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1. Introduction. Mahler’s measure of a polynomial f , denoted by
M(f), is defined as the product of the absolute values of those roots of
f that lie outside the unit disk, multiplied by the absolute value of the lead-
ing coefficient. If f(x) = b

∏d
i=1(x−αi), then M(f) = |b|∏d

i=1 max{1, |αi|}.
For an algebraic number α, let M(α) ≡ M(f) where f is the minimal poly-
nomial of α over Z. If f ∈ Z[x], then M(f) ≥ 1, and it is a theorem of
Kronecker that for f ∈ Z[x], M(f) = 1 if and only if ±f is a product of a
power of x and cyclotomic polynomials. It follows from a result of Schinzel
([2, Corollary 1′]) that if α 6= 0,±1 is a totally real algebraic number of
degree d then

M(α) ≥
(

1 +
√

5

2

)d/2

.

This article establishes the following generalization of the last inequality.

Theorem 1. Let α be an algebraic number , different from 0 and ±1.
Let Λ be the set of Galois conjugates of α that are real and suppose that

|Λ| 6= 0. Let d = [Q(α) : Q] and let Rα ≡ |Λ|/d. Let β = 1 − 1/Rα. Then

M(α) ≥ log

(

2β +
√

4β + 4

2

)dRα/2

.

It is a natural question to ask whether the full Corollary 1′ of [2] can
be generalized in the same way. We mention that in the case 0 < Rα <
(log 2)/(3 log d), α an integer, and d > d0, Theorem 2 of Blanksby and
Montgomery [1] gives a stronger result.

Amongst the absolute values in a place v of an algebraic number field,
K, two play a role in this article. If v is archimedean, let ‖ · ‖v denote the
unique absolute value in v which restricts to the usual absolute value on Q.
If v is non-archimedean and v | p, let ‖ · ‖v denote the unique absolute value
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in v restricting to the usual p-adic absolute value on Q. For each place v
of K, let Kv and Qv denote the completions of K and Q with respect to v

and define the local degree as dv ≡ [Kv : Qv]. Let | · |v = ‖ · ‖dv/d
v .

The absolute values | · |v satisfy the product rule: if α ∈ K×, then
∏

v |α|v = 1. The absolute (logarithmic) Weil height of α is defined as
h(α) =

∑

v log+ |α|v where the sum is over all places v of K. Because of
the way in which the absolute values | · |v are normalized, the absolute Weil
height of α does not depend on the field K in which α is contained. If αi

and αj are algebraic numbers, then h(αi · αj) ≤ h(αi) + h(αj); if αi and
αj are Galois conjugates, then h(αi) = h(αj); and for an algebraic num-
ber α, h(α) = h(1/α). Also, if α is an algebraic integer of degree d then
d · h(α) = log M(α). We provide the following additional result concerning
the Weil height of algebraic numbers.

Theorem 2. Let K/Q be a Galois extension of finite degree. Let G ≡
Aut(K/Q). Let α ∈ K× have a Galois conjugate not on the archimedean

unit circle. Let σ : K →֒ C be an embedding. Let ξ ∈ G correspond to

complex conjugation with respect to σ. Let CG(ξ) = {x ∈ G : xξ = ξx}.
Let n = [G : CG(ξ)]. Let θ(α) = 1 if α has a real Galois conjugate and let

θ(α) = 2 if α does not have a real Galois conjugate. Then

h(α) ≥ log

(

21−n +
√

41−n + 4

2

)1/(2θ(α)n)

.

2. Proof of Theorem 1. Let ‖ · ‖∞ be the usual archimedean absolute
value on R. Let δ ≡ 1 − α2. For each place v of K let

bv max{1, ‖α2‖v} = ‖δ‖v.

By the ultrametric inequality, for each v ∤ ∞ we have bv ≤ 1.

For each γ ∈ Λ define

‖1 − γ2‖∞ = aγ max{1, ‖γ2‖∞}.
Then

aγ =

{ ‖1 − 1/γ2‖∞ if ‖γ‖∞ > 1,

‖1 − γ2‖∞ if ‖γ‖∞ < 1.

We define

γ′ =

{

1/γ if ‖γ‖∞ > 1,

γ if ‖γ‖∞ < 1.

We thus have
∏

γ∈Λ

(γ′)2 ≥ 1

(edh(α))4
.
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Using the arithmetic-geometric mean inequality twice we have

∏

γ∈Λ

(1 − (γ′)2) ≤
(

1

|Λ|
(

∑

γ∈Λ

(1 − (γ′)2)
)

)|Λ|

=

(

1 − 1

|Λ|
∑

γ∈Λ

(γ′)2
)|Λ|

≤
(

1 −
(

∏

γ∈Λ

(γ′)2
)1/|Λ|)|Λ|

≤
(

1 −
(

1

(edh(α))4

)1/dRα

)dRα

.

By the triangle inequality, bv ≤ 2 for all v |∞. Let

B ≡
∏

v

bdv/d
v .

We recall that
∑

v|∞ dv = d. From the Galois action on places we have

B ≤ 21−Rα

(

1 −
(

1

(edh(α))4

)1/dRα

)Rα

.

If dRα = |Λ| is sufficiently large in comparison to edh(α) it follows that
B < 1.

Fix v. We have ‖δ‖v = |δ|d/dv

v = bv max{1, ‖α‖2
v}. Consequently,

log |δ|v = (dv/d)(log bv + 2 log+ ‖α‖v).

Summing over all places and using the product rule yields

0 =
∑

v

log |δ|v,

0 =
∑

v

log bdv/d
v + 2

∑

v

log+ |α|v,

0 = log B + 2h(α).

We thus have

h(α) =
1

2
log(1/B),

h(α) ≥ 1

2
log

(

2Rα−1

(

1 −
(

1

(edh(α))4

)1/dRα

)−Rα

)

,

dh(α) ≥ d

2
log

(

2Rα−1

(

1 −
(

1

(edh(α))4

)1/dRα

)−Rα

)

,

dh(α) ≥ log

(

2Rα−1

(

1 −
(

1

(edh(α))4

)1/dRα

)−Rα

)d/2

.

We notice that for fixed d and Rα, if h(α) decreases the right hand side
of the inequality increases. As a result, the inequality implies a lower bound
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on h(α). We now deduce as follows:

edh(α) ≥
(

2Rα−1

(

1 −
(

1

(edh(α))4

)1/dRα

)−Rα

)d/2

,

(edh(α))2/d ≥ 2Rα−1

(

(edh(α))4/dRα

(edh(α))4/dRα − 1

)Rα

,

(edh(α))2/dRα ≥ 2β (edh(α))4/dRα

(edh(α))4/dRα − 1
,

1 ≥ 2β (edh(α))2/dRα

(edh(α))4/dRα − 1
,

(edh(α))4/dRα − 1 ≥ 2β(edh(α))2/dRα ,

((edh(α))2/dRα)2 − 2β(edh(α))2/dRα − 1 ≥ 0.

From the quadratic formula we deduce that

M(α) = edh(α) ≥
(

2β +
√

4β + 4

2

)dRα/2

.

3. Proof of Theorem 2. If α does not have a real Galois conjugate let
γ ≡ αξ(α), and if α has a real Galois conjugate, τ , let γ = τ . Since α does
not have all its conjugates on the archimedean unit circle, we can assume
that γ 6= ±1. Let HQ(γ) denote the subgroup of G that fixes the field Q(γ).

Let NG(HQ(γ)) = {x ∈ G : xHQ(γ)x
−1 = HQ(γ)}. From Galois theory we

recall that [G : NG(HQ(γ))] is the number of subfields of K that are distinct
from and conjugate to Q(γ). We have

∣

∣

∣

∣

CG(ξ)

CG(ξ) ∩ NG(HQ(γ))

∣

∣

∣

∣

≥ |CG(ξ)|
|NG(HQ(γ))|

=
1

n
· |G|
|NG(HQ(γ))|

.

Consequently, at least 1/n of the elements of the orbit of Q(γ) under
G/NG(HQ(γ)) are the images of Q(γ) by elements of CG(ξ) so that at least
1/n of the Galois conjugates of γ are real: Rγ ≥ 1/n. It then follows from
Theorem 1 that

h(α) ≥ log

(

21−n +
√

41−n + 4

2

)1/(2θ(α)n)

.

4. An application to Lehmer’s problem

Corollary 3. For n ∈ N let Hn ≡ (21−n +
√

41−n + 4)/2. Let K/Q
be a Galois extension of finite degree. Let C(Aut(K/Q)) be the center of

Aut(K/Q). Let n ≡ [Aut(K/Q) : C(Aut(K/Q))]. Let α ∈ O
×
K be different

from the roots of unity such that K is the Galois closure of Q(α). Let a ∈
(1,∞). If [K : Q] ≥ (4n2 log a)/(log Hn) then M(α) ≥ a.
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Proof. Let G ≡ Aut(K/Q). Let HQ(α) be the subgroup of G that fixes
the field Q(α). By Galois theory we have C(G) ∩ HQ(α) = {1} from which
it follows that [Q(α) : Q] ≥ |G|/n. By Theorem 2 we have

h(α) ≥ log H1/4n
n .

Suppose that

[K : Q] = |G| ≥ 4n2 log a

log Hn
.

Then
log(M(α)) = [Q(α) : Q] · h(α) ≥ log H |G|/4n2

n ≥ log a.
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