [3]. The
estimation of the error term comes from the Bombieri—Vinogradov theorem
in short intervals (Lemma 3). For details, see [7, Proposition 1]. =

W1(9, Oé) =

Next we find an upper bound for 7.

PROPOSITION 7. Let 3/5 < 0 < 1 and let 2 < a < min{4,2/(5 — 56),
6/(5—40)}. Then

0
x
T < (Wo(6 1) ———
< (W60 + (1) G-
where
ACs ¢ log(t — 1)
Wa(6, T 20— 1S 1—t/a1/2dt'
2
Proof. For each [ € L, in Lemma 2 choose
(z+2?)/(20) 0
1 dt x
= l =Pl X == = 1 1
F=MO), P=P), 2 S logt 4llog(x/l)( +o(l))

x/(21)

w(p) — {p/(p_l) iprP(l),

0 otherwise.
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Let d be a square-free integer with all the prime factors belonging to P(1).
Let @} be the unique (mod4d) solution to the system of congruences

2z = —1 (modd),
=1 (mod4).

Then
IM(1)4] = > 1, r(M(),d) = H(z/2,2°/2,4d, a5, 1).

z/2<p1l<(z+a7)/2
p1l=a}; (mod 4d)

By Lemma 2 we obtain

8)  S(M@),P(1),2%) < XV(a) <F< 0?@&) + 0(1)>

+ Y agH(w/2,2°/2,4d,a}, 1),
d<Q,d|P(l,z%)

where
Plz)= ][] »
peP(l),p<z

The implied constant here does not depend on [ since we can choose the
constant K in (5) independently of I: We simply drop out the condition
(p,20) = 1 when we look for this constant.

Now

© Ve = [ <1_p%1>

p<z%, (p,2)=1

=2(140(1))C1C5f(1) H (1 - %) = (1+0(1)) %;)g;f(l)

by Mertens’ formula.
By choosing Q = 2/71/2/(logz)® and 6y = (9 — 1/2)/3, and summing
over all [ € £, from (4), (8) and (9) by Lemma 5 we get
0

(logaye2 T
+Y° > agH(x/2,2°/2,4d,a3,1).

leL d<Q,d|P(l,z%)

T < (Wa(6,a) + o(1)) [£]2%)

Here the second term is

< xl—l/a+90 < ml—(5—46)/6—8+(9—1/2)/3 — 0(%9/(10g$)3/2).
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The third term is
< 3 ‘ S H(w/2,2°/2,4d,a3,1)| = o(a’/(log 2)*)
d<Q,2d 1eL, (I,d)=1

by choosing ¢(I) to be the characteristic function of £ in Lemma 3. Here we
have noticed that |£| < z1=1/@ < g1-(6-50)/2— — ;(50-3)/2—¢ 4

4. Proof of the theorem. Assume that 3/5 <6 < 1and 2/(20—1) <
a < min{4,2/(5 — 50),6/(5 — 40)}. Then, by equations (2) and (3) and
Propositions 6 and 7,

ACs3 o
Y rp-1)= W(0,a) +o(1) ) ———,
20 —1 (log z)3/2

r<p<ztaf
where
a(6—1/2) © Jogt
W(0,a) =+/0—1/2 5 dt.
(6,0) R i e o

The choice § = 10/11 and o = 11 / 4 satisfies the assumptions. Evaluation

of the integrals gives
10 11
W(ﬁ’ z) > 0.005,

which completes the proof. =

Numerical calculation gives max, W (0.908, &) < 0. So there is no possi-
bility to improve the exponent substantially without a new idea.
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