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Effective solution of the D(−1)-quadruple conjecture
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1. Introduction. Let n be an integer. A set of m positive integers is
called a Diophantine m-tuple with the property D(n), or simply a D(n)-m-
tuple, if the product of any two of them increased by n is a perfect square.

A lot of work has been done on D(n)-m-tuples in the last decade, but
in fact the problem is much older. It was first studied by Diophantus in the
case n = 1. He found a set of four positive rationals with the above prop-
erty: {1/16, 33/16, 17/4, 105/16}. The first D(1)-quadruple however, the set
{1, 3, 8, 120}, was found by Fermat. Later Euler was able to add the fifth
positive rational, 777480/8288641, to Fermat’s set (see [6], [7, pp. 103–104,
232], [8, pp. 141–145] and [24, pp. 177–181]). Recently, Gibbs [22] found ex-
amples of sets of six positive rationals with the property of Diophantus. The
folklore conjecture is that there does not exist a D(1)-quintuple. In 1969,
Baker and Davenport [2] proved that Fermat’s set cannot be extended to a
D(1)-quintuple. Recently, the first author proved that there does not exist
a D(1)-sextuple and there are only finitely many D(1)-quintuples (see [15],
this refined previous results [19, 12]). The last result is effective, namely

if {a, b, c, d, e} is a D(1)-quintuple, then d < 102171 and e < 101026

(cf.
[15, Corollary 4, p. 210]). This proves the D(1)-quintuple conjecture in an
effective way, leaving open a completely determined finite set to check.

For general n, it is easy to see, by considering congruences modulo 4,
that if n ≡ 2 (mod 4) then there does not exist a D(n)-quadruple (see
[5, 23, 29]), while the first author proved in [9] that if n 6≡ 2 (mod 4) and n /∈
S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists at least one Diophantine
quadruple with the property D(n). The conjecture is that for n ∈ S there
does not exist a Diophantine quadruple with the property D(n).
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The best known upper bounds for the size of sets with the property D(n)
are logarithmic in |n| (see [14, 16]). Moreover, for n prime it was shown
recently that the size is bounded by the absolute constant 2170 (cf. [18]).

Therefore, in the case n = −1 the conjecture is that there does not
exist a D(−1)-quadruple. In analogy to above this is known as the D(−1)-
quadruple conjecture and it appeared explicitly in [10] for the first time. It
is known that some particular D(−1)-triples cannot be extended to D(−1)-
quadruples, namely this was verified for the triples {1, 2, 5} (by Brown in [5],
see also [32, 25, 31, 26]), {1, 5, 10} (by Mohanty and Ramasamy in [28]),
{1, 2, 145}, {1, 2, 4901}, {1, 5, 65}, {1, 5, 20737}, {1, 10, 17}, {1, 26, 37} (by
Kedlaya [25]) and {17, 26, 85} (again by Brown in [5]). Moreover, Brown
proved that the infinite families {x2 +1, (x+1)2 +1, (2x+1)2 +4}, if x 6≡ 0
(mod4), {2, 2x2 + 2x + 1, 2x2 + 6x + 5}, if x ≡ 1 (mod4) of D(−1)-triples
cannot be extended to quadruples. The first author proved the conjecture
in [11] for all triples of the form {1, 2, c}.

Very recently, Dujella and Fuchs [17] proved that there does not exist
a D(−1)-quintuple. More precisely, they proved that there does not exist a
D(−1)-quadruple {a, b, c, d} with 2 ≤ a < b < c < d. This implies that we
are left with the case a = 1, i.e. D(−1)-quadruples of the form {1, b, c, d}.
In [17] it was remarked that the case a = 1 seems more involved and much
harder and that it can be compared with the strong version of the quintuple
conjecture for n = 1, which says that every D(1)-triple can be extended to
a D(1)-quadruple in an essentially unique way.

In the meantime the nonextendability of {1, b, c} was confirmed for b = 5
(in [1]), for b = 10 (by the second author [20]), and for b = 17, 26, 37, 50 (by
Fujita in [21]).

The aim of the present paper is to go further and to prove that in fact
there are at most finitely many D(−1)-quadruples {1, b, c, d}. We will prove
the following result:

Theorem 1. Let D = {1, b, c} be a D(−1)-triple. Then:

(i) If c>b9, then D cannot be extended to a D(−1)-quadruple {a, b, c, d}
such that d > c.

(ii) If 11b6 ≤ c ≤ b9, then D cannot be extended to a D(−1)-quadruple.

Assume that {1, b, c, d} with 1 < b < c < d is an extension of D to a

D(−1)-quadruple.

(iii) If b3 ≤ c < 11b6, then c < 10238, d < 101023

.

(iv) If b1.1 ≤ c < b3, then c < 10491, d < 101023

.

(v) If 3b < c < b1.1, then c < 1094, d < 101021

.

(vi) If c = 1 + b + 2
√

b − 1, then c < 1074, d < 101021

.
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Note that, by [17, Lemma 7], if c > b and c 6= 1 + b + 2
√

b − 1 then it
follows that c > 3b. Hence, the theorem covers all possible D(−1)-triples
{1, b, c} such that 1 < b < c.

To sum up, we get the following effective solution of the D(−1)-quadruple
conjecture:

Theorem 2. There are only finitely many D(−1)-quadruples. More-

over , if {a, b, c, d} is a D(−1)-quadruple, then max{a, b, c, d} < 101023

.

As in the case for the D(1)-quintuple conjecture, this proves the D(−1)-
quadruple conjecture in an effective way. Unfortunately, the remaining set
is too large to be checked by means of a computer program at present.

This is also the first nontrivial result (for integers 6≡ 2 (mod4)) related
to the following conjecture:

Conjecture 1. If n is not a perfect square, then there exist only finitely

many D(n)-quadruples.

Since, by [9, Remark 3], all elements of a D(−4)-quadruple are even,
Theorem 2 implies that Conjecture 1 is valid for n = −1 and n = −4.

The case n = −1 deserves special attention because it is closely connected
with another old problem investigated by Diophantus and Euler. Namely,
Diophantus studied the problem of finding numbers such that the product
of any two increased by the sum of these two gives a square. He found
two triples {4, 9, 28} and {3/10, 21/5, 7/10} satisfying this property. Euler
found a quadruple {5/2, 9/56, 9/224, 65/224} and asked if there is an integer
solution of this problem (see [6], [7, pp. 85–86, 215–217], [8, pp. 101–104] and
[24, pp. 162–164, 344–347]). In [13] an infinite family of rational quintuples
with this property was given. Since

xy + x + y = (x + 1)(y + 1) − 1,(1)

we see that the problem of finding integer m-tuples with the property that
for any two distinct elements the product plus their sum is a perfect square
is equivalent to finding D(−1)-m-tuples. In fact the main result in [17] com-
pletely solved this problem, namely it was shown that there does not exist
a set of four positive integers such that the product of any two distinct
elements plus their sum is a perfect square.

By the equivalence (1), we get the following corollaries to the above
theorems, which extend the problem solved in [17].

Corollary 1. There are at most finitely many sets {a2, b2, c2}, 0 < a <
b < c of three positive perfect squares such that the product of any two of its

distinct elements plus their sum is a perfect square.
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Corollary 2. There are at most finitely many sets of four integers

with the property that the product of any two of its distinct elements plus

their sum is a perfect square.

In the next section we will start by collecting useful information about
this problem (especially from [17]). The strategy of proof follows the same
lines as the proofs of almost all other recent results on nonextendability
of D(n)-m-tuples. First we reduce the problem of finding d which extends
{1, b, c} to a D(−1)-quadruple to a system of simultaneous Pellian equa-
tions, which leads to the consideration of intersections of linear recurring se-
quences. We know that the indices of these sequences have the same parity.
Moreover, we have a very important congruence relation, which e.g. implies
that the sequences cannot have intersections for small indices. Moreover, by
the gap principle, which was the main improvement in the proof in [17], we
get precise information on the initial terms of the recurring sequences.

If c ≥ 11b6, in Section 3 we obtain (Proposition 1) by Bennett’s theorem
on simultaneous approximations of square roots which are close to 1 (in a
slightly refined version for our context by Fujita [21]) parts (i) and (ii) (the
case of very large solutions) of our main theorem (Theorem 1).

In Section 4 we will compute some general upper bound for the indices of
the recurring sequences in terms of c by using Baker’s theory of linear forms
in logarithms of algebraic numbers (in fact we will use Matveev’s result [27]).

In Section 5 we will give the proof of parts (iii)–(v) (large, medium size,
and small solutions, respectively) of the theorem (see Propositions 2–4),
where we have to get lower bounds for n in terms of some power of c.
For medium size (part (iv), i.e. b1.1 ≤ c < b3) and small (part (v), i.e.
3b < c < b1.1) solutions we first have to refine the congruence relations. In
fact this is the most important new part of the proof.

Finally, we will give the proof of the case of very small solutions (c ≤ 3b,
part (vi) of the theorem) in Section 6 (Proposition 5).

2. Preliminaries. Let {1, b, c}, where 1 < b < c, be a D(−1)-triple and
let r, s, t be positive integers defined by

b − 1 = r2, c − 1 = s2, bc − 1 = t2.

The symbols r, s, t will always have this meaning. Assume that there is a
positive integer d > c such that {1, b, c, d} is a D(−1)-quadruple. We have

d − 1 = x2, bd − 1 = y2, cd − 1 = z2,(2)

with integers x, y, z. Eliminating d from (2) we obtain the following system
of Pellian equations:

z2 − cx2 = c − 1,(3)

bz2 − cy2 = c − b.(4)
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By combining these two equations we additionally have y2 − bx2 = b − 1.
We describe the sets of solutions of (3) and (4) in the following lemma.

Lemma 1. If (z, x) and (z, y), with positive integers x, y, z, are solutions

of (3) and (4) respectively , then there exist integers z0, x0 and z1, y1 with

(i) (z0, x0) and (z1, y1) are solutions of (3) and (4) respectively ,
(ii) the following inequalities are satisfied :

|x0| < s, 0 < z0 < c,(5)

|y1| < t, 0 < z1 < c,(6)

and there exist integers m, n ≥ 0 such that

z + x
√

c = (z0 + x0

√
c)(s +

√
c)2m,(7)

z
√

b + y
√

c = (z1

√
b + y1

√
c)(t +

√
bc)2n.(8)

Proof. This is [17, Lemma 1].

From (7) we conclude that z = vm for some (z0, x0) with the above
properties and integer m ≥ 0, where

(9) v0 = z0, v1 = (2c − 1)z0 + 2scx0, vm+2 = (4c − 2)vm+1 − vm.

Hence for varying m ≥ 0 the solutions z form a binary recurrent sequence
(vm)m≥0 whose initial terms are found by solving equation (7) for z when
m = 0 and 1, and whose characteristic equation has the roots (s+

√
c)2 and

(s−√
c)2. In the same manner, from (8), we conclude that z = wn for some

(z1, y1) with the above properties and integer n ≥ 0, where

(10) w0 = z1, w1 = (2bc−1)z1 +2tcy1, wn+2 = (4bc−2)wn+1−wn.

Our system of equations (3) and (4) is thus transformed to finitely many
equations of the form z = vm = wn.

From (9) and (10) we get by induction

vm ≡ (−1)mz0 (mod2c),

wn ≡ (−1)nz1 (mod2c),

vm ≡ (−1)m(z0 − 2cm2z0 − 2csmx0) (mod8c2),

wn ≡ (−1)n(z1 − 2bcn2z1 − 2ctny1) (mod8c2)

(see [17, Lemma 2]). So if the equation vm = wn has a solution, then z0 = z1.
Moreover, we have the following properties:

Lemma 2. If vm = wn, n 6= 0, then

(i) m ≡ n (mod2),
(ii) n ≤ m ≤ 2n,
(iii) m2z0 + smx0 ≡ bn2z1 + tny1 (mod4c).
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Proof. Parts (i) and (iii) follow at once from z0 = z1 and the above
congruence relations. Statement (ii) is [17, Lemma 5]. Observe that it was
remarked in [17, Section 3] that this statement holds for arbitrary D(−1)-
quadruples and not only in the special situation considered there.

Moreover, we have the following bounds for vm, wn, respectively.

Lemma 3. We have

(c − 1)(4c − 3)m−1 < vm < 4c2(4c − 2)m−1 for m ≥ 1,

(c − b)(4bc − 3)n−1 < wn < 4bc2(4bc − 2)n−1 for n ≥ 1.

Proof. This is part of the proof of [17, Lemma 5] (cf. (3.1) in [17] and
the equation just before that).

We collect some useful gap principles for the elements of D(−1)-triples
and quadruples.

Lemma 4. Let {a, b, c} be a D(−1)-triple and 0 < a < b < c. Then

c = a + b + 2r or c > 3ab ≥ 3b.

Let {1, b, c, d} be a D(−1)-quadruple and 1 < b < c < d. Then d > c9.

Proof. The first part of the lemma is [17, Lemma 7]. The second part is
a consequence of [17, Lemma 13]. Observe that in fact it is proved there for
the D(−1)-quadruple {1, a, b, c} with 1 < a < b < c. The assumption that
{a, b, c, d} with 2 ≤ a < b < c < d and d minimal among all such quadruples
was only needed to ensure that {1, a, b, c} is really a D(−1)-quadruple again
(by the use of [17, Lemma 3]).

Lemma 4 has the following important implication on the fundamental
solutions of (9) and (10) described in Lemma 1.

Lemma 5. Let the integers z0, z1, x0, y1 be as in Lemma 1. If c ≤ b9,
then

z0 = z1 = s, x0 = 0, y1 = ±
√

b − 1 = ±r.

Proof. Set

d0 =
z2
0 + 1

c
.

It follows that

d0 − 1 = x2
0, bd0 − 1 = y2

1 , cd0 − 1 = z2
0

and d0 < c (this construction was the key lemma in [17], in fact it was
[17, Lemma 3]). If d0 > 1, then {1, b, d0, c} is again a D(−1)-quadruple
and by the second part of Lemma 4 it follows that c > b9, a contradiction.
Hence, d0 = 1, which implies our assertion (cf. also [17, Lemma 4] for this
final conclusion).
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It is easy to show that the equation vm = wn cannot have solutions with
small indices.

Lemma 6. We have v1 6= w1, v2 6= w2, v4 6= w2.

Proof. See [17, Lemmas 8, 10 and 11]. Observe again that the conclusions
of these lemmas are independent of the existence of a minimal extension,
which was assumed there.

We have collected all information we need to prove our main theorem,
which will be done in the following sections.

3. Very large solutions. The proof will follow from a lower bound for
m, n in terms of some power of c, together with a logarithmic upper bound
obtained from Bennett’s theorem. The idea for obtaining the lower bound
is that if vm = wn, then we can study the congruence from Lemma 2(iii).
We will show that if b, m, n are small compared with c, these congruences
are equalities which contradict the equality vm = wn.

Lemma 7. If vm = wn, n 6= 0, 1 and c ≥ 11b6, then n > c1/6.

Proof. From Lemma 2(iii) we have m2z0+smx0 ≡ bn2z0+tny1 (mod4c).
Assume now that n ≤ c1/6. It is easy to see that max{|m2z0|, |smx0|, |tny1|}
< |bn2z0|. We first consider the case c > b9. Let d0 be such that cd0−1 = z2

0 .
If d0 > 1 then {1, b, d0, c} is a D(−1)-quadruple and we see by the second
part of Lemma 4 that c > (max{b, d0})9 > b6d3

0. Then we have

|bn2z0| < b · c1/3 · (cd0)
1/2 < c1/3 · c1/2 · (b6d3

0)
1/6 < c.

If d0 = 1 then we find as in the proof of Lemma 5 that z0 = s. Thus we
immediately get

|bn2z0| < c1/9 · c1/3 · c1/2 < c.

Now we consider the case 11b6 ≤ c ≤ b9. Here we can use Lemma 5 to get

|bn2z0| < c1/6 · c1/3 · c1/2 = c.

Therefore we conclude that m2z0 + smx0 = bn2z0 + tny1. We have

m2z0 + smx0 < m2
√

cd0 + m
√

cd0 < m(m + 1)

√

c

b

√

|y1|2 + 1

and

bn2z0−tn|y1| >
√

bc|y1|n2−tn|y1| >
√

bc|y1|n2−
√

bc|y1|n =
√

bc|y1|n(n−1).

This implies
m(m + 1)

√

|y1|2 + 1 > b|y1|n(n − 1),

and so, as m ≤ 2n and b ≥ 65, we get

5 ≥ 2n + 1

n − 1
>

65|y1|
2
√

|y1|2 + 1
>

65

2
√

2
.

This contradiction proves the statement.
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Next we need an upper bound for n in terms of c. To obtain it we use the
following slightly modified version of a special case of Bennett’s theorem [4]
(it is also a modified version of Rickert’s theorem [30]), which is Theorem 3.5
in [21].

Lemma 8. Let b and N be integers with b ≥ 5 and N ≥ 2.39b7. Then

the numbers

θ1 =

√

1 +
1 − b

N
and θ2 =

√

1 +
1

N

satisfy

max

{∣

∣

∣

∣

θ1 −
p1

q

∣

∣

∣

∣

,

∣

∣

∣

∣

θ2 −
p2

q

∣

∣

∣

∣

}

>

[

32.1
b2(b − 1)2

2b − 1
N

]−1

q−1−λ

for all integers p1, p2, q with q > 0, where

λ =
log

16.1b2(b − 1)2N

2b − 1

log
3.37N2

b2(b − 1)2

< 1.

We apply this theorem with N = t2 = bc − 1 ≥ 11b7 − 1 > 2.39b7,
p1 = bsx, p2 = bz, q = ty, i.e.

θ1 =
s
√

b

t
, θ2 =

√
bc

t
.

First we show that the solutions of our problem induce good approximations
to the roots θ1, θ2.

Lemma 9. All positive integer solutions x, y, z of (3) and (4) satisfy

max

{∣

∣

∣

∣

θ1 −
bsx

ty

∣

∣

∣

∣

,

∣

∣

∣

∣

θ2 −
bz

ty

∣

∣

∣

∣

}

<
b − 1

y2
.

Proof. Since f(x) = b(x − 1)/(bx − 1) is an increasing function we get
∣

∣

∣

∣

θ1 −
bsx

ty

∣

∣

∣

∣

=
s
√

b

t

∣

∣

∣

∣

1 − x
√

b

y

∣

∣

∣

∣

=
s
√

b

t

∣

∣

∣

∣

1 − bx2

y2

∣

∣

∣

∣

∣

∣

∣

∣

1 +
x
√

b

y

∣

∣

∣

∣

−1

<
b − 1

y2
.

Moreover, since bz/y >
√

bc we have
∣

∣

∣

∣

θ2 −
bz

ty

∣

∣

∣

∣

=
1

t

∣

∣

∣

∣

√
bc − bz

y

∣

∣

∣

∣

=
b

t

∣

∣

∣

∣

c − bz2

y2

∣

∣

∣

∣

∣

∣

∣

∣

√
bc +

bz

y

∣

∣

∣

∣

−1

<
b

t

c − b

y2

1

2
√

bc
<

1

2y2

bc − 1
√

bc(bc − 1)
<

b − 1

y2
.

Now we are ready to prove the first two parts of Theorem 1. Namely, we
show the following proposition.
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Proposition 1. Let {1, b, c} with 1 < b < c be a D(−1)-triple. If

c ≥ 11b6, then there does not exist an integer d > c such that {1, b, c, d}
is a D(−1)-quadruple. If 11b6 ≤ c ≤ b9, then the triple {1, b, c} cannot be

extended to a D(−1)-quadruple.

Proof. Combining the upper bound of Lemma 9 with the lower bound
from Lemma 8 we get

[

32.1
b2(b − 1)2

2b − 1
t2

]−1

(ty)−1−λ <
b − 1

y2
,

which implies

y1−λ < 32.1
b2(b − 1)3

2b − 1
t3+λ <

32.1b2(b − 1)3(bc − 1)2

2b − 1
.

We have

1

1 − λ
=

log
3.37(bc − 1)2

b2(b − 1)2

log
3.37(2b − 1)(bc − 1)

16.1b4(b − 1)4

,

which leads to

log y <

log
3.37(bc − 1)2

b2(b − 1)2
log

32.1b2(b − 1)3(bc − 1)2

2b − 1

log
3.37(2b − 1)(bc − 1)

16.1b4(b − 1)4

.

We have (observe that c ≥ 11b6 and b ≥ 65, c ≥ 82)

log
3.37(bc − 1)2

b2(b − 1)2
< log

3.37b2c2

b2(b − 1)2
< 2 log

1.9c

b − 1
< 2 log(0.03c),

log
32.1b2(b − 1)3(bc − 1)2

2b − 1
< log(16.18b6c2) < 3 log(1.14c),

log
3.36(2b − 1)(bc − 1)

16.1b4(b − 1)4
> log

2.29(2b2c − bc − 2b + 1)

b2c
> 1.51.

Consequently,

log y < 3.98 log(0.03c) log(1.14c).

Moreover, from (4) and the first part of Lemma 3, we get

cy2 = bz2−c+b > b(c−1)2(4c−3)2m−2−c > bc(4c−3)2m−2−c > c(4c−3)2m−2

and therefore y > (4c − 3)m−1.

Assume that n 6= 0, 1. Then by Lemmas 2 and 7 we have m ≥ n > c1/6,
which implies

(c1/6 − 1) log(4c − 3) < 3.98 log(0.03c) log(1.14c).(11)
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It is easy to check that the function

f(c) = 3.98 log(0.03c) log(1.14c) − (c1/6 − 1) log(4c − 3)

is decreasing for c > 0.55 · 1012. Since c ≥ 11b6 ≥ 11 · 656 > 0.82 · 1012,
inequality (11) cannot by fulfilled. Hence, n = 0 or n = 1. Now, by Lem-
ma 6, z = v0 = w0. But then d = (z2 +1)/c < c. Moreover, if 11b6 ≤ c ≤ b9,
then Lemma 5 implies that z = s and d = 1. This proves the proposition.

4. A Diophantine approximation result. All other parts of Theo-
rem 1 will be obtained by applying the theory of linear forms in logarithms
of algebraic numbers (see [3]) instead of Bennett’s approximation result. In
this way it will not be possible to exclude any solution, but we will get effec-
tive upper bounds. In this section we will prepare the approximation tools
that will be used for solutions that are not very large.

In fact we will use a result by Matveev [27], which we quote in a suitable
simplified version.

Lemma 10. Let Λ be a linear form in logarithms of l multiplicatively

independent totally real algebraic numbers α1, . . . , αl with rational integer co-

efficients b1, . . . , bl (bl 6= 0). Let h(αj) denote the absolute logarithmic height

of αj , 1≤ j ≤ l. Define D = [Q(α1, . . . , αl) : Q], Aj = max{Dh(αj), |log αj |}
for 1 ≤ j ≤ l, and

B = max

{

1, max

{ |bj|Aj

Al
: 1 ≤ j ≤ l

}}

.

Then

log Λ > −C(l)C0W0D
2Ω,(12)

where

C(l) =
8

(l − 1)!
(l + 2)(2l + 3)(4e(l + 1))l+1, W0 = log(1.5eBD log(eD)),

C0 = log(e4.4l+7l5.5D2 log(eD)), Ω = A1 · · ·Al.

Proof. See [27, Theorem 2.1].

Solving the recurrences (3) and (4) we get

vm =
s

2
[(s +

√
c)2m + (s −

√
c)2m],

wn =
s
√

b ± r
√

c

2
√

b
[(t +

√
bc)2n + (t −

√
bc)2n].

We now turn the equation vm = wn into an inequality for a linear form in
three logarithms, to which Lemma 10 will be applied.



D(−1)-quadruple conjecture 329

Lemma 11. If vm = wn, n 6= 0, then

0 < 2n log(t +
√

bc) − 2m log(s +
√

c) + log
s
√

b ± r
√

c

2
√

b
< (3.96bc)−n+1.

Proof. Let

P = s(s +
√

c)2m, Q =
s
√

b ± r
√

c√
b

(t +
√

bc)2n.

Then vm = wn implies P + (c − 1)P−1 = Q + c−b
b Q−1. Furthermore,

P > 4s(c − 1) = 4
√

c − 1(c − 1) > c − 1,

Q >
s
√

b − r
√

c√
b

(2bc − 1 + 2
√

bc) ≥ 2c ≥ 2.

We get

P − Q =
c − b

b
Q−1 − (c − 1)P−1 < (c − 1)Q−1 − (c − 1)P−1

= (c − 1)(P − Q)P−1Q−1,

and therefore Q > P . Moreover, P > Q− (c−1)P−1 > Q−1, which implies
that (Q − P )/Q < Q−1 ≤ 1/2. Hence,

0 < log
Q

P
= − log

P

Q
= − log

(

1 − Q − P

Q

)

<
Q − P

Q
+

(

Q − P

Q

)2

.

From this we conclude that

0 < log
Q

P
<

1

Q
+

1

Q2
<

2

Q
=

2
√

b

s
√

b ± r
√

c
(t +

√
bc)−2n

<
2
√

b

s
√

b − r
√

c
(3.96bc)−n =

2
√

b(s
√

b + r
√

c)

c − b
(3.96bc)−n

<
4b
√

c

c − b
(3.96bc)−n < (3.96bc)−n+1.

This proves the lemma.

We use this result to prove a principle to obtain an upper bound for n
in all remaining cases.

Lemma 12. If vm = wn, then

n − 1

log
160.36n log(2.02bc)

log c

< 0.33 · 1012 · log c · log(bc).
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Proof. We have l = 3, D = 4 and therefore C(3) ≤ 0.65 · 109 and
C0 ≤ 29.89. Moreover, α1 = s +

√
c, α2 = t +

√
bc, and

α3 =
s
√

b ± r
√

c

s
√

b
.

The numbers α1, α2, α3 satisfy the algebraic relations α2
1+(4c−2)α1+1 = 0,

α2
2 +(4bc−2)α2 +1 = 0, and b(c−1)α2

3−2b(c−1)α3 + c− b = 0. Therefore,
A1 = 2 log(s +

√
c) < 2 log(2

√
c) < 1.08 log c, A2 = 2 log(t +

√
bc) <

log(
√

2bc) < 1.05 log(bc), and

A3 ≤ 2 log

(

bc
s
√

b + r
√

c

s
√

b

)

< 2 log(2.02bc) < 2 log(3.96bc).

We also have

A3 ≥ log(b(c − 1)) ≥ log(64.2c) > 1.95 log c.

Thus,

B ≤ 4m log(2.02bc)

1.95 log c
≤ 2.06m log(2.02bc)

log c
.

By Lemmas 11 and 10, we therefore get

n − 1 < 0.33 · 1012 · log
80.18m log(2.02bc)

log c
log c log(bc).

Finally,

n − 1

log
160.36n log(2.02bc)

log c

< 0.33 · 1012 · log c · log(bc).

Our remaining goal is to calculate a lower bound for n in terms of small
powers of c as above. Together with our gap conditions between b and c,
Lemma 12 will enable us to get effective upper bounds for c in each case.
This will be done in the next sections.

5. Large, medium and small solutions. We now start with the re-
maining cases in Theorem 1. Observe that we always have c ≤ 11b6 and
therefore, by Lemma 5, z0 = z1 = s, x0 = 0, y1 = ±r.

We start with the case of large solutions, i.e. with b3 ≤ c < 11b6. We
have the following lower bound for n.

Lemma 13. If vm = wn, n 6= 0, 1 and b3 ≤ c < 11b6, then n > c1/12.

Proof. We again start with the relation in Lemma 2(iii), which reads here
m2s ≡ bn2s ± tnr (mod4c). Assume that n ≤ c1/12. Since max{m2s, tnr}
< bn2s, and

bn2s < c1/3 · c1/6 · c1/2 = c,
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we have equality in the congruence above, thus m2s = bn2s ± tnr. This
implies 4n2s > n(bsn − tr) and therefore

b
√

c

2
n < (b − 4)sn < tr < b

√
c,

which gives a contradiction.

Combining the previous lemma with the result from Baker’s theory from
Lemma 12, we get part (iii) of Theorem 1.

Proposition 2. Let {1, b, c, d} with 1 < b < c < d be a D(−1)-

quadruple. If b3 ≤ c < 11b6, then c < 0.22 · 10238 and d < 101023

.

Proof. Since b3 ≤ c, we get log(2.02bc) < 1.50 log c, and therefore it
follows by Lemmas 12 and 13 that

n − 1

log(240.54n)
< 0.29 · 1013 · 4

3
(log c)2 < 0.56 · 1015(log n)2.

Hence, n < 0.60 · 1020 and therefore c < 0.22 · 10238.
From Lemma 3 we get z = vm < 4c2(4c − 2)m−1 ≤ 4mcm+1. Conse-

quently,

d ≤ z2 + 1

c
≤ 42mc2m+2

c
= 16mc2m+1.

Thus, log10 d ≤ m log10 16 + (2m + 1) log10 c ≤ 0.58 · 1023 and therefore

d ≤ 101023

.

Next we handle the case of medium size solutions, i.e. with b1.1 ≤ c < b3,
and thus prove part (iv) of Theorem 1.

Lemma 14. If vm = wn, n 6= 0, 1, b1.1 ≤ c < b3, and c > 10100, then

n ≥ c0.04.

Proof. We will consider the congruence of Lemma 2(iii). We have

s(m2 − bn2) ≡ ±rtn (mod4c).(13)

Set
A = 2bc − 2rst − c, B = 2bc + 2rst − c.

Then AB = c2 + 4b2c − 4b − 4c + 4. Clearly, B < 4bc and A > 4b2c
4bc = b.

On the other hand, A < c2+4b2c
2bc < c. This implies that 2rst > 2bc − 2c,

B > 4bc − 3c and

A <
c2 + 4b2c

4bc − 3c
<

c

3b
+

4

3
b < 0.334c0.67 + 1.334c0.91 < c0.92,

which shows that A is small compared with c. Observe that here we use the
assumption c > 10100.

Multiplying both sides of (13) by 2s, we get

2(m2 − bn2) ≡ ∓An (mod c).
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Assume now that n 6= 0 and n < c0.04. Then An < c and |2(m2−bn2)| ≤
2bn2 < 2c0.91+0.08 < c. Hence, we have equality:

2bn2 − 2m2 = An.(14)

The relation (14) and the inequalities n ≤ m ≤ 2n (cf. Lemma 2(ii)) imply

2(b − 4)n ≤ A ≤ 2(b − 1)n.(15)

Define β by
c = 4b2(2n − 1) + β.

We claim that |β| < c0.56.
Let us first estimate the quantity γ defined by γ = 4bA − c − 4b2. From

AB = c2 + 4b2c − 4b − 4c + 4 and 4bc − 3c < B < 4bc, we obtain

γ >
1

4bc
(−16b2 − 16bc + 16b) > −8,

γ <
3c + 12b2

3b
=

c

b
+ 4b.

Therefore, |γ| < c0.92. Furthermore, from (15) we have 4bA = 8b2n+δ, where
|δ| ≤ 32bn < c0.966. Since β = δ − γ, by putting these estimates together we
get

|β| < c0.966 + c0.92 < 2c0.966 < c0.97.

Hence,

c = 4b2(2n − 1) + β, |β| < c0.97.(16)

Analyzing (16) we will improve this estimate for |β|. Namely, (16) clearly
implies 4b2 < c < 16nb2. It follows that |γ| < c/b + 4b < 20bn < 10n

√
c

< c0.55, and also |δ| < 32bn < c0.553. Hence, |β| < c0.56, as claimed.
Now we are ready to finish our argument. By squaring (14), we get

4(bn2 − m2)2 ≡ 4(b − 1)n2 (mod c),

which implies

−n4β ≡ (2n − 1)(4(b − 1)n2 − 4m4 + 8bm2n2) (mod c).(17)

But the absolute values of both sides of (17) are less than c0.72. Hence, we
have equality in (17), and this implies (assuming that n 6= 0)

n2c = (2n − 1)(A2 − 4(b − 1)).

Since A2 ≡ 4(b−1) (mod c), we find that (2n−1) |n2, which is possible only
if n = 0 or n = 1. We obtain a contradiction, proving that n ≥ c0.04.

Combining this lower bound with the upper bound which follows from
Lemma 12, we will again derive that c is bounded by an absolute constant.

Proposition 3. Let {1, b, c, d} with 1 < b < c < d be a D(−1)-

quadruple. If b1.1 ≤ c < b3, then c < 0.39 · 10491 and d < 101023

.
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Proof. Since b ≤ c0.91, we get log(2.02bc) ≤ 1.93 log c and log(bc) ≤
1.91 log c. Now, by Lemmas 14 and 12,

n − 1

log(309.50n)
< 0.40 · 1015(log n)2.

Hence, n < 0.42 · 1020 and thus c < 0.39 · 10491.
As in the proof of Proposition 2, Lemma 3 implies that log10 d ≤

2n log10 16 + (4n + 1) log10 c ≤ 0.83 · 1023 and therefore d ≤ 101023

.

Finally, we turn to part (v) of Theorem 1. This is the case of small
solutions, i.e. with 3b < c < b1.1.

To get the lower bounds for m, n in terms of some small power of c in the
case of small solutions, we will use the following very useful construction,
which in fact is the essence of the gap principle in Lemma 4.

Lemma 15. Let {a, b, c} be a D(−1)-triple. Define

e = −(a + b + c) + 2abc − 2rst.

Then there exist integers u, v, w such that

ae + 1 = u2, be + 1 = v2, ce + 1 = w2

and

c = a + b − e + 2(abe + ruv).

Proof. This lemma is a special case of Lemma 3 in [14].

Using this lemma we now prove:

Lemma 16. If vm = wn, n 6= 0, 1, 2 and 3b < c < b1.1, then n ≥
0.25 · c0.2.

Proof. With the same notation as in Lemma 14, again we have the con-
gruence

2(m2 − bn2) ≡ ∓An (mod c).(18)

In this case we get

A <
c2 + 4b2c

4bc − 3c
= b +

c + 3b

4b − 3
< b +

2c

3b
.

Hence, A = b + α, where 0 < α < c0.1.
By Lemma 15, there exist integers e, u, v, w such that

e + 1 = u2, be + 1 = v2, ce + 1 = w2,

and

b = 1 + c − e + 2ce − 2suw.

Hence, (b + e − 1)2 ≡ 4(c − 1)(e + 1)(ce + 1) ≡ −4(e + 1) (mod c), and

b2 + 2b(e − 1) + e2 + 2e + 5 ≡ 0 (mod c).(19)
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Moreover, e is small compared with c. Indeed, from c = 1+b−e+2be+2ruv
> 2be, we find that e < c/2b < c0.1.

Now (18) implies

2m2 ± αn ≡ b(2n2 ∓ n) (mod c).(20)

From (20), we also get

(2m2 ± αn)2 ≡ b2(2n2 ∓ n)2 (mod c)(21)

and

2(e − 1)(2n2 ∓ n)(2m2 ± αn) ≡ 2(e − 1)b(2n2 ∓ n)2 (mod c).(22)

By summing (21) and (22), and taking into account (19), we obtain

(23) (2n2 ∓ n)2(e2 + 2e + 5) + (2m2 ± αn)2

+ 2(e − 1)(2n2 ∓ n)(2m2 ± αn) ≡ 0 (mod c).

Assume now that n < 0.25 · c0.2. Since n ≥ 3, e ≥ 3, m ≤ 2n and c ≥ 82,
we have the following estimates:

|(2n2 ∓ n)2(e2 + 2e + 5)| ≤ 6n4 · 3e2 · 18c0.8

256
· c2

4b2
< 0.02c,

(2m2 ± αn)2 ≤ 8m4 + α2n2 ≤ c0.8

2
+

c0.6

8
< 0.23c,

and

|2(e − 1)(2n2 ∓ n)(2m2 ± αn)| ≤ 6en2(2m2 + αn) ≤ 3c0.5

8

c0.4

2
< 0.13c.

Therefore, we have equality in (23), i.e.

(e2 + 2e + 5)X2 + 2(e − 1)(e − 1)XY + Y 2 = 0,(24)

where X = (2n2 ∓ n), Y = 2m2 ± αn. Since the discriminant of (24) is
negative (it is equal to −16u2), we conclude that by multiplying (24) with
4(e2 + 2e + 5) we get

(2(e2 + 2e + 5)X + 2(e − 1)2Y )2 + 16u2Y 2 = 0.

This implies X = Y = 0, which in turn gives n = 0, a contradiction. Hence,
we have proved that n ≥ 0.25 · c0.2.

Again by using Lemma 12 we deduce that c is bounded by an absolute
constant.

Proposition 4. Let {1, b, c, d} with 1 < b < c < d be a D(−1)-

quadruple. If 3b < c < b1.1, then c < 0.78 · 1094 and d < 101021

.

Proof. Since b < c/3, we have log(2.02bc) ≤ 2 log(0.83c) < 2 log c and
log(bc) ≤ 2 log(c/9). The inequality c ≤ 1024n5 (cf. Lemma 16) and Lem-
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ma 12 imply that

n − 1

log(320.72n)
< 0.66 · 1012 · log(1024n5) log(113.78n5).

Hence, n ≤ 0.15 · 1019 and c ≤ 0.78 · 1094.

By Lemma 3 we get log10 d ≤ 2n log10 16 + (4n + 1) log10 c ≤ 0.57 · 1021

and therefore d ≤ 101021

.

It remains to prove the smallest possible case, i.e. when c < 3b. This will
be done in the following section.

6. Very small solutions. Now we consider the case c = 1+b+2
√

b − 1
of very small solutions (part (vi) in Theorem 1). Observe that we are left
with c ≤ 3b. By the gap principle (Lemma 4), this implies that we have
indeed c = 1 + b + 2r. We can write everything parametrized in r. To
avoid confusion, we set k = r in this section. Then we have to consider the
D(−1)-triple

{1, k2 + 1, (k + 1)2 + 1}.
Moreover, we have

s = k + 1, t = k2 + k + 1, z0 = z1 = k + 1, x0 = 0, y1 = ±k,

and k ≥ 8.

If vm = wn, n 6= 0, 1 then the congruence from Lemma 2(iii) has the
form

m2(k + 1) ≡ n2(k2 + 1)(k + 1) ± n(k2 + k + 1)k(25)

≡ n2(k + 3) ∓ n(k + 1) (mod (k2 + 2k + 2)).

We start by proving an upper bound for k in terms of n.

Lemma 17. In this case, if vm = wn, n 6= 0, 1, then k < 4n2.

Proof. Assume that n2 ≤ 1

4
k. We have the estimates

m2(k + 1) ≤ 4n2(k + 1) < k(k + 1) < k2 + 2k + 2,

|n2(k + 3) ± n(k + 1)| <
1

4
k(k + 3) +

1

2

√
k(k + 1) < k2 + 2k + 2.

Therefore we have equality in (25), which gives

m2(k + 1) = n2(k + 3) ∓ n(k + 1).

This implies m2 ≡ 3n2 ∓ n (modk). Since m2 ≤ 4n2 < k and |3n2 ∓ n| <
3

4
k+ 1

2

√
k < k, we again have equality. This implies m2 = 3n2∓n. Moreover,

we now also have the equality m2 = n2 ∓ n. Combining these two facts, we
get 2n2 = ±n and therefore n = 0, a contradiction.



336 A. Dujella et al.

We conclude the proof by combining Lemma 17 with Lemma 12 as in all
cases above, to get an effective upper bound for k and therefore for c and d.

Proposition 5. Let {1, k2 + 1, (k + 1)2 + 1, d} be a D(−1)-quadruple.

Then k < 0.14·1038 and therefore c = (k+1)2+1 < 0.19·1075 and d < 101021

.

Proof. We have log(2.02bc) = log(2.02(k2 + 1)(k2 + 2k + 2)) ≤ 4.47 log k
and log(k2 + 2k + 2) > log k. By combining Lemmas 17 and 12 we get

n − 1

log(716.81n)
< 0.33 · 1012 log((4n2 + 1)2 + 1)

· log(((4n2)2 + 1)((4n2 + 1)2 + 1)).

This implies n < 0.90 · 1018 and therefore k < 0.33 · 1037.
Moreover, c = (k + 1)2 + 1 < 0.11 · 1074 and by Lemma 3 we have

log10 d ≤ 2n log10 16+(4n+1) log10 c ≤ 0.27·1021 and so finally d < 101021

.

Altogether, by combining Propositions 1–5 above, we get Theorem 1.
Theorem 2, as well as Corollaries 1 and 2, are immediate consequences.
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