On the height of algebraic numbers with real conjugates

by
John Garza (Austin, TX)

1. Introduction. Mahler's measure of a polynomial f, denoted by $M(f)$, is defined as the product of the absolute values of those roots of f that lie outside the unit disk, multiplied by the absolute value of the leading coefficient. If $f(x)=b \prod_{i=1}^{d}\left(x-\alpha_{i}\right)$, then $M(f)=|b| \prod_{i=1}^{d} \max \left\{1,\left|\alpha_{i}\right|\right\}$. For an algebraic number α, let $M(\alpha) \equiv M(f)$ where f is the minimal polynomial of α over \mathbb{Z}. If $f \in \mathbb{Z}[x]$, then $M(f) \geq 1$, and it is a theorem of Kronecker that for $f \in \mathbb{Z}[x], M(f)=1$ if and only if $\pm f$ is a product of a power of x and cyclotomic polynomials. It follows from a result of Schinzel ([2, Corollary $\left.\left.1^{\prime}\right]\right)$ that if $\alpha \neq 0, \pm 1$ is a totally real algebraic number of degree d then

$$
M(\alpha) \geq\left(\frac{1+\sqrt{5}}{2}\right)^{d / 2}
$$

This article establishes the following generalization of the last inequality.
Theorem 1. Let α be an algebraic number, different from 0 and ± 1. Let Λ be the set of Galois conjugates of α that are real and suppose that $|\Lambda| \neq 0$. Let $d=[\mathbb{Q}(\alpha): \mathbb{Q}]$ and let $R_{\alpha} \equiv|\Lambda| /$ d. Let $\beta=1-1 / R_{\alpha}$. Then

$$
M(\alpha) \geq \log \left(\frac{2^{\beta}+\sqrt{4^{\beta}+4}}{2}\right)^{d R_{\alpha} / 2}
$$

It is a natural question to ask whether the full Corollary 1^{\prime} of [2] can be generalized in the same way. We mention that in the case $0<R_{\alpha}<$ $(\log 2) /(3 \log d), \alpha$ an integer, and $d>d_{0}$, Theorem 2 of Blanksby and Montgomery [1] gives a stronger result.

Amongst the absolute values in a place v of an algebraic number field, \mathbb{K}, two play a role in this article. If v is archimedean, let $\|\cdot\|_{v}$ denote the unique absolute value in v which restricts to the usual absolute value on \mathbb{Q}. If v is non-archimedean and $v \mid p$, let $\|\cdot\|_{v}$ denote the unique absolute value

[^0]in v restricting to the usual p-adic absolute value on \mathbb{Q}. For each place v of \mathbb{K}, let \mathbb{K}_{v} and \mathbb{Q}_{v} denote the completions of \mathbb{K} and \mathbb{Q} with respect to v and define the local degree as $d_{v} \equiv\left[\mathbb{K}_{v}: \mathbb{Q}_{v}\right]$. Let $|\cdot|_{v}=\|\cdot\|_{v}^{d_{v} / d}$.

The absolute values $|\cdot|_{v}$ satisfy the product rule: if $\alpha \in \mathbb{K}^{\times}$, then $\prod_{v}|\alpha|_{v}=1$. The absolute (logarithmic) Weil height of α is defined as $h(\alpha)=\sum_{v} \log ^{+}|\alpha|_{v}$ where the sum is over all places v of \mathbb{K}. Because of the way in which the absolute values $|\cdot|_{v}$ are normalized, the absolute Weil height of α does not depend on the field \mathbb{K} in which α is contained. If α_{i} and α_{j} are algebraic numbers, then $h\left(\alpha_{i} \cdot \alpha_{j}\right) \leq h\left(\alpha_{i}\right)+h\left(\alpha_{j}\right)$; if α_{i} and α_{j} are Galois conjugates, then $h\left(\alpha_{i}\right)=h\left(\alpha_{j}\right)$; and for an algebraic number $\alpha, h(\alpha)=h(1 / \alpha)$. Also, if α is an algebraic integer of degree d then $d \cdot h(\alpha)=\log M(\alpha)$. We provide the following additional result concerning the Weil height of algebraic numbers.

Theorem 2. Let \mathbb{K} / \mathbb{Q} be a Galois extension of finite degree. Let $G \equiv$ $\operatorname{Aut}(\mathbb{K} / \mathbb{Q})$. Let $\alpha \in \mathbb{K}^{\times}$have a Galois conjugate not on the archimedean unit circle. Let $\sigma: \mathbb{K} \hookrightarrow \mathbb{C}$ be an embedding. Let $\xi \in G$ correspond to complex conjugation with respect to σ. Let $C_{G}(\xi)=\{x \in G: x \xi=\xi x\}$. Let $n=\left[G: C_{G}(\xi)\right]$. Let $\theta(\alpha)=1$ if α has a real Galois conjugate and let $\theta(\alpha)=2$ if α does not have a real Galois conjugate. Then

$$
h(\alpha) \geq \log \left(\frac{2^{1-n}+\sqrt{4^{1-n}+4}}{2}\right)^{1 /(2 \theta(\alpha) n)}
$$

2. Proof of Theorem 1. Let $\|\cdot\|_{\infty}$ be the usual archimedean absolute value on \mathbb{R}. Let $\delta \equiv 1-\alpha^{2}$. For each place v of \mathbb{K} let

$$
b_{v} \max \left\{1,\left\|\alpha^{2}\right\|_{v}\right\}=\|\delta\|_{v}
$$

By the ultrametric inequality, for each $v \nmid \infty$ we have $b_{v} \leq 1$.
For each $\gamma \in \Lambda$ define

$$
\left\|1-\gamma^{2}\right\|_{\infty}=a_{\gamma} \max \left\{1,\left\|\gamma^{2}\right\|_{\infty}\right\}
$$

Then

$$
a_{\gamma}= \begin{cases}\left\|1-1 / \gamma^{2}\right\|_{\infty} & \text { if }\|\gamma\|_{\infty}>1 \\ \left\|1-\gamma^{2}\right\|_{\infty} & \text { if }\|\gamma\|_{\infty}<1\end{cases}
$$

We define

$$
\gamma^{\prime}= \begin{cases}1 / \gamma & \text { if }\|\gamma\|_{\infty}>1 \\ \gamma & \text { if }\|\gamma\|_{\infty}<1\end{cases}
$$

We thus have

$$
\prod_{\gamma \in \Lambda}\left(\gamma^{\prime}\right)^{2} \geq \frac{1}{\left(e^{d h(\alpha)}\right)^{4}}
$$

Using the arithmetic-geometric mean inequality twice we have

$$
\begin{aligned}
\prod_{\gamma \in \Lambda}\left(1-\left(\gamma^{\prime}\right)^{2}\right) & \leq\left(\frac{1}{|\Lambda|}\left(\sum_{\gamma \in \Lambda}\left(1-\left(\gamma^{\prime}\right)^{2}\right)\right)\right)^{|\Lambda|}=\left(1-\frac{1}{|\Lambda|} \sum_{\gamma \in \Lambda}\left(\gamma^{\prime}\right)^{2}\right)^{|\Lambda|} \\
& \leq\left(1-\left(\prod_{\gamma \in \Lambda}\left(\gamma^{\prime}\right)^{2}\right)^{1 /|\Lambda|}\right)^{|\Lambda|} \leq\left(1-\left(\frac{1}{\left(e^{d h(\alpha)}\right)^{4}}\right)^{1 / d R_{\alpha}}\right)^{d R_{\alpha}}
\end{aligned}
$$

By the triangle inequality, $b_{v} \leq 2$ for all $v \mid \infty$. Let

$$
B \equiv \prod_{v} b_{v}^{d_{v} / d}
$$

We recall that $\sum_{v \mid \infty} d_{v}=d$. From the Galois action on places we have

$$
B \leq 2^{1-R_{\alpha}}\left(1-\left(\frac{1}{\left(e^{d h(\alpha)}\right)^{4}}\right)^{1 / d R_{\alpha}}\right)^{R_{\alpha}}
$$

If $d R_{\alpha}=|\Lambda|$ is sufficiently large in comparison to $e^{d h(\alpha)}$ it follows that $B<1$.

Fix v. We have $\|\delta\|_{v}=|\delta|_{v}^{d / d_{v}}=b_{v} \max \left\{1,\|\alpha\|_{v}^{2}\right\}$. Consequently,

$$
\log |\delta|_{v}=\left(d_{v} / d\right)\left(\log b_{v}+2 \log ^{+}\|\alpha\|_{v}\right)
$$

Summing over all places and using the product rule yields

$$
\begin{aligned}
& 0=\sum_{v} \log |\delta|_{v} \\
& 0=\sum_{v} \log b_{v}^{d_{v} / d}+2 \sum_{v} \log ^{+}|\alpha|_{v} \\
& 0=\log B+2 h(\alpha)
\end{aligned}
$$

We thus have

$$
\begin{aligned}
h(\alpha) & =\frac{1}{2} \log (1 / B) \\
h(\alpha) & \geq \frac{1}{2} \log \left(2^{R_{\alpha}-1}\left(1-\left(\frac{1}{\left(e^{d h(\alpha)}\right)^{4}}\right)^{1 / d R_{\alpha}}\right)^{-R_{\alpha}}\right) \\
d h(\alpha) & \geq \frac{d}{2} \log \left(2^{R_{\alpha}-1}\left(1-\left(\frac{1}{\left(e^{d h(\alpha)}\right)^{4}}\right)^{1 / d R_{\alpha}}\right)^{-R_{\alpha}}\right) \\
d h(\alpha) & \geq \log \left(2^{R_{\alpha}-1}\left(1-\left(\frac{1}{\left(e^{d h(\alpha)}\right)^{4}}\right)^{1 / d R_{\alpha}}\right)^{-R_{\alpha}}\right)^{d / 2}
\end{aligned}
$$

We notice that for fixed d and R_{α}, if $h(\alpha)$ decreases the right hand side of the inequality increases. As a result, the inequality implies a lower bound
on $h(\alpha)$. We now deduce as follows:

$$
\begin{aligned}
& e^{d h(\alpha)} \geq\left(2^{R_{\alpha}-1}\left(1-\left(\frac{1}{\left(e^{d h(\alpha)}\right)^{4}}\right)^{1 / d R_{\alpha}}\right)^{-R_{\alpha}}\right)^{d / 2} \\
& \left(e^{d h(\alpha)}\right)^{2 / d} \geq 2^{R_{\alpha}-1}\left(\frac{\left(e^{d h(\alpha)}\right)^{4 / d R_{\alpha}}}{\left(e^{d h(\alpha)}\right)^{4 / d R_{\alpha}}-1}\right)^{R_{\alpha}} \\
& \left(e^{d h(\alpha)}\right)^{2 / d R_{\alpha}} \geq 2^{\beta} \frac{\left(e^{d h(\alpha)}\right)^{4 / d R_{\alpha}}}{\left(e^{d h(\alpha)}\right)^{4 / d R_{\alpha}}-1} \\
& 1 \geq 2^{\beta} \frac{\left(e^{d h(\alpha)}\right)^{2 / d R_{\alpha}}}{\left(e^{d h(\alpha)}\right)^{4 / d R_{\alpha}}-1} \\
& \left(e^{d h(\alpha)}\right)^{4 / d R_{\alpha}}-1 \geq 2^{\beta}\left(e^{d h(\alpha)}\right)^{2 / d R_{\alpha}} \\
& \left(\left(e^{d h(\alpha)}\right)^{2 / d R_{\alpha}}\right)^{2}-2^{\beta}\left(e^{d h(\alpha)}\right)^{2 / d R_{\alpha}}-1 \geq 0
\end{aligned}
$$

From the quadratic formula we deduce that

$$
M(\alpha)=e^{d h(\alpha)} \geq\left(\frac{2^{\beta}+\sqrt{4^{\beta}+4}}{2}\right)^{d R_{\alpha} / 2}
$$

3. Proof of Theorem 2. If α does not have a real Galois conjugate let $\gamma \equiv \alpha \xi(\alpha)$, and if α has a real Galois conjugate, τ, let $\gamma=\tau$. Since α does not have all its conjugates on the archimedean unit circle, we can assume that $\gamma \neq \pm 1$. Let $H_{\mathbb{Q}(\gamma)}$ denote the subgroup of G that fixes the field $\mathbb{Q}(\gamma)$. Let $N_{G}\left(H_{\mathbb{Q}(\gamma)}\right)=\left\{x \in G: x H_{\mathbb{Q}(\gamma)} x^{-1}=H_{\mathbb{Q}(\gamma)}\right\}$. From Galois theory we recall that $\left[G: N_{G}\left(H_{\mathbb{Q}(\gamma)}\right)\right]$ is the number of subfields of \mathbb{K} that are distinct from and conjugate to $\mathbb{Q}(\gamma)$. We have

$$
\left|\frac{C_{G}(\xi)}{C_{G}(\xi) \cap N_{G}\left(H_{\mathbb{Q}(\gamma)}\right)}\right| \geq \frac{\left|C_{G}(\xi)\right|}{\left|N_{G}\left(H_{\mathbb{Q}(\gamma)}\right)\right|}=\frac{1}{n} \cdot \frac{|G|}{\left|N_{G}\left(H_{\mathbb{Q}(\gamma)}\right)\right|} .
$$

Consequently, at least $1 / n$ of the elements of the orbit of $\mathbb{Q}(\gamma)$ under $G / N_{G}\left(H_{\mathbb{Q}(\gamma)}\right)$ are the images of $\mathbb{Q}(\gamma)$ by elements of $C_{G}(\xi)$ so that at least $1 / n$ of the Galois conjugates of γ are real: $R_{\gamma} \geq 1 / n$. It then follows from Theorem 1 that

$$
h(\alpha) \geq \log \left(\frac{2^{1-n}+\sqrt{4^{1-n}+4}}{2}\right)^{1 /(2 \theta(\alpha) n)}
$$

4. An application to Lehmer's problem

Corollary 3. For $n \in \mathbb{N}$ let $H_{n} \equiv\left(2^{1-n}+\sqrt{4^{1-n}+4}\right) / 2$. Let \mathbb{K} / \mathbb{Q} be a Galois extension of finite degree. Let $C(\operatorname{Aut}(\mathbb{K} / \mathbb{Q}))$ be the center of $\operatorname{Aut}(\mathbb{K} / \mathbb{Q})$. Let $n \equiv[\operatorname{Aut}(\mathbb{K} / \mathbb{Q}): C(\operatorname{Aut}(\mathbb{K} / \mathbb{Q}))]$. Let $\alpha \in \mathcal{O}_{\mathbb{K}}^{\times}$be different from the roots of unity such that \mathbb{K} is the Galois closure of $\mathbb{Q}(\alpha)$. Let $a \in$ $(1, \infty)$. If $[\mathbb{K}: \mathbb{Q}] \geq\left(4 n^{2} \log a\right) /\left(\log H_{n}\right)$ then $M(\alpha) \geq a$.

Proof. Let $G \equiv \operatorname{Aut}(\mathbb{K} / \mathbb{Q})$. Let $H_{\mathbb{Q}(\alpha)}$ be the subgroup of G that fixes the field $\mathbb{Q}(\alpha)$. By Galois theory we have $C(G) \cap H_{\mathbb{Q}(\alpha)}=\{1\}$ from which it follows that $[\mathbb{Q}(\alpha): \mathbb{Q}] \geq|G| / n$. By Theorem 2 we have

$$
h(\alpha) \geq \log H_{n}^{1 / 4 n} .
$$

Suppose that

$$
[\mathbb{K}: \mathbb{Q}]=|G| \geq \frac{4 n^{2} \log a}{\log H_{n}}
$$

Then

$$
\log (M(\alpha))=[\mathbb{Q}(\alpha): \mathbb{Q}] \cdot h(\alpha) \geq \log H_{n}^{|G| / 4 n^{2}} \geq \log a .
$$

References

[1] P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355-369.
[2] A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, ibid. 24 (1973), 385-399; Addendum, ibid. 26 (1973), 329-331.

Department of Mathematics
The University of Texas at Austin
1 University Station, C1200
Austin, TX 78712, U.S.A.
E-mail: jgarza@math.utexas.edu

[^0]: 2000 Mathematics Subject Classification: Primary 11R04.
 Key words and phrases: Mahler measure, Weil height, real roots.

