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The Weil height in terms of an auxiliary polynomial
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Charles L. Samuels (Austin, TX)

1. Introduction. Let K be a number field and v a place of K dividing
the place p of Q. Let Kv and Qp denote the respective completions. We
write ‖ · ‖v to denote the unique absolute value on Kv extending the p-adic

absolute value on Qp and let | · |v = ‖ · ‖[Kv :Qp]/[K:Q]
v . Define the logarithmic

Weil height of α ∈ K by

h(α) =
∑

v

log+ |α|v

where the sum is taken over all places v of K. By the way we have normalized
our absolute values, this definition does not depend on K, and therefore,
h is a well-defined function on Q. By Kronecker’s theorem, h(α) ≥ 0 with
equality precisely when α is zero or a root of unity.

For f ∈ Z[x] having roots α1, . . . , αd define the logarithmic Mahler mea-

sure of f by

µ(f) =
d

∑

k=1

h(αk).

It is also worth noting that if f is irreducible then µ(f) = deg α · h(α).
Certainly µ(f) ≥ 0 with equality precisely when the only roots of f are 0

and roots of unity. In 1933, D. H. Lehmer [7] asked if there is a constant
c > 0 such that µ(f) ≥ c in all other cases. He noted that

µ(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1) = .1623 . . .

and this remains the smallest known Mahler measure greater than 0. The
best known unconditional result toward answering Lehmer’s problem is a
theorem of Dobrowolski [5] where he proves that if f has positive Mahler
measure then

µ(f) ≫
(

log log deg f

log deg f

)3

.

2000 Mathematics Subject Classification: Primary 11R04, 11R09.
Key words and phrases: Weil height, Mahler measure, Lehmer’s problem.

[209] c© Instytut Matematyczny PAN, 2007



210 C. L. Samuels

An affirmative answer to Lehmer’s problem has been given in certain
special cases. A polynomial f is said to be reciprocal if whenever α is a root
of f then α−1 is also a root. Breusch [4] proved that there exists a positive
constant c such that if f is not reciprocal then µ(f) ≥ c. Smyth [11] later
showed that we may take c = µ(x3 −x+1). Borwein, Hare and Mossinghoff
[3] improved the constant found by Smyth in the special case that f has
odd coefficients. They showed that if f is a non-reciprocal polynomial over
Z having odd coefficients, then µ(f) ≥ µ(x2 − x − 1).

Borwein, Dobrowolski and Mossinghoff [2] relaxed the assumption that f
not be reciprocal and still obtained an absolute lower bound on µ(f). They
used properties of the resultant to prove that if f has no cyclotomic factors
and coefficients congruent to 1 mod m then

µ(f) ≥ cm
deg f

1 + deg f

where c2 = (log 5)/4 and cm = log(
√

m2 + 1/2) for all m > 2. These results
appear in [2] as Corollaries 3.4 and 3.5 to Theorem 3.3. This theorem gives
a lower bound of the form

(1.1) µ(f) ≥ cm(T )
deg f

1 + deg f

where f has no cyclotomic factors and coefficients congruent to 1 mod m.
Here, cm(T ) is a positive constant depending on both m and an auxiliary
polynomial T ∈ Z[x]. The corollaries follow by making an appropriate choice
of T .

Extending the techniques of [2], Dubickas and Mossinghoff [6] improved
inequality (1.1) by finding a lower bound of the form

(1.2) µ(g) ≥ bm(T )
deg g

1 + deg f

where bm(T ) ≥ cm(T ). Here, g has no cyclotomic factors and is a factor of
a polynomial f having coefficients congruent to 1 mod m. Moreover, they
produced an algorithm which generates a sequence of polynomials {Tk} such
that the sequence {bm(Tk)} is increasing and bm(Tk) > cm for sufficiently
large k.

In a slightly different direction, Schinzel [10] proved that if α is a totally

real algebraic integer, not 0 or ±1, then h(α) ≥ 1
2 log 1+

√
5

2 . Bombieri and
Zannier [1] proved that if α is a totally p-adic algebraic number, not 0 or a

root of unity, then h(α) ≥ log p
2(p+1) .

If, in addition, α is an algebraic unit, Petsche [9] gave the improved lower
bound

(1.3) h(α) ≥ cp

p − 1
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where c2 = log
√

2 and cp = log(p/2) for all primes p > 2. Dubickas and
Mossinghoff [6] introduced an auxiliary polynomial to this problem as well,
giving the lower bound

(1.4) h(α) ≥ bp(T )

p − 1

where bp(T ) is the same as in (1.2). They showed how to find a sequence of
auxiliary polynomials that further improved (1.3).

As we have remarked, the well-known lower bounds (1.1), (1.2) and (1.4)
all rely on an auxiliary polynomial T . However, each of these bounds requires
an assumption on α. Our main result, Theorem 2.2, shows that if α ∈ Q
then h(α) can be written in terms of an auxiliary polynomial. In Section 3,
we show that this theorem naturally contains the results of [6]. Finally, in
Sections 4 and 5 we deduce two other interesting consequences of our main
result.

2. Main results. Let Ωv be the completion of an algebraic closure
of Kv. We define the logarithmic local supremum norm of T ∈ Ωv[x] on the
unit circle by

νv(T ) = log sup{|T (z)|v : z ∈ Ωv and |z|v = 1}.
For α ∈ Ωv and N ∈ Z such that deg T ≤ N define

Uv(N, α, T ) = inf{νv(T − f) : f ∈ Ωv[x], f(α) = 0 and deg f ≤ N}.
We now obtain the following lemma which relates Uv(N, α, T ) to more fa-
miliar functions.

Lemma 2.1. Let N ∈ Z and α ∈ Ωv. If T ∈ Ωv[x] is such that deg T
≤ N then

Uv(N, α, T ) = log |T (α)|v + Uv(N, α, 1)(2.1)

= log |T (α)|v − N log+ |α|v.
Proof. If T (α) = 0 then all parts of equations (2.1) equal −∞, so we as-

sume that T (α) 6= 0. Let us first verify the left hand equation. For simplicity
define the set

Sv(α, N) = {f ∈ Ωv[x] : f(α) = 0 and deg f ≤ N}.
It is clear that

Uv(N, α, T ) = inf{νv(T (x) − f(x)) : f ∈ Sv(α, N)}
= inf{νv(T (x) − (T (x) − T (α) + f(x))) : f ∈ Sv(α, N)}
= inf{νv(T (α) − f(x)) : f ∈ Sv(α, N)}
= inf{νv(T (α)(1 − f(x))) : f ∈ Sv(α, N)}.
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Since νv is the logarithm of a norm, we may factor T (α) out of the infimum
to see that

Uv(N, α, T ) = log |T (α)|v + inf{νv(1 − f(x)) : f ∈ Sv(α, N)}
= log |T (α)|v + Uv(N, α, 1),

which establishes the left hand equality.
In order to establish the right hand equality we must show that Uv(N,α,1)

= −N log+ |α|v. We first claim that if N ∈ Z then

(2.2) log |F (α)|v ≤ νv(F ) + N log+ |α|v
for all F ∈ Ωv[x] with deg F ≤ N . To see this, write F (x) =

∑deg F
k=0 akx

k. If
v is non-Archimedean then we have

(2.3) νv(F ) = log max{|ak|v : 0 ≤ k ≤ deg F}
and (2.2) follows from the strong triangle inequality. We now assume that v
is Archimedean. If |α|v ≤ 1 then the inequality follows from the maximum
principle. If |α|v > 1 then we obtain

log |α−deg F F (α)|v ≤ νv(x
deg F F (x−1)) = νv(F )

and (2.2) follows.
Now suppose that f ∈ Sv(α, N). Therefore, deg(1−f) ≤ N and inequal-

ity (2.2) implies that

0 = log |1 − f(α)|v ≤ νv(1 − f) + N log+ |α|v.
This inequality holds for all polynomials f ∈ Sv(α, N) so that the right
hand side may be replaced by its infimum over all such f . That is, we
obtain 0 ≤ Uv(N, α, 1) + N log+ |α|v so we find that

(2.4) Uv(N, α, 1) ≥ −N log+ |α|v.
We will now establish the opposite direction of (2.4) by making specific

choices for f to give upper bounds on Uv(N, α, 1). By taking f ≡ 0 we
see easily that Uv(N, α, 1) ≤ 0. Similarly, by taking f(x) = 1 − (x/α)N we
obtain

Uv(N, α, 1) ≤ νv(x/α)N = −N log |α|v.
Hence

(2.5) Uv(N, α, 1) ≤ min{0,−N log |α|v} = −N log+ |α|v.
If α ∈ K and T ∈ K[x] are such that T (α) 6= 0 then Lemma 2.1 implies

that Uv(N, α, T ) = 0 for all but finitely many places v of K. Hence, in this
situation we may define

U(N, α, T ) =
∑

v

Uv(N, α, T )
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where v runs over the places of K. We note that this definition does not
depend on K, so that U is a well-defined function on {(α, T ) ∈ Q × Q[x] :
T (α) 6= 0}. We are now prepared to state and prove our main result.

Theorem 2.2. Let N ∈ Z and α ∈ Q. If T ∈ Q[x] is such that deg T
≤ N and T (α) 6= 0 then

U(N, α, T ) = U(N, α, 1) = −Nh(α).

Proof. Assume that K is a number field containing α and the coefficients
of T , and v is a place of K. We know that the absolute value | · |v satisfies the
product formula

∏

v |β|v = 1 for all β ∈ K×. Hence, summing the equation
of Lemma 2.1 over all places v of K we get

(2.6) U(N, α, T ) = U(N, α, 1) = −Nh(α),

which establishes the theorem.

3. Polynomials near xn − 1. As we have remarked, Theorem 2.2 nat-
urally generalizes the results of Dubickas and Mossinghoff in [6]. We will
give a single result that contains both their bound on the Mahler measure
of a polynomial having coefficients congruent to 1 mod m and their bound
on the height of a totally p-adic algebraic unit.

Let us begin by reconstructing the situation of [6]. For an auxiliary poly-
nomial T ∈ Z[x] and a positive integer m define

(3.1) ωm(T ) = log gcd

{

mkT (k)(1)

k!
: 0 ≤ k ≤ deg T

}

.

Also assume that f is a polynomial of degree n− 1 with integer coefficients
congruent to 1 mod m. The authors prove (Theorem 2.2 of [6]) that if g is
a factor of f over Z satisfying gcd(g(x), T (xn)) = 1 then

(3.2) µ(g) ≥ ωm(T ) − ν∞(T )

deg T
· deg g

n
.

Later they prove (Theorem 4.2 of [6]) that if α is a totally p-adic algebraic
unit then

(3.3) h(α) ≥ ωp(T ) − ν∞(T )

(p − 1) deg T
.

Our goal is to produce a generalization of (3.2) where T and f are allowed
to have algebraic coefficients. Our version also contains (3.3) as a corollary.

Before we begin, we make one final trivial remark regarding the hypothe-
ses of [6]. The assumption that f have degree n−1 and coefficients congruent
to 1 mod m is equivalent to the assumption that (x−1)f(x) ≡ xn−1 mod m.
Therefore, we can make a slightly stronger conclusion by hypothesizing in-
stead that f(x) ≡ xn − 1 mod m and bounding the Mahler measure of all
factors g of f .
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We will require a version of ωm(T ) defined in (3.1) that allows m to be
a general algebraic number and T to have any algebraic coefficients. If K is
a number field, m ∈ K and T ∈ K[x] define

(3.4) ωm(T ) = −
∑

v∤∞
log max

{
∣

∣

∣

∣

mkT (k)(1)

k!

∣

∣

∣

∣

v

: 0 ≤ k ≤ deg T

}

where the sum is taken over places v of K. By the way we have normalized
our absolute values, this definition does not depend on K. Moreover, if
m ∈ Z and T ∈ Z[x] then (3.4) is the same as the definition (3.1).

If α, β, m ∈ K, then we write α ≡ β mod m if |α − β|v ≤ |m|v for all
v ∤ ∞. Similarly, if f, g ∈ K[x] we write f ≡ g mod m if νv(f − g) ≤ log |m|v
for all v ∤ ∞. Neither definition depends on K and both generalize the usual
notions of congruence in Z. If T ∈ K[x] we often write ν∞(T ) =

∑

v|∞ νv(T )

where v runs over places of K. This notation again does not depend on K.
It will also be convenient for this section and future applications to define

Uv(α, T ) = Uv(deg T, α, T ) and U(α, T ) = U(deg T, α, T ).
Using the definitions above, we obtain our generalized version of the

results of [6].

Theorem 3.1. Let m be an algebraic number. Suppose that f ∈ Q[x]
has degree n and f(x) ≡ xn − 1 mod m. If α is a root of f and T ∈ Q[x] is

such that T (αn) 6= 0 then

h(α) ≥ ωm(T ) − ν∞(T )

ndeg T
.

Proof. Let K be a number field containing α and the coefficients of T
and let v index the places of K. Using Theorem 2.2 with N = deg T and
the definition of Uv we have

(3.5) −ndeg T · h(α) ≤
∑

v∤∞
Uv(α, T (xn)) + ν∞(T )

so we must show that
∑

v∤∞ Uv(α, T (xn)) ≤ −ωm(T ). Let v ∤ ∞. Writing T

in its Taylor expansion at 1 and using the binomial theorem we find that

Uv(α, T (xn)) = Uv

(

α,

deg T
∑

k=0

T (k)(1)

k!
(xn − 1)k

)

≤ νv

( deg T
∑

k=0

T (k)(1)

k!
(xn − 1 − f(x))k

)

.

Then using the strong triangle inequality for νv we obtain

Uv(α, T (xn)) ≤ max

{

log

∣

∣

∣

∣

T (k)(1)

k!

∣

∣

∣

∣

v

+ kνv(x
n − 1− f(x)) : 0 ≤ k ≤ deg T

}

.
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Since f(x) ≡ xn − 1 mod m we have νv(x
n − 1 − f(x)) ≤ log |m|v. Conse-

quently,

∑

v∤∞
Uv(α, T (xn)) ≤

∑

v∤∞
log max

{
∣

∣

∣

∣

mkT (k)(1)

k!

∣

∣

∣

∣

v

: 0 ≤ k ≤ deg T

}

= −ωm(T )

and the theorem follows from (3.5).

If we assume that f and T have integer coefficients and m is a positive
integer then we recover Theorem 2.2 of [6].

Corollary 3.2. Let f ∈ Z[x] have degree n and f(x) ≡ xn − 1 mod m.

If g is a factor of f and T ∈ Z[x] is such that gcd(g(x), T (xn)) = 1 then

µ(g) ≥ ωm(T ) − ν∞(T )

deg T
· deg g

n
.

Proof. Apply Theorem 3.1 to each root α of g and the result follows.

We also recover Theorem 4.2 of [6] giving a lower bound on the height
of a totally p-adic algebraic unit.

Corollary 3.3. If α is a totally p-adic algebraic unit and T ∈ Z[x] is

such that T (αp−1) 6= 0 then

h(α) ≥ ωp(T ) − ν∞(T )

(p − 1) deg T
.

Proof. For a general number field K and a non-Archimedean place v of
K dividing the place p of Q, let Ov = {x ∈ Kv : |x|v ≤ 1} denote the ring
of v-adic integers in Kv and let πv be a generator of its unique maximal
ideal Mv = {x ∈ Kv : |x|v < 1}. Let dv = [Kv : Qp] denote the local degree
and d = [K : Q] the global degree. We also define the residue degree fv by

pfv = |Ov/Mv| and note that |πv|v = ‖p‖fv/d
v . If K is a totally p-adic field

then we have fv = dv = 1 for all v | p.
Now assume that K is the totally p-adic field Q(α). If v is a place of K

dividing p then

|αp−1 − 1|v ≤ |πv|v = ‖p‖fv/d
v = ‖p‖dv/d

v = |p|v,
and if v does not divide p or ∞ then

|αp−1 − 1|v ≤ 1 = |p|v.
Hence xp−1 − 1 ≡ xp−1 −αp−1 mod p. Now we may apply Theorem 3.1 with
m = p and f(x) = xp−1 − αp−1 and the result follows.

4. Polynomials near (xn − 1)r. In this section, we apply Theorem 2.2
in order to examine the Mahler measure of any factor of a polynomial f
satisfying f(x) ≡ (xn − 1)r mod m. In particular, we obtain the following
explicit lower bound.
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Theorem 4.1. Suppose that f ∈ Z[x] has degree nr, m ≥ 2 is an integer ,
and f(x) ≡ (xn−1)r mod m. If g is a factor of f over Z having no cyclotomic

factors then

µ(g) ≥ c
deg g

n2r

where c is the unique positive number satisfying cec/2 log 3 = log(3/2) log 2.
(Note that c = .22823 . . . .)

As an application, let T be a product of cyclotomic polynomials of de-
gree 2N . Then we may apply Theorem 4.1 with g(x) = T (x) + mxN where
|m| ≥ 2. In this situation, r is the maximum multiplicity of the cyclotomic
polynomials in the factorization of T over Z. These types of polynomials
have been studied extensively (see, for example, [8]) and our results yield a
lower bound on any such g, although it is not absolute for this entire class
of polynomials.

Of course, Theorem 4.1 is not helpful when g is a product of cyclotomic
polynomials with the middle coefficient shifted by only 1. Numerical evi-
dence presented in [8] suggests that these polynomials form a relatively rich
collection of polynomials of small Mahler measure. Hence it would be use-
ful to have a method for giving a lower bound on their Mahler measure.
However, we are unable to do so in this paper.

We also note that Theorem 4.1 is weaker than Corollaries 3.3 and 3.4
of [2] when r = 1. In this situation, we may appeal to [6] or the results of
Section 3 to obtain the sharpest known bounds.

The proof of Theorem 4.1 will require three lemmas as well as some
additional notation. Suppose that g and T are polynomials over any field K.
As K[x] is a unique factorization domain, we may write λg(T ) to denote the
multiplicity of g in the factorization of T . If G is a collection of polynomials
over K, then let λG(T ) =

∑

g∈G λg(T ).

Our first lemma is a direct generalization of Theorem 3.3 of [2].

Lemma 4.2. Suppose that f ∈ Z[x] has degree nr and f(x) ≡ (xn − 1)r

mod m. If g is a factor of f over Z and T ∈ Q[x] is relatively prime to g
then

(4.1) µ(g) ≥ λxn−1(T ) log m − rν∞(T )

r deg T
deg g.

Moreover , if 2 |m then

(4.2) µ(g) ≥ λxn−1(T ) log m + λGn
(T ) log 2 − rν∞(T )

r deg T
deg g

where Gn = {xn2j

+ 1 : j ≥ 0}.
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Proof. Suppose that α is a root of f , K is a number field containing α,
and v indexes the places of K. First observe that if F1, F2 ∈ Ωv[x] then
νv(F1F2) ≤ νv(F1) + νv(F2). This yields the multiplicativity relation

(4.3) Uv(α, F1F2) ≤ Uv(α, F1) + Uv(α, F2).

Theorem 2.2 implies that

(4.4) −r deg T · h(α) ≤
∑

v∤∞
Uv(α, T r) + rν∞(T ).

Suppose that T0 ∈ Z[x] is such that T (x)r = (xn − 1)rλxn
−1(T )T0(x). We

know that since T0 has integer coefficients, Uv(α, T0) ≤ νv(T0) ≤ 0. Then
(4.3) implies that

Uv(α, T r) ≤ λxn−1(T )Uv(α, (xn − 1)r) ≤ λxn−1(T )νv((x
n − 1)r − f(x)).

Since f has integer coefficients and satisfies f(x) ≡ (xn − 1)r mod m we
know that

∑

v∤∞ νv((x
n − 1)r − f(x)) ≤ − log m. It follows that

(4.5) −r deg T · h(α) ≤ −λxn−1(T ) log m + rν∞(T ).

Applying (4.5) to each root α of g, we obtain (4.1).
Next, assume that 2 |m. In this situation, write

T (x)r = T0(x)(xn − 1)rλxn
−1(T )

∏

j≥0

(xn2j

+ 1)
rλ

xn2j
+1

(T )

for some T0 ∈ Z[x]. In addition to the congruence f(x) ≡ (xn − 1)r mod m,

for each j ≥ 0 there exists bj ∈ Z[x] such that f(x)bj(x) ≡ (xn2j

+1)r mod 2.
Hence,

∑

v∤∞
νv(x

n2j

+ 1 − f(x)bj(x)) ≤ − log 2

for all j ≥ 0. Now we find that

Uv(α, T r) ≤ λxn−1(T )νv((x
n − 1)r − f(x))

+
∑

j≥0

λ
xn2j

+1
(T )νv(x

n2j

+ 1 − f(x)bj(x))

for all v ∤ ∞. Therefore, (4.4) yields

−r deg T · h(α) ≤ −λxn−1(T ) log m − λGn
(T ) log 2 + rν∞(T ),

and the result follows by a similar argument to the above.

Note that the right hand sides of the inequalities of Lemma 4.2 are less
than 0 when r is large compared to m. Hence, it may appear that these
bounds are useful only when r is small. However, a simple consequence of
Lemma 4.2 allows us to give non-trivial lower bounds when r is large.
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Lemma 4.3. Let p be prime and q be a power of p such that deg f = nq
and f(x) ≡ (xn − 1)q mod p. If g is a factor of f over Z and T ∈ Q[x] is

such that gcd(T (xq), g(x)) = 1 then

(4.6) µ(g) ≥ λxn−1(T ) log p − ν∞(T )

q deg T
deg g.

Moreover , if p = 2 then

(4.7) µ(g) ≥ (λxn−1(T ) + λGn
(T )) log 2 − ν∞(T )

q deg T
deg g

where Gn = {xn2j

+ 1 : j ≥ 0}.
Proof. We know that f(x) ≡ (xn − 1)q ≡ xnq − 1 mod p. Therefore, we

may apply Lemma 4.2 with m = p, r = 1 and T (xq) in place of T (x). We
obtain

µ(g) ≥ λxnq−1(T (xq)) log p − ν∞(T (xq))

q deg T
deg g

=
λxn−1(T ) log p − ν∞(T )

q deg T
deg g.

Inequality (4.7) follows from a similar argument.

In the hypotheses of Lemma 4.2 we are given f(x) ≡ (xn−1)r mod m, so

we may also apply Lemma 4.3 with p a prime dividing m and q = p⌈logp r⌉.
We know that (xn − 1)q−rf(x) ≡ (xn − 1)q mod p so that Lemma 4.3 still
applies to any factor g of f .

As we have noted, this method allows us to deduce non-trivial lower
bounds on the Mahler measure even when r is large. There is the disad-
vantage that q is potentially much larger than r, making the inequalities of
Lemma 4.3 weaker than those of Lemma 4.2 in some cases. Furthermore,
if m has many prime factors, p will be significantly smaller than m, again
making the inequalities of Lemma 4.3 weaker than those of Lemma 4.2.

As a general rule, we will use Lemma 4.2 when r is small and Lemma 4.3
when r is large to obtain the best universal results. We see this strategy in
the proof of our next lemma.

Lemma 4.4. Suppose that f ∈ Z[x] has degree nr and f(x) ≡ (xn − 1)r

mod m. If g is a factor of f over Z having no cyclotomic factors then

(4.8) µ(g) ≥ log

(

m

2r

)

· deg g

nr
.

If p is a prime dividing m then

(4.9) µ(g) ≥ 1

p
log

(

p

2

)

· deg g

nr
and if 2 divides m then

(4.10) µ(g) ≥ log 2

4
· deg g

nr
.
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Proof. To prove (4.8), we apply Lemma 4.2 with T (x) = xn − 1 and the
inequality follows immediately.

To prove (4.9), we let p be a prime dividing m and set q = p⌈logp r⌉.
Therefore q is an integer greater than or equal to r so that (xn−1)q−rf(x) ≡
(xn − 1)q mod p. Using T (x) = xn − 1 with inequality (4.6) of Lemma 4.3
we find that

µ(g) ≥ log

(

p

2

)

· deg g

nq
.

But we also know that q = p⌈logp r⌉ < p1+logp r = pr so that

µ(g) ≥ log

(

p

2

)

· deg g

npr
,

which is the desired inequality.
Finally, to prove (4.10), suppose that 2 |m and q = 2⌈log2 r⌉. Use T (x) =

x2n − 1 in inequality (4.7) of Lemma 4.3 to obtain the desired result.

Proof of Theorem 4.1. Let c0 = c/(2 log 2). We distinguish the following
three cases:

(i) m ≥ 2r+c0 ,
(ii) m < 2r+c0 and 2 |m,
(iii) m < 2r+c0 and 2 ∤ m.

If m ≥ 2r+c0 then we use inequality (4.8) of Lemma 4.4 to find that

µ(g) ≥ c0 log 2 · deg g

nr
≥ 2c0 log 2 · deg g

n2r
= c

deg g

n2r
.

If m < 2r+c0 and 2 |m then inequality (4.10) implies that

µ(g) ≥ log 2

4
· deg g

nr
≥ log 2

2
· deg g

n2r
≥ c

deg g

n2r
.

If m < 2r+c0 and p 6= 2 is a prime dividing m then we apply inequality (4.9)
to find that

µ(g) ≥ 1

p
log

(

p

2

)

· deg g

nr
≥

(

1 − log 2

log p

)

· log p

p
· deg g

nr

≥ log(3/2)

log 3
· log p

p
· deg g

nr
.

However, the function (log x)/x is decreasing for x ≥ e. Since p ≤ m < 2r+c0 ,
we conclude that

log p

p
>

(r + c0) log 2

2r+c0
>

r log 2

2r+c0
,

and hence,

µ(g) ≥ log(3/2) log 2

2c0 log 3
· deg g

n2r
.
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We know that 2c0 = ec/2 so that by our definition of c we obtain

µ(g) ≥ c
deg g

n2r
,

which establishes the theorem in the final case.

5. Polynomials near polynomials of low Archimedean supre-

mum norm. Suppose that m is a non-zero algebraic number. We now
examine the situation where f and T are polynomials over Q of the same
degree with f ≡ T mod m. If K is a number field containing m with v
indexing the places of K, let

N(m) =
∑

v|∞
log |m|v = −

∑

v∤∞
log |m|v.

Note that this definition does not depend on K and the second equality
follows from the product formula. Recall that we write ν∞(T ) =

∑

v|∞ νv(T )

and we say that f ≡ T mod m if νv(T − f) ≤ log |m|v for all v ∤ ∞.

Theorem 5.1. Suppose that f and T are polynomials over Q of the

same degree such that f ≡ T mod m. If α satisfies f(α) = 0 and T (α) 6= 0
then

deg T · h(α) ≥ N(m) − ν∞(T ).

Proof. Let K be a number field containing α, m, the coefficients of T
and the coefficients of f . By Theorem 2.2 we find that

−deg T · h(α) ≤
∑

v∤∞
Uv(α, T ) + ν∞(T ).

If v ∤ ∞ then Uv(α, T ) ≤ νv(T − f) ≤ log |m|v and the result follows.

Clearly, in order for Theorem 5.1 to yield a non-trivial lower bound, we
must have N(m) > ν∞(T ), which justifies the title of this section. That is,
if f is sufficiently close to T at enough non-Archimedean places of K, the
positive contribution from N(m) will overcome the negative contribution
from ν∞(T ). We also note the special case of Theorem 5.1 where m ∈ Z and
f, T ∈ Z[x].

Corollary 5.2. Suppose that f and T are polynomials over Z of the

same degree and m is a positive integer such that f ≡ T mod m. If g is a

factor of f relatively prime to T then

deg f · µ(g) ≥ deg g · (log m − ν∞(T )).

Proof. Apply Theorem 5.1 to each root α of g and the corollary follows.

Corollary 5.3. Suppose that f and T are polynomials over Z of the

same degree and m is a positive integer such that f ≡ T mod m. If f is

relatively prime to T then

µ(f) ≥ log m − ν∞(T ).
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Proof. Apply Corollary 5.2 with g = f and the result is immediate.
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