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Quarti diophantine hainsby
Ajai Choudhry (New Delhi) and Jarosław Wróblewski (Wroªaw)Dediated to Professor A. Shinzel on his 70th birthday
Introdution. Very little is known about quarti diophantine hains ofthe type(1) f(x1, y1) = f(x2, y2) = f(x3, y3),where f(x, y) is a binary quarti form in the variables x and y. For instane,only one numerial solution of the diophantine hain(2) X4
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3has been published [7, p. 652℄.This paper is onerned with diophantine hains of the type
(3) x1y1(x
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3),where r is an arbitrary rational number. The ase r = 0 is of speial interestsine then the hain (3) redues to(4) x1y1(x
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3),whih is equivalent to the hain of biquadrates
(5) (x1 +y1)

4− (x1−y1)
4 = (x2 +y2)

4− (x2−y2)
4 = (x3 +y3)

4− (x3−y3)
4.We will �nd a parametri solution of (3) for all non-zero values of r, andin�nitely many integer solutions when r = 0. In view of the equivaleneof (4) and (5), the in�nitely many solutions of (4) lead to in�nitely manysolutions of the hain of biquadrates (2).We will regard a diophantine hain of type (3) as trivial if the ommonvalue xiyi(x
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i +rxiyi+y2

i ), i = 1, 2, 3, is 0. Suh hains are readily determinedand will not be onsidered further in this paper. When the ommon value
xiyi(x
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i ) is not 0, we have the following two types of hains:2000 Mathematis Subjet Classi�ation: Primary 11D25.[339℄ © Instytut Matematyzny PAN, 2007



340 A. Choudhry and J. Wróblewski(i) if the absolute value of one of the numbers xi, yi is the same positivenumber for eah of the three values of i, and the absolute values ofthe three remaining numbers out of the six numbers xi, yi, i = 1, 2, 3,are distint, the hain will be alled semi-trivial ;(ii) if the absolute values of all the six numbers xi, yi, i = 1, 2, 3, aredistint, the hain will be alled non-trivial.In Setion 2 below we obtain a neessary and su�ient ondition for theexistene of semi-trivial hains of type (3), and show how the omplete solu-tion may be obtained when this ondition is satis�ed. In Setion 3 we obtainnon-trivial diophantine hains for all rational values of r, and in Setion 4 wegive numerial solutions of the hain of biquadrates (2). As an appliationof this hain of biquadrates, in Setion 5 we obtain in�nitely many triads ofbiquadrates with equal sums and equal produts.We note that as equations (3) and (4) are both homogeneous, it su�esto obtain their solutions in rational numbers sine any suh solution may bemultiplied through by a suitable integer to yield a solution in integers.2. Semi-trivial quarti diophantine hains. In this setion we willdetermine the omplete solution of semi-trivial hains of type (3). Sineequation (3) is of even degree, and in view of its symmetry, there is no loss ofgenerality in assuming that for semi-trivial hains we may take x1 = x2 = x3.With this assumption, (3) redues to(6) y1(x
2

1 + rx1y1 + y2

1) = y2(x
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2) = y3(x
2
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3).The �rst part of equation (6) redues to(7) x2

1 + rx1(y1 + y2) + y2

1 + y1y2 + y2

2 = 0,and we similarly get(8) x2

1 + rx1(y1 + y3) + y2

1 + y1y3 + y2

3 = 0.Now (7) may be rewritten as(9) (4 − r2)X2 + Y 2 + (3 − r2)Z2 = 0,where
X = 2x1 + r(y1 + y2), Y = (4 − r2)y1 + (2 − r2)y2, Z = 2y2.The solvability of the quadrati equation (9) is determined by the well-known Legendre theorem [5, pp. 272�274℄, and when the ondition of solv-ability is satis�ed, the omplete solution of (9), and hene of (7), an bee�etively determined. We note in partiular that when r <

√
3, the left-hand side of (9) is always positive for real values of X, Y, Z, not all 0, andhene there are no non-trivial solutions of (9).



Quarti diophantine hains 341Next we assume that equation (7) has non-trivial solutions. In this asethe remaining ondition for the existene of the hain (6), that is, equa-tion (8), needs to be solved together with (7). Subtrating (7) from (8), andremoving the non-zero fator y2 − y3, we obtain a linear equation whih isreadily solved to get the unique solution y3 = −rx1 − y1 − y2.Thus for any given value of r, we an determine whether or not thereexist semi-trivial solutions of (3) by determining the solvability of (9). Whenthis ondition is satis�ed, all semi-trivial hains of type (3) are given by theomplete solution of the quadrati equation (7) together with x2 = x1, x3 =
x1, y3 = −rx1 − y1 − y2.As a spei� example, when r = 4, we get the following parametrisolution of (3):

x1 = x2 = x3 = p2 + 3pq + 3q2,

y1 = −3p2 − 6pq − 2q2, y2 = p2 + 4pq + q2, y3 = −2p2 − 10pq − 11q2.3. Non-trivial quarti diophantine hains. We �rst prove a prelim-inary lemma that will be used repeatedly to obtain solutions of the hain(3).
Lemma. If a, b, c, d are non-zero rational numbers satisfying the simul-taneous diophantine equations

a(a2 + abr + b2) − cd = 0,(10)
3a2 + 2abr + b2 − c2 + d2 + 1 = 0,(11)then the rational numbers x1, y1, x2, y2, x3, y3 de�ned by(12) x1 = bc, y1 = ac − d, x2 = bd, y2 = ad + c, x3 = b, y3 = a + cdsatisfy the diophantine hain (3).Proof. When x1, y1, x2, y2 are de�ned by (12), we have

(13) x1y1(x
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1 + rx1y1 + y2

1) − x2y2(x
2

2 + rx2y2 + y2

2)

= b(c2 + d2)[(c2 − d2){a(a2 + abr + b2) − cd}
− cd(3a2 + 2abr + b2 − c2 + d2 + 1)] = 0,in view of (10) and (11). Similarly,

(14) x1y1(x
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1 + rx1y1 + y2

1) − x3y3(x
2

3 + rx3y3 + y2

3)

= b(c2 + 1)[(c2 − 1){a(a2 + abr + b2) − cd}
− cd(3a2 + 2abr + b2 − c2 + d2 + 1)] = 0.Combining (13) and (14), we get the hain (3). This ompletes the proof.



342 A. Choudhry and J. WróblewskiIn view of the above lemma, to obtain rational solutions of the diophan-tine hain (3), it su�es to solve the simultaneous diophantine equations(10) and (11). This leads to two ases aording as r is non-zero or zero. Weonsider the ase when r 6= 0 in Subsetion 3.1 below and the ase r = 0 inSubsetion 3.2.3.1. To obtain rational solutions of equations (10) and (11) when r 6= 0,we solve (10) for d to get(15) d = a(a2 + abr + b2)/c,and substituting this value of d in (11), we get the following quarti equationin c:(16) c4 − (3a2 + b2 + 2abr + 1)c2 − a2(a2 + abr + b2)2 = 0.This may be onsidered as a quadrati equation in c2, and for it to have arational solution for c2, its disriminant, namely,
(17) (4a2 + 1)b4 + 4ar(2a2 + 1)b3 + {4a2r2(a2 + 1) + 8a4 + 6a2 + 2}b2

+ 4ar(2a2 + 1)(a2 + 1)b + (4a2 + 1)(a2 + 1)2,must be made a perfet square. By hoosing a = (t2 − 1)/(4t), the disrim-inant (17) beomes a quarti funtion of b in whih the onstant term is aperfet square, and hene following the usual proedure desribed by Dik-son [3, p. 639℄, we an obtain a value of b whih makes this quarti funtiona perfet square. With this value of b, equation (16) gives rational values for
c2 but not for c. If, however, we take t = q2/p2, then (16) has a rationalsolution for c. Thus, by taking(18) a = −(p4 − q4)/(4p2q2),when we get the following value of b whih makes (17) a perfet square:

b = {(p4 − q4)4p4q4r2 + (p4 + q4)2(p8 + 6p4q4 + q8)2}(19)
× {4p2q2r(p4 − q4)(p4 + q4)2(p8 + 6p4q4 + q8)}−1,we an solve (16) to obtain the following rational solution for c:

(20) c = {(p8 − p6q2 + 4p4q4 − p2q6 + q8)(p2 − q2)4(p2 + q2)2p2q2r2

+ (p4 + q4)2(p8 + 6p4q4 + q8)2}
× {8p3q3r(p2 − q2)(p4 + q4)2(p8 + 6p4q4 + q8)}−1.Substituting the values of a, b, c given by (18)�(20) in (15), we get

(21) d = {(p8 + p6q2 + 4p4q4 + p2q6 + q8)(p2 + q2)4(p2 − q2)2p2q2r2

− (p4 + q4)2(p8 + 6p4q4 + q8)2}
× {8p3q3r(p2 + q2)(p4 + q4)2(p8 + 6p4q4 + q8)}−1.



Quarti diophantine hains 343Thus a solution of (10) and (11) when r is an arbitrary non-zero rationalnumber is given in terms of arbitrary parameters p and q by (18)�(21). Withthese values of a, b, c, d, the values of xi, yi, i = 1, 2, 3, de�ned by (12) on-stitute a parametri solution of the diophantine hain (3). It is readily veri-�ed that this parametri solution atually generates non-trivial diophantinehains of type (3) for every non-zero value of r.3.2. We will now obtain in�nitely many solutions of the diophantinehain (4). In view of the Lemma, it is su�ient to solve the following twosimultaneous diophantine equations obtained by substituting r = 0 in equa-tions (10) and (11):
a(a2 + b2) − cd = 0,(22)
3a2 + b2 − c2 + d2 + 1 = 0.(23)We proeed as in Subsetion 3.1 and instead of (16), we get the followingequation obtained by substituting r = 0 in (16):(24) c4 − (3a2 + b2 + 1)c2 − a2(a2 + b2)2 = 0.As in Subsetion 3.1, we must make (17) a perfet square when r = 0, thatis, we must solve the following quarti equation in b and s:(25) s2 = (4a2 + 1)b4 + (8a4 + 6a2 + 2)b2 + (4a2 + 1)(a2 + 1)2.As before, we take(26) a = (t2 − 1)/(4t)in (25), and we get

(27) s2 = {256(t2 + 1)2t4b4 + 32(t8 + 8t6 + 46t4 + 8t2 + 1)t2b2

+ (t2 + 1)2(t4 + 14t2 + 1)2}/(1024t6).The birational transformation de�ned by the relations
(28) b = Y/(4t(t2 + 1)X),

s = {−4t2(t2 − 1)2(t4 + 6t2 + 1)2 − X2}/{32t3(t2 + 1)X},and
(29) X = 8t2(t2 + 1)2b2 − 16t3(t2 + 1)s

+ (t8 + 8t6 + 46t4 + 8t2 + 1)/2,

Y = 32t3(t2 + 1)3b3 − 64t4(t2 + 1)2bs

+ 2t(t2 + 1)(t8 + 8t6 + 46t4 + 8t2 + 1)b,



344 A. Choudhry and J. Wróblewskiredues the quarti equation (27) to the parametrized ellipti urve(30) Y 2 = X{X + 4t2(t2 − 1)2}{X − (t4 + 6t2 + 1)2}.Now on using (27), (28) and (30), equation (24) gives
c2 = (3a2 + b2 + 1 ± s)/2(31)

= ∓(t ∓ 1)2{X − 4t6 − 24t4 − 4t2 ∓ (2t7 + 14t5 + 14t3 + 2t)}2

× {64t3(t2 + 1)2X}−1.For c to be rational, we must �nd points on the urve (30) suh that ∓tX is aperfet square. It follows from the dupliation formula [6, p. 31℄ that if thereexists a rational point P on the ellipti urve (30), then the absissa of thepoint 2P is a perfet square. It is therefore simplest to take t = T 2 in (30)and �nd a value of T suh that the urve (30) has a rational point. While
T = 1 leads to triviality, it was found using APECS (a pakage written byConnell [2℄ in MAPLE for working with ellipti urves) that when T = 2and also when T = 3, there exist rational points on the ellipti urve (30).We will take T = 3, that is, t = 9, sine this leads to numerially smallersolutions of the diophantine hains (2) and (4). With this value of t, theurve (30) beomes(32) Y 2 = X3 − 47600704X2 − 103004636774400X,and a rational point P1 on this urve, found using APECS, is given by(33) (X, Y ) = (−3087587840/1521, 126935576104960/59319).As this rational point does not have integer o-ordinates, it follows from theNagell�Lutz theorem [6, p. 56℄ on ellipti urves that this is not a point of�nite order. Thus, there exist in�nitely many rational points on the urve(32) and these an be determined by the group law. By using the dupliationformula, we an �nd on this urve in�nitely many rational points whoseabsissae are perfet squares, and these rational points yield in�nitely manyrational solutions of equations (22) and (23) by using the relations (26),(28), (31) and (15) with r = 0. We note that in all these solutions of (22)and (23), the value of a remains �xed as 20/9. By the Lemma, the in�nitelymany solutions of (22) and (23) yield in�nitely many rational solutions ofthe diophantine hain (4) and these, in turn, lead to in�nitely many integersolutions of (4) as well as of (2).We now prove that the above method atually generates in�nitely manynon-trivial hains of type (4). It is readily seen that the hains generatedsatisfy xiyi(x

2

i + y2

i ) 6= 0, i = 1, 2, 3. The only remaining possibility for ahain to be trivial arises when we have xiyi = xjyj for some i 6= j. In eah ofthese ases the numbers a, b, c, d must satisfy another equation in additionto the equations (22) and (23). Eliminating c and d from the three equa-tions in a, b, c, d, we get an equation in a and b whih for a �xed non-zero



Quarti diophantine hains 345
a has only �nitely many solutions in b. Sine there are only three suh setsof three equations in a, b, c, d, we an simply exlude the resulting �nitelymany possibilities from the in�nite set of solutions with a = 20/9, and thusobtain in�nitely many non-trivial diophantine hains of type (4). The possi-bility that these in�nitely many non-trivial diophantine hains are atuallymultiples of a �nite number of suh hains is also similarly ruled out. We arethus assured of generating in�nitely many non-trivial solutions of (4), andhene also of (2).While the above proedure guarantees the existene of in�nitely manyinteger solutions of (2) and (4), the solutions generated involve large integers.For instane, using the rational point P1 already found on the urve (32),we determine the point 2P1 whih is given by
(X, Y ) =

(

68677602626002

2743734632
,
311333393877294196698891729982967296000

20655053024783974477163847

)

.As expeted, the absissa of 2P1 is a perfet square, and this yields thefollowing solution of the hain of biquadrates (2):
(34)

X1 = 481414016786139336958126813632656903003004,

X2 = 452693557121427726005012503163912114942985,

X3 = 591920656152766167797077466343528334914140,

Y1 = 336113147372142763632798008407011624578004,

Y2 = 179887595380427256472663477672099005579255,

Y3 = 534811611453397202401641358319895724884620.Solutions that are muh smaller than the above do exist, and an be obtainedby numerial methods. These methods are disussed in the next setion.We have already noted that when t = 4 and t = 9, rational points onthe ellipti urve (30) lead to solutions of the diophantine hain (2). Thereare several other ellipti urves, arising from equations (22) and (23), thatsimilarly lead to integer solutions of (2). The existene of several suh elliptiurves, together with the frequeny of numerial solutions obtained in thenext setion, suggests the possibility of a parametri solution of (2). This,however, remains an open problem.4. Chains of biquadrates. To obtain small solutions of (2) we searhfor small solutions of the equation(35) A4 + B4 = C4 + D4.One method to �nd small solutions of (35) is an exhaustive searh. Thekey observation to speed it up is to onsider two ases.



346 A. Choudhry and J. Wróblewski(i) If there is one odd and one even term on eah side of (35) then wean assume A, C to be odd and B, D to be even. It an be shownthat in this ase A ≡ ±C (mod 64) and B ≡ D (mod 4).(ii) If there are two odd terms on eah side of (35) then we an assume
A4 ≡ C4 (mod 13) and B4 ≡ D4 (mod 13).In both ases pairs (A, C) are stored in memory and heked againstpairs (B, D). We �x a prime p and for eah 0 ≤ R < p we store at one onlythe pairs (A, C) with A4 −C4 ≡ R (mod p). We will not disuss the furtherdetails of the partiular implementation used.A searh using a C program determined that there are 1420 primitivesolutions of (35) with A, B, C, D < 107. Case (i) took under 19 days onPentium 4 1.7 GHz and ase (ii) took about 16 days with a 2-threadedprogram on Pentium 4 HT 2.4 GHz.An easy hek up of the results determined that the hain (2) has fourprimitive solutions with positive integers X1, Y1, X2, Y2, X3, Y3 < 107, andin the same range there is no hain(36) X4

1 + Y 4

1 = X4

2 + Y 4

2 = X4

3 + Y 4

3 .Another algorithm used to produe solutions of (35) is the method ofPythagorean triplets desribed in [7℄. An exhaustive searh for solutions to[7, eq. (10), p. 638℄ in the range x, y, z ≤ 40000 resulted in 1592 solutionsof (35), and a seletive searh in a higher range produed many more.Every solution of (35) leads to numbers x1, y1, x2, y2 satisfying the leftequation of (4) and we an use (12) to get omplex numbers x3, y3 satis-fying (4). If x3, y3 happen to be rational we get a rational hain (4) whihleads to a hain (2).This method produed 40 primitive integer hains (2), the largest having14-digit terms.We give 23 hains with terms below 1010 in Table I.It was veri�ed that among primitive solutions of (35) with A, B, C, D <
107 there are no two solutions with the same max(A, B, C, D).Using the 14th hain in Table I we get two primitive solutions of (35)with max(A, B, C, D) = 657153271.5. An appliation of the hains of biquadrates. Using hains (2)we an obtain an in�nite family of solutions to the diophantine system

A4B4C4 = D4E4F 4,(37)
A4 + B4 + C4 = D4 + E4 + F 4,(38)mentioned in [4, p. 142℄ and disussed in [1℄.



Quarti diophantine hains 347Table I. Solutions of the hain X
4

1 − Y
4

1 = X
4

2 − Y
4

2 = X
4

3 − Y
4

3

X1 Y1 X2 Y2 X3 Y3335084 296668 265076 93436 264047 1169421296 273588 415137 248289 401168 17228854688 813396 747633 682161 614656 4652363138156 2840232 2377876 500296 2376783 24999927220940 24543080 20830065 6730545 20773068 3943243134160 39597700 37607745 31601025 32721072 1945357249734032 47450804 32004351 5106879 31999248 182955649888344 39566652 44400113 19439153 43986552 177248457218008 56255396 28999496 7923364 28962047 414496180325288 41563476 79714568 36280748 79087329 2627561791785840 89603460 50547505 11071345 50518608 3231108140326844 139033552 61413863 18878503 61306948 12960784197237095 150215015 191610280 136159640 178105688 37694312657153271 613063351 469658376 241846092 461665368 117778356751888607 509011231 728659604 414173824 708852076 310473921180872001 1161828737 616132528 383720564 601308944 3018701961596600137 1582784777 716243652 450436344 702011844 3800557683071712177 2980091889 1860358392 1161850644 1805476184 8280304844275254036 4274662012 660603913 271493129 660079796 2636153244779990264 4779753552 628280072 478478672 625923087 4730818416427460484 5799560808 5594408068 4483641784 4989936609 25840784316621888824 6399150812 4017771432 1956085212 3968658927 12082100019865447832 8250756572 8782377144 5772976932 8348157633 2076294399
If we take(39) A = X1Y2, B = X2Y3, C = X3Y1,

D = X1Y3, E = X2Y1, F = X3Y2,then (37) is obvious, while (38) an be written as
(40) det





X4
1

X4
2

X4
3

Y 4
1

Y 4
2

Y 4
3

1 1 1






= 0,

whih is true sine by (2) the di�erene of the �rst two rows is a multiple ofthe third one.Aknowledgments. We are grateful to the referee for his ommentswhih have led to improvements in the paper.
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