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1. Introduction. In 1975, Erdős and Selfridge [2] resolved an old con-
jecture that a product of two or more consecutive positive integers is never
a perfect power. In other words, the equation

(1.1) ∆0 = n(n + 1) · · · (n + k − 1) = yl

in positive integers n, y, k ≥ 2, l ≥ 2 has no solution. Erdős and Selfridge
observed at the end of their paper [2, p. 300] that

(1.2)
4!

3
= 23,

6!

5
= 122,

10!

7
= 7202.

They conjectured that these are the only cases in which a product of k − 1
distinct integers taken out of k (≥ 3) consecutive positive integers can be a
perfect power. In other words, the conjecture says that the equation

∆0(i0) = n(n + 1) · · · (n + i0 − 1)(n + i0 + 1) · · · (n + k − 1)(1.3)

= yl, 0 ≤ i0 < k,

in positive integers n, y, k ≥ 3, l ≥ 2 has only the solutions given by
(1.2). We note that ∆0(i0) is the product ∆0 with one term missing. This
conjecture was confirmed by the present authors in [6, Theorem 1] and
[8, Theorem 1].

In [6] and [7], we considered equations analogous to (1.1) and (1.3) when
the terms of the product are taken from an arithmetic progression with
common difference greater than 1. For any integer n > 1, we write P (n) for
the greatest prime divisor of n and ω(n) for the number of distinct prime
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divisors of n. We put P (1) = 1 and ω(1) = 0. We consider

∆ = n(n + d) · · · (n + (k − 1)d) = byl,(1.4)

∆(i0) = n(n + d) · · · (n + (i0 − 1)d)(n + (i0 + 1)d) · · · (n + (k − 1)d)(1.5)

= byl, 0 < i0 < k − 1,

in positive integers b, n, d > 1, k ≥ 3, y and l ≥ 2 such that P (b) ≤ k and
gcd(n, d) = 1. These conditions on b, n, d, k, y and l will be assumed from
now on. There is no loss of generality in assuming that l is prime, which we
suppose throughout the paper. A well known conjecture in combinatorial
diophantine analysis states that (1.4) never holds.

Let l = 2. Then Shorey and Tijdeman [14] proved that (1.4) implies that
k is bounded by an effectively computable number depending only on ω(d).
It has been proved in [7], [4], [5] and [13] that (1.5) with b = ω(d) = 1
and k ≥ 6 does not hold. Further the authors proved in [7] that (1.4) with
ω(d) = 1 and k ≥ 4 is not possible.

Let k = 3. Then (1.4) implies that

n = 2y2
0, n + d = y2

1, n + 2d = 2y2
2,

which gives y2 − y0 = 1, y2 + y0 = d and hence n = (d − 1)2/2. Since
n + d = y2

1, we get d2 − 2y2
1 = −1. It is not known whether this Pell’s

equation has infinitely many solutions in d, y1 with d prime. Thus the case
k = 3 remains open.

For l ≥ 3, we define D1 > 0 as the maximal divisor of d with all prime
factors of D1 congruent to 1 (mod l) and we put

d = D1D2.

The following result for k ≥ 4 was shown by the authors in [6, Theorem 2].
The result for k = 3 is due to Győry [3].

Theorem A. Suppose (1.4) holds with k ≥ 4 or (1.5) holds with k ≥ 9.
Let l ≥ 3 and d > 1. Then D1 > 1. Further (1.4) with k = 3 and P (b) ≤ 2
does not hold.

Thus under the hypothesis of Theorem A, equations (1.4) and (1.5) imply
that P (d) ≥ 2l + 1 ≥ 7. Thus equations (1.4) and (1.5) have no solution if

d = 2α3β5γ for positive integers α, β, γ. Our aim in this paper is to cover
the small values 4 ≤ k ≤ 8 in the above result for (1.5) when b = 1. Thus
we prove

Theorem. Equation (1.5) with 4 ≤ k ≤ 8, l ≥ 3, b = 1 and d > 1
implies that D1 > 1.

When k = 3, equation (1.5) with b = 1 becomes n(n + 2d) = yl. We
see that (n, d) = (1, (yl − 1)/2) with odd y > 1 are all solutions to (1.5)
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with D1 > 1. Thus there are infinitely many values of d satisfying (1.5) with
D1 > 1.

Now we give a plan of the proof of the Theorem. We assume that (1.5)
holds with b = D1 = 1. For 0 ≤ j < k and j 6= i, we write

(1.6) n + jd = ajx
l
j where aj is lth power free and P (aj) < k.

The main thrust of the paper lies in analyzing the properties of aj ’s. Since
k ≤ 8, we see that aj ’s are composed only of the primes 2, 3, 5 and 7.
A careful analysis enables us to determine the divisibility of aj ’s by these
primes. In the majority of cases we find that one of the aj ’s equals 1. In these
cases we use a fundamental and elementary approach of Erdős and Selfridge
(Corollary 1). When none of the aj ’s equals 1, we use identities (2.9) or (2.10)
to form equations of the form

Axl + Byl = Czl or Axl + Byl = Cz2

in x, y, z with A, B, C involving only aj ’s. Now we apply results on several
generalized Fermat equations resulting from contributions on Fermat equa-
tions (see Lemmas 1–3) to bound l ≤ 7. We exclude these small values of l
by a congruence argument and by Lemma 5. Thus the elementary method of
Erdős and Selfridge combines well with contributions on Fermat equations.
This feature appeared for the first time in [6, pp. 385–387] and it has been
considerably developed in the present paper. For the case l = 3, we use an
old result of Selmer [9] where equations of the form

x3 + m1y
3 + m2z

3 = 0

for several integral values of m1, m2 are solved (see Lemma 4). Also in
some cases, we bound x, y, z using Lemma 5 and then exclude them by
computation (see Lemma 6).

We refer to [10]–[13] for information on equations (1.1), (1.3), (1.4), (1.5)
and their generalizations. We thank Professors M. A. Bennett, K. Győry and
L. Hajdu for sending us a copy of [1], from which Lemma 1 is taken. We
also thank Professor L. Hajdu for bringing to our attention the right use of
Selmer’s result. Finally, we thank the referee for his useful comments.

2. Preliminaries. We shall always assume from now on that 4 ≤ k ≤ 8,
l ≥ 3, b = 1 and d > 1. Let 2 = p1 < p2 < · · · be the sequence of all primes.
By [6, Theorem 4], we see that ∆(i) is divisible by a prime > k. Thus

(2.1) n + (k − 1)d ≥ pl
π(k)+1.

We assume from now on that (1.5) holds with b = 1. By (1.6), we write

aj = p
αj,1

1 · · · p
αj,π(k)−1

π(k)−1
with(2.2)

0 ≤ αj,r < l, 0 ≤ j < k, 1 ≤ r < π(k) and j 6= i0,
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Aj = p
βj,1

1 · · · p
βj,π(k)−1

π(k)−1 with(2.3)

βj,r = ordpr(n + jd), 0 ≤ j < k, 1 ≤ r < π(k) and j 6= i0.

We note that βj,r ≡ αj,r (mod l) for 0 ≤ j < k, 1 ≤ r < π(k) and j 6= i0.

Thus Aj = ajt
l
j for some integer tj > 0 with 0 ≤ j < k and j 6= i0. We

observe the following distribution of the powers of the primes 2, 3, 5, 7 among
the aj ’s. If k = 7, 8 and there is a j such that 2 divides only Aj , Aj+2, Aj+4

and Aj+6, then

(2.4) (αj,1, αj+2,1, αj+4,1, αj+6,1)

∈







{(1, 2, 1, 2), (2, 1, 2, 1)} if l = 3,

{(2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2)} if l = 5,

{(1, 3, 1, 2), (1, 2, 1, 3), (3, 1, 2, 1), (2, 1, 3, 1)} if l = 7.

If 5 ≤ k ≤ 8 and 2 divides only Aj , Aj+2 and Aj+4 for some j, then

(2.5) (αj,1, αj+2,1, αj+4,1) ∈







{(0, 1, 2), (2, 1, 0), (1, 1, 1)} if l = 3,

{(1, 3, 1), (2, 1, 2)} if l = 5,

{1, 5, 1), (2, 1, 4), (4, 1, 2)} if l = 7.

If k = 7, 8 and 2 divides only Aj , Aj+4 and Aj+6 for some j, then

(2.6) (αj,1, αj+4,1, αj+6,1) ∈







{(2, 0, 1), (0, 2, 1), (1, 1, 1)} if l = 3,

{(2, 2, 1), (1, 1, 3)} if l = 5,

{(2, 4, 1), (4, 2, 1), (1, 1, 5)} if l = 7.

If k = 7, 8 and 3 divides only Aj , Aj+3 and Aj+6 for some j, then

(2.7) (αj,2, αj+3,2, αj+6,2) ∈







{(1, 1, 1)} if l = 3,

{(3, 1, 1), (1, 3, 1), (1, 1, 3)} if l = 5,

{(5, 1, 1), (1, 5, 1), (1, 1, 5)} if l = 7.

If 4 ≤ k ≤ 8 and 3 divides only Aj and one of Aj+3 or Aj+6, then

(2.8) (αj,2, αj+3,2) or (αj,2, αj+6,2) ∈







{(2, 1), (1, 2)} if l = 3,

{(4, 1), (1, 4)} if l = 5,

{(6, 1), (1, 6)} if l = 7.

We define

S(i) =
k−1
∏

j=0
j 6=i

aj

and let T (i) be the set of primes dividing S(i). We follow some notation
used in [1]. We denote the identity

(2.9) (i3−i2)(n+i1d)+(i2−i1)(n+i3d) = (i3−i1)(n+i2d) with i1 < i2 < i3
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by [i1, i2, i3]. If p, q, r, s are non-negative integers with qr 6= ps and p + s =
q + r, then we denote the identity

(2.10) (n + qd)(n + rd) − (n + pd)(n + sd) = (qr − ps)d2 6= 0

by {p, q, r, s}.

3. Lemmas. The first lemma is part of [1, Proposition 3.1].

Lemma 1. Let l ≥ 7 be prime and A, B co-prime positive integers.

Then the following equations have no solution in non-zero co-prime inte-

gers (x, y, z) with xy 6= ±1:

(i) Axl + Byl = z2, P (AB) ≤ 3, p |xy for each p ∈ {5, 7}.
(ii) Axl + Byl = z2, P (AB) ≤ 5, 7 |xy and l ≥ 11.
(iii) xl + 2αyl = 3z2 with p |xy for each p ∈ {5, 7}.

The next lemma is [6, Lemma 13].

Lemma 2. Let l ≥ 5. Let a, b, c be non-zero integers such that either

P (abc) ≤ 3 or a, b, c are composed of 2 and 5. Then the equation

axl − byl = czl

has no solution, in non-zero integers x, y, z with

gcd(axl, byl, czl) = 1, ord2(by
l) ≥ 4.

The following result is [1, Proposition 6.1], which is based on classical
arguments.

Lemma 3. Let C be a positive integer with P (C) ≤ 5. If the equation

x5 + y5 = Cz5

has solutions in non-zero co-prime integers x, y, z, then C = 2 and x =
y = ±1.

It is a well known old result that the cubic equations

x3 + y3 = z3 and x3 + y3 = 2z3

have no non-trivial solution. Selmer [9] made an extensive study of several
cubic equations. Lemma 4 is a part of his work. We refer to [9, Tables 2a

and 4a].

Lemma 4. Let m1 and m2 be positive integers such that m1 = m2 = 1
or m1 < m2. Then the equation

(3.1) x3 + m1y
3 + m2z

3 = 0
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has no solution in non-zero integers x, y, z with gcd(x, y, z) = 1 whenever

(m1, m2) belongs to

H1 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 10), (1, 25), (1, 45), (1, 100),

(2, 9), (3, 7), (4, 7), (4, 9), (5, 9), (5, 12), (5, 18), (5, 21), (5, 28), (5, 36),

(6, 25), (7, 9), (7, 36), (9, 20), (9, 25), (12, 25), (25, 28), (25, 36)}.

For a proof of the next lemma, see [6, Lemmas 4–6].

Lemma 5. Suppose (1.5) holds with b = 1. Let l′ be an integer with

1 ≤ l′ < l and

θ =

{

1 if l ∤ d,

1/l if l | d.

For any κ > 0, define

κ0 = min

(

l

l′(κ + 1)(l−l′)/l
,

κ

(κ + 1)(l′)1/l

)

and assume that

(3.2) D1 ≤ κ0θ
(n + (k − 1)d)1−l′/l

k
.

Then for no distinct l′-tuples (i1, . . . , il′) and (j1, . . . , jl′) with i1 ≤ · · · ≤ il′
and j1 ≤ · · · ≤ jl′ , the ratio of the two products ai1 · · · ail′ and aj1 · · · ajl′

is

an lth power of a rational number.

Further let H(d, k, pr1, . . . , prm) denote the number of aj’s composed of

pr1 < · · · < prm. Then

(3.3)

(

H(d, k, pr1, . . . , prm) + l′ − 1

l′

)

≤ lm

where the left hand side is zero if H(d, k, pr1, . . . , prm) < 1.

Remark 1. For several values of l and l′ that we come across, we can
choose κ suitably so that κ0 > .7. We give here the values of κ for the
following pairs (l, l′) so that κ0 > .7 :

• 5.5 if (l, l′) = (l, 1);
• 7.5 if (l, l′) = (3, 2);
• 7.25 if (l, l′) = (l, 2) with l ≥ 5;
• 7 if (l, l′) = (5, 3) or (l, l′) = (7, 4);
• 15.5 if (l, l′) = (5, 4);
• 9 if (l, l′) = (7, 5).

Further for (l, l′) = (7, 6), we take κ = 23 to get κ0 > .73.

Remark 2. Suppose (1.5) holds and b = D1 = 1. For l ≥ 3 and k ≥ 4,
we see that

(n + (k − 1)d)(l−1)/l ≥ (k + 1)l−1 > 1.5kl
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by (2.1). Thus (3.2) is satisfied with l′ = 1 and κ0 = .7 by Remark 1. Hence
by Lemma 5, we conclude that all aj ’s are distinct. This fact will be used
throughout the paper.

As a consequence of Lemma 5, we get

Corollary 1. Suppose (1.5) holds with b = 1, and one of the aj’s is

equal to 1. Assume that for some integers r, s with 1 ≤ r ≤ s ≤ l − 1, there

exist tuples (i1, . . . , ir) and (j1, . . . , js) with i1 ≤ · · · ≤ ir and j1 ≤ · · · ≤ js

such that ai1 · · · air = aj1 · · · ajst
l for some rational number t. Then

(3.4) D1 > κ0θ(n + (k − 1)d)1−s/l/k

where κ0 is calculated with l′ = s. In particular , if k ≤ l + 1, then (3.4)
holds with s = k − 2.

Proof. Let aj0 = 1 for some j0 with 0 ≤ j0 < k. Then we see that
ai1 · · · airaj0 · · · aj0 = aj1 · · · ajst

l where aj0 occurs s − r times. Hence (3.4)
follows by Lemma 5 with l′ = s. This proves the first statement. For the
second, we write

{0, 1, . . . , k − 1} − {i} = {h1, . . . , hk−2} ∪ {j0}.

Since aj0 = 1 we find by (1.5) that ah1 · · · ahk−2
is also an lth power. Thus

ah1 · · · ahk−2
= ak−2

j0
tl for some positive integer t. Hence (3.4) follows as

above with l′ = k − 2 since k ≤ l + 1.

Whenever there exist integers r, s with the property mentioned in Corol-
lary 1, we say that an (r, s)-product exists. Thus if an (r, s)-product exists,
then (3.4) holds.

Corollary 2. Suppose (1.5) holds with b = 1, and

(3.5) H(d, k, pr1, pr2) > [(
√

(1 + 8l2) − 1)/2].

Then

n + (k − 1)d <

(

kD1

.7θ

)l/(l−2)

.

Proof. By (3.5) we see that (3.3) does not hold with l′ = 2. Thus by
Lemma 5, we have

D1 > κ0θ(n + (k − 1)d)(l−2)/l/k.

By Remark 1, κ0 > .7, which gives the assertion.

Lemma 6. Assume that (1.5) holds with 4 ≤ k ≤ 8 and b = 1. Let

D1 = 1. Suppose there exists j with 0 ≤ j < k, j 6= i0, such that either

aj , aj+1, aj+2 or aj , aj+2, aj+3 or aj , aj+2, aj+4 are all composed of 2 and 3.
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Further assume that one of the following properties is satisfied :

(i) (3.5) holds for some pr1 and pr2 .
(ii) There exist distinct tuples (i1, i2) and (j1, j2) with i1 ≤ i2 and j1 ≤

j2 such that ai1ai2 = aj1aj2t
l for some rational number t.

Then l 6= 3.

Proof. Suppose (1.5) holds, D1 = 1 and l = 3. Let aj , aj+1, aj+2 be
composed of 2 and 3 for some j with 0 ≤ j < k, j 6= i0. Then

(3.6) ajx
3
j + aj+2x

3
j+2 = 2aj+1x

3
j+1.

We use the facts that

gcd(n + jd, n + (j + 2)d) = 1 or 2,

gcd(n + jd, n + (j + 1)d) = gcd(n + (j + 1)d, n + (j + 2)d) = 1,

aj ’s are distinct and cube free. Further if (aj, aj+2) = (aj+2, aj), then the
above cubic equation remains the same due to symmetry. Thus we assume
aj < aj+2 to list the triples (aj , aj+1, aj+2) as follows:

(aj , aj+1, aj+2) ∈ {(1, 2α, 3β), (1, 3β, 2α), (2, 1, 22), (22, 1, 2 · 3β),

(2, 1, 3β), (2, 1, 223β), (2, 1, 2 · 3β), (2, 3, 22), (2, 32, 22)}

with 1 ≤ α, β ≤ 2. For these values, we divide the terms in (3.6) by their
gcd, say g, to get equations of the form (3.1) with the three terms pairwise
co-prime and (m1, m2) from the set

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (1, 9), (1, 12), (1, 18), (1, 36),

(2, 3), (2, 9), (3, 4), (4, 9)}.

Note that g = 1, 2. In the other two cases we form equations

(3.7) ajx
3
j + 2aj+3x

3
j+3 = 3aj+2x

3
j+2, ajx

3
j + aj+4x

3
j+1 = 2aj+2x

3
j+2

and dividing out by the gcd, say g, we get cubic equations as in (3.1)
with (m1, m2) listed above. We note that in these cases g ∈ {1, 2, 3, 6} or
g ∈ {1, 2, 4}. Further we may assume that in the cubic equations formed as
in (3.1), two terms are positive and one term is negative.

On applying Lemma 4 we see that we need to consider only those
(m1, m2) from

H2 = {(1, 6), (1, 9), (1, 12), (1, 18), (1, 36), (2, 3), (3, 4)}.

For each of the above pairs, we write equation (3.1) where we observe that
every term is bounded by n + (k − 1)d. Now we use Corollary 2 if (i) holds
and Lemma 5 with l′ = 2 if (ii) holds to get

max(|x|, |y|, |z|) < 30k/7.
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For 4 ≤ k ≤ 8, |x| < 30k/7, |y| < 30k/7 with gcd(x, y) = 1, we check that
(3.1) is satisfied only when

(m1, m2) ∈ {(1, 6), (1, 9), (2, 3), (3, 4)}.

Further we see that

9max(|x|, |y|, |z|)3g ≥ n + (j + 2)d ≥
j + 2

k − 1
(n + (k − 1)d) ≥

2

k − 1
p3

π(k)+1.

Hence we find that max(|x|, |y|, |z|) > 1. Thus we have

• (m1, m2) = (1, 6), (x, y, z) = (37, 17,−21);
• (m1, m2) = (1, 9), (x, y, z) = (17,−20, 7), (1, 2,−1);
• (m1, m2) = (2, 3), (x, y, z) = (5,−4, 1);
• (m1, m2) = (3, 4), (x, y, z) = (7,−5, 2).

Let (m1, m2) = (1, 6), (x, y, z) = (37, 17,−21). By (3.1), we see that we
need to consider only the first equation in (3.7) and we get aj+2x

3
j+2 = 2g213.

Then n + (j + 2)d is divisible by 6 and hence we get aj+3 = 1, n + (j + 3)d

odd and 2x3
j+3 = g173 or g373. Hence g = 2. Since ajx

3
j < aj+3x

3
j+3, we see

that ajx
3
j = 2 · 173 and aj+3x

3
j+3 = 373. Thus

(n + jd, n + (j + 2)d, n + (j + 3)d) = (2 · 173, 22213, 373),

giving d = 13609 = 31·439. Thus D1 > 1, a contradiction. By a similar argu-
ment we find that if (m1, m2) = (1, 9), (x, y, z) = (17,−20, 7) then we have

• n + jd = 9 · 73, n + (j + 1)d = 4 · 103, n + (j + 2)d = 173 with
d = 913 = 11 · 83;

• n + jd = 2 · 9 · 73, n + (j + 2)d = 203, n + (j + 4)d = 2 · 173 with
d = 913 = 11 · 83.

Then we check that there exists a term of ∆(i) having a prime factor > k
which divides the term to a power which is not a multiple of 3. This con-
tradicts (1.5). For instance, in the latter case we find that n + (j + 1)d
= 19 · 373 and n + (j + 3)d = 3 · 2971. Since one of these terms is cer-
tainly a term of ∆(i) we get a contradiction to (1.5). We check that the
case (x, y, z) = (1, 2,−1) does not give rise to any possibility. Let (m1, m2)
= (2, 3), (x, y, z) = (5,−4, 1). Then we get

• n + jd = 3, n + (j + 1)d = 43, n + (j + 2)d = 3 · 53 with d = 61;
• n + jd = 6, n + (j + 2)d = 2 · 43, n + (j + 4)d = 2 · 53 with d = 61;
• n + jd = 18, n + (j + 2)d = 4 · 43, n + (j + 3)d = 3 · 53 with

d = 119 = 7 · 17.

Hence D1 > 1. Let (m1, m2) = (3, 4), (x, y, z) = (7,−5, 2). Then we have

• n + jd = 26, n + (j + 1)d = 3 · 53, n + (j + 2)d = 2 · 73 with d = 311;
• n+ jd = 27, n+(j +2)d = 6 · 53, n+(j +4)d = 22 · 73 with d = 311;
• n+jd = 26, n+(j+2)d = 2·53, n+(j+3)d = 73 with d = 93 = 3·31.
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The last case is excluded since D1 > 1. In the other two cases, as before we
find a prime > k dividing ∆(i) to the power not divisible by 3.

This proves the lemma.

4. Listing Aj’s. Fix 4 ≤ k ≤ 8 and suppose (1.5) holds with b = 1. For
a prime p we define

Cp(r) = {Aj | 0 ≤ j < k, j 6= i0, j ≡ r (modp)} for 0 ≤ r < p.

We observe that p divides either all Aj ∈ Cp(r) or none. Let {q1, . . . , qh} ⊆
{p1, . . . , pπ(k)} with q1 < · · · < qh and 0 ≤ rt < qt, 1 ≤ t ≤ h. We call the
set Cq1(r1) ∪ · · · ∪ Cqh

(rh) the class Cq1,...,qh
(r1, . . . , rh). Thus if an Aj is

in this class, then j 6= i0 and j ≡ rt (mod qt) for some t with 1 ≤ t ≤ h.
We denote by Li0 the set of classes Cq1,...,qh

(r1, . . . , rh) for all {q1, . . . , qh} ⊆
{p1, . . . , pπ(k)} and for all 0 ≤ rt < qt, 1 ≤ t ≤ h, 1 ≤ h ≤ π(k) satisfying the
following conditions:

(i) Either each Aj with j 6= i0 occurs in some class Cq1,...,qh
(r1, . . . , rh),

or Aj0 = 1 for some j0 with 0 ≤ j0 < k and each Aj with j 6= i0, j0

occurs in some class Cq1,...,qh
(r1, . . . , rh). Further every Cqu(ru) with

|Cqu(ru)| = 1 is contained in Cqv(rv) for some v 6= u, 1 ≤ v ≤ h.
(ii) No class Cq1,...,qh

(r1, . . . , rh) contains t (≥ 4) consecutive Aj ’s with
their greatest prime factor ≤ t. Also no class contains three con-
secutive Aj ’s composed of only 2. By t consecutive Aj ’s we mean
Aj0 , Aj0+1, . . . , Aj0+t−1 for some j0.

From now on we suppose that a1, . . . , ai0−1, ai0+1, . . . , ak−1 are all dis-
tinct. This implies that A1, . . . , Ai0−1, Ai0+1, . . . , Ak−1 are all distinct. Fur-
ther we see that

(4.1) at most one Aj with 0 ≤ j < k, j 6= i0 is an lth power.

Suppose {q1, . . . , qh} is the set of all primes dividing Aj ’s. We observe that
this set is non-empty and qj ’s are co-prime to d. For a prime qu, the set

of Aj ’s divisible by qu is given by Cqu(r
(0)
u ) for some 0 ≤ r

(0)
u < qu with

1 ≤ u ≤ h. Thus it is clear that all Aj ’s greater than 1 can be put into a

class C = Cq1,...,qh
(r

(0)
1 , . . . , r

(0)
h ) for some 0 ≤ r

(0)
u < qu, 1 ≤ u ≤ h. In this

class, if an Aj is omitted, then it must be 1 as it is not divisible by any of

the qu’s. If one Aj is omitted in C and |Cqu(r
(0)
u )| = 1 for some 0 ≤ r

(0)
u < qu

with 1 ≤ u ≤ h, then Cqu(r
(0)
u ) is contained in Cqv(r

(0)
v ) for some v 6= u and

1 ≤ v ≤ h by equation (1.5) with b = 1 and (4.1). Suppose C contains t
(≥ 4) consecutive Aj ’s with P (Aj) ≤ t, say As, . . . , As+t−1. Then we observe
that

(n + sd) · · · (n + (s + t − 1)d) = byl with P (b) ≤ t.
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Now we apply Theorem A to get D1 > 1. If C contains three consecutive
Aj ’s with P (Aj)≤ 2, then as above we get an equation (1.4) with P (b)≤ 2,
which is impossible by Theorem A. Thus in these cases the Theorem is true
and we may exclude them from our consideration. So we see that C ∈ Li0 .

We illustrate the construction of Li by an example. We take k = 6, i0 = 1.
We have {q1, . . . , qh} ⊆ {2, 3, 5}. It is clear that h > 1. Suppose {q1, . . . , qh}
= {3, 5}. Then there are at least two Aj ’s which are equal to 1, contradicting
their distinctness. Thus {q1, . . . , qh} 6= {3, 5}. By Theorem A, {q1, . . . , qh}
6= {2, 3} or {2, 5}. Thus h 6= 2. Now we take h = 3. We check that only

(4.2) C2,3,5(0, 0, 0); C2,3,5(0, 2, 0) and A3 = 1; C2,3,5(1, 2, 0) and A4 = 1

satisfy (i) and (ii). Thus L1 consists of three elements given by (4.2).

Suppose (1.5) holds with [(k − 1)/2] < i0 < k − 1. Then we set

bj = ak−1−j for 0 ≤ j < k, j 6= k − 1 − i0.

We write k − 1 = t0 + t1p with 0 ≤ t0 < p and t1 ≥ 0. Let 0 ≤ r ≤ t0. Then
we see that

Cp(r) = {Ar, Ar+p, . . . , Ar+t1p} − {Ai0}.

We define
C ′

p(r) = {Bk−1−r, Bk−1−r−p, . . . , Bk−1−r−t1p}

= {Bt0−r, Bt0−r+p, . . . , Bt0−r+t1p}.

We observe that Cp(r) is transformed to C ′
p(r). Thus both Cp(r) and

C ′
p(t0 − r) have the same set of suffixes. Let t0 < r < p. Then Cp(r) =

{Ar, Ar+p, . . . , Ar+(t1−1)p} and this is transformed to C ′
p(r) = {Bt0−r+p,

Bt0−r+2p, . . . , Bt0−r+t1p}. Thus Cp(r) and C ′
p(t0 − r + p) will have the same

set of suffixes. This shows that the set of Cp(r) for 0 ≤ r < p is in 1-1
correspondence with the set of C ′

p(r) for 0 ≤ r < p. Hence the list L′
k−1−i0

formed by the procedure above with the bj ’s satisfies L′
k−1−i0

= Li0 . On
the other hand, we see that there is a 1-1 correspondence between the lists
L′

k−1−i0
and Lk−1−i0 by replacing b with a. Further the suffix of the missing

term ai0 = bk−1−i0 is

k − 1 − i0 ≤ k − 1 −

[

k − 1

2

]

≤

[

k − 1

2

]

.

Thus while preparing the lists we may assume that

(4.3) 1 ≤ i0 ≤

[

k − 1

2

]

.

We recall from Section 2 that for any i with 0 ≤ i < k, T (i) denotes the
set of primes dividing the product S(i) of all aj ’s with j 6= i. We now use
(4.3) to find T (i). Thus if k = 4, then i0 = 1 and T (1) ∈ {{2}, {3}, {2, 3}}.
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If k = 5, then i0 ≤ 2 and T (1) ∈ {{2}, {2, 3}} and T (2) = {2, 3}. If k = 6,
then i0 ≤ 2 and |T (i0)| ≥ 2. If k = 7, then i0 ≤ 3 and |T (i0)| ≥ 2. If k = 8,
then i0 ≤ 3 with |T (i0)| ≥ 3, by Theorem A.

We use these facts while preparing the list Li0 . We present the list Li0

with i0 satisfying (4.3) and 4 ≤ k ≤ 8 in Tables 1–5.

The tables should be read as follows. Let k = 6, i0 = 1. We have three
elements of Li0 given by (4.2). Consider the second element in (4.2), viz.
C2,3,5(0, 2, 0) and A3 = 1. This is the possibility of 2 dividing A0, A2, A4,
3 dividing A2, A5, 5 dividing A0, A5 and A3 = 1. This is tabulated under the
columns of primes 2, 3 and 5 in Table 2. Further A3 = 1 is given in the last
column of Table 2. For convenience, we write this element as 2 : A0, A2, A4;
3 : A2, A5; 5 : A0, A5; A3 = 1. We will also be using this notation for all other
cases. If in some case a prime does not divide any of the Aj ’s we put − in
the column under this prime. If no Aj equals 1, we put − in the last columns
in Tables 1–4. We refer to “Assertions on the tables” for ∗ and ∗∗ appearing
in the last column of the tables, and to Section 6 for an explanation of the
last two columns in Table 5.

Table 1

− − k = 4 − − − k = 5 −

i0 2 3 − i0 2 3 −

1 A0, A2 − A3 = 1 ∗∗ 1 A0, A2, A4 A0, A3 −

1 − A0, A3 A2 = 1 ∗∗ 2 A0, A4 A0, A3 A1 = 1

1 A0, A2 A0, A3 − ∗∗ 2 A0, A4 A1, A4 A3 = 1

− − − 2 A1, A3 A0, A3 A4 = 1

− − − 2 A1, A3 A1, A4 A0 = 1

Table 2. k = 6

i0 2 3 5 −

1 A0, A2, A4 A2, A5 A0, A5 A3 = 1 ∗

1 A3, A5 A2, A5 A0, A5 A4 = 1 ∗

1 A0, A2, A4 A0, A3 A0, A5 − ∗∗

2 A0, A4 A0, A3 A0, A5 A1 = 1 ∗

2 A1, A3, A5 A0, A3 A0, A5 A4 = 1 ∗

2 A0, A4 A1, A4 A0, A5 A3 = 1 ∗

2 A1, A3, A5 − A0, A5 A4 = 1

2 − A1, A4 A0, A5 A3 = 1

2 A1, A3, A5 A1, A4 − A0 = 1

2 A1, A3, A5 A0, A3 − A4 = 1

2 A1, A3, A5 A1, A4 A0, A5 − ∗∗
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Table 3. k = 7

No. i0 2 3 5 −

1 2 A0, A4, A6 A1, A4 A0, A5 A3 = 1

2 2 A0, A4, A6 A0, A3, A6 A0, A5 A1 = 1

3 2 A0, A4, A6 A0, A3, A6 A1, A6 A5 = 1

4 2 A1, A3, A5 A1, A4 A0, A5 A6 = 1

5 2 A1, A3, A5 A0, A3, A6 A0, A5 A4 = 1

6 2 A1, A3, A5 A0, A3, A6 A1, A6 A4 = 1

7 2 A1, A3, A5 A1, A4 A1, A6 A0 = 1

8 3 A0, A2, A4, A6 A2, A5 A0, A5 A1 = 1

9 3 A0, A2, A4, A6 A1, A4 − A5 = 1

10 3 A0, A2, A4, A6 A2, A5 − A1 = 1

11 3 A0, A2, A4, A6 − A0, A5 A1 = 1

12 3 A0, A2, A4, A6 − A1, A6 A5 = 1

13 3 A0, A2, A4, A6 A0, A6 A0, A5 A1 = 1

14 3 A0, A2, A4, A6 A0, A6 A1, A6 A5 = 1

15 3 A0, A2, A4, A6 A1, A4 A1, A6 A5 = 1

16 3 A0, A2, A4, A6 A1, A4 A0, A5 −

17 3 A0, A2, A4, A6 A2, A5 A1, A6 −

Table 4. k = 8

No. i0 2 3 5 7 −

1 2 A1, A3, A5, A7 − A1, A6 A0, A7 A4 = 1

2 2 A0, A4, A6 A0, A3, A6 A0, A5 A0, A7 A1 = 1

3 2 A0, A4, A6 A0, A3, A6 A1, A6 A0, A7 A5 = 1 ∗

4 2 A0, A4, A6 A1, A4, A7 A0, A5 A0, A7 A3 = 1

5 2 A1, A3, A5, A7 A0, A3, A6 A0, A5 A0, A7 A4 = 1

6 2 A1, A3, A5, A7 A1, A4, A7 A0, A5 A0, A7 A6 = 1

7 2 A1, A3, A5, A7 A0, A3, A6 A1, A6 A0, A7 A4 = 1 ∗∗

8 3 A1, A5, A7 A1, A4, A7 A1, A6 A0, A7 A2 = 1 ∗

9 3 A1, A5, A7 A1, A4, A7 A2, A7 A0, A7 A6 = 1

10 3 A0, A2, A4, A6 A1, A4, A7 A1, A6 A0, A7 A5 = 1 ∗∗

11 3 A0, A2, A4, A6 A1, A4, A7 A2, A7 A0, A7 A5 = 1

12 3 A1, A5, A7 A2, A5 A1, A6 A0, A7 A4 = 1 ∗

13 3 A1, A5, A7 A0, A6 A2, A7 − A4 = 1

14 3 A0, A2, A4, A6 A2, A5 A1, A6 − A7 = 1

15 3 A0, A2, A4, A6 A2, A5 A2, A7 − A1 = 1

16 3 A0, A2, A4, A6 A2, A5 − A0, A7 A1 = 1

17 3 A0, A2, A4, A6 A1, A4, A7 − A0, A7 A5 = 1
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Table 4 (cont.). k = 8

No. i0 2 3 5 7 −

18 3 A0, A2, A4, A6 − A0, A5 A0, A7 A1 = 1

19 3 A0, A2, A4, A6 − A1, A6 A0, A7 A5 = 1

20 3 A1, A5, A7 A0, A6 A2, A7 A0, A7 A4 = 1

21 3 A0, A2, A4, A6 A0, A6 A0, A5 A0, A7 A1 = 1

22 3 A0, A2, A4, A6 A0, A6 A1, A6 A0, A7 A5 = 1

23 3 A0, A2, A4, A6 A2, A5 A0, A5 A0, A7 A1 = 1

24 3 A0, A2, A4, A6 A2, A5 A2, A7 A0, A7 A1 = 1

25 3 A0, A2, A4, A6 A1, A4, A7 A1, A6 − A5 = 1

26 3 A0, A2, A4, A6 A1, A4, A7 A2, A7 − A5 = 1

27 3 − A2, A5 A1, A6 A0, A7 A4 = 1

Table 5. k = 8

No. i0 2 3 5 7 {p, q, r, s} −

1 1 A0, A2, A4, A6 A0, A3, A6 A0, A5 A0, A7 {0, 2, 5, 7} (ii)

2 2 A1, A3, A5, A7 A1, A4, A7 A1, A6 A0, A7 {0, 1, 6, 7} (i) ∗∗

3 3 A0, A2, A4, A6 A1, A4, A7 A0, A5 A0, A7 {0, 1, 6, 7} (ii)

4 3 A0, A2, A4, A6 A1, A4, A7 A0, A5 − {0, 1, 4, 5} (i)

5 3 A0, A2, A4, A6 A2, A5 A1, A6 A0, A7 {0, 1, 6, 7} (iii) ∗∗

Assertions on the tables. (i) The combinations marked ∗ and ∗∗ in
Tables 1–5 are the only cases with H(d, k, pr1, pr2) ≤ 3 for every (pr1 , pr2) ∈
{(2, 3), (2, 5), (3, 5)} while for all other combinations we have H(d, k, pr1, pr2)
> 3 with (pr1 , pr2) = (2, 3) or (2, 5) or (3, 5).

(ii) Let l = 3. For the combinations marked ∗∗ in Tables 1–5 we check
using (2.4)–(2.8) that property (ii) of Lemma 6 holds. For instance, take the
combination

{2 : A0, A2, A4, A6; 3 : A2, A5; 5 : A1, A6; 7 : A0, A7}

from Table 5. Then a1 = 5α1,3 , a2 = 2α2,13α2,2, a5 = 3α5,2, a6 = 2α6,15α6,3 .
We use (2.4) with l = 3 to get α2,1 = α6,1, α2,2 + α5,2 = α1,3 + α6,3 = 3.
This gives a2a5 = a1a6t

l.
(iii) One can check easily that for all the combinations listed in Ta-

bles 1–5, there exists j with 0 ≤ j < k such that either aj , aj+1, aj+2 or
aj , aj+2, aj+3 or aj , aj+2, aj+4 are all composed of 2 and 3. Here no suffix of
a’s equals i0.

Lemma 7. Suppose (1.5) holds with 4≤k≤8, and b = D1 = 1. Then l 6=3.

Proof. Suppose l = 3. From Tables 1–5, Assertions (i)–(iii) and Lem-
ma 6, we find that we need to consider only the combinations marked ∗. We
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proceed as follows. We consider the combination

2 : A0, A2, A4; 3 : A2, A5; 5 : A0, A5; A3 = 1

in Table 2. Then a3 = 1. Since a4 is divisible only by 2, we have α4,1 6= 0. Also
(α0,1, α2,1, α4,1) ∈ {(1, 1, 1), (0, 1, 2)}, (α2,2, α2,5) ∈ {(1, 2), (2, 1)}. First we
consider (α0,1, α2,1, α4,1) = (1, 1, 1). We use (2.9) with [i1, i2, i3] = [2, 3, 4].
This gives a cubic equation (3.1) with (m1, m2) = (1, 3) or (1, 9). The case
(1, 3) is not possible by Lemma 4. The case (1, 9) occurs when α2,2 = 2. Then
we consider (2.9) with [0, 2, 3] to get (3.1) with (m1, m2) = (1, 5) or (1, 25)
both of which are excluded by Lemma 4. Below we depict this sequence
pictorially:

[2, 3, 4] → (1, 3) or {(1, 9) → [0, 2, 3] → (1, 5) or (1, 25)}.

Let (α0,1, α2,1, α4,1) = (0, 1, 2). Then [i1, i2, i3] = [2, 3, 4] gives the equa-
tion (3.1) with (m1, m2) = (2, 9) or (2, 3). By Lemma 4, (2, 9) is excluded.
When (2, 3) occurs, we have α2,2 = 1. In this case we continue with [0, 2, 3]
which gives (3.1) with (m1, m2) = (9, 20) or (9, 100). The former is excluded
by Lemma 4. In the latter case, we take [3, 4, 5], which gives (3.1) with
(m1, m2) = (1, 45), which is not possible. We depict this sequence pictori-
ally as

[2, 3, 4] → (2, 9) or

{(2, 3) → [0, 2, 3] → (9, 20) or {(9, 100) → [3, 4, 5] → (1, 45)}}.

We give such sequences for all other combinations marked ∗. Also we take
from (2.4)–(2.8) only the right choices for α’s.

2 : A3, A5; 3 : A2, A5; 5 : A0, A5; A4 = 1

[2, 3, 4] → (1, 3) or (4, 9) or {(1, 9) → [0, 2, 3] → (1, 5) or (1, 25)} or

{(3, 4) → [0, 3, 5] → (1, 10) or {(2, 5) → [0, 4, 5] → (5, 18)}}.

2 : A0, A4; 3 : A0, A3; 5 : A0, A5; A1 = 1

[1, 3, 4] → (1, 1) or (1, 4) or (4, 9) or

{(1, 9) → [1, 3, 5] → (6, 25) or {(5, 6) → [0, 1, 4] → (1, 100)}}.

2 : A1, A3, A5; 3 : A0, A3; 5 : A0, A5; A4 = 1

If (α1,1, α3,1, α5,1) = (1, 1, 1), then

[1, 3, 4] → (1, 1) or {(1, 9) → [0, 1, 4] → (1, 5) or (1, 25)}.

If (α1,1, α3,1, α5,1) = (2, 1, 0), then [1, 3, 4] → (1, 2) or (2, 9).

2 : A0, A4; 3 : A1, A4; 5 : A0, A5; A3 = 1

[1, 3, 4] → (1, 3) or {(1, 12) → [0, 1, 3] → (5, 9) or (9, 25)} or

{(3, 4) → [0, 1, 3] → (1, 5) or (1, 25)}.
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2 : A0, A4, A6; 3 : A0, A3, A6; 5 : A1, A6; 7 : A0, A7; A5 = 1

If (α0,1, α4,1, α6,1) = (0, 2, 1), then [3, 4, 5] → (1, 3). If (α0,1, α4,1, α6,1)
= (1, 1, 1), then

[0, 1, 3] → (5, 28) or (25, 28) or {(5, 196) → [3, 4, 7] → (7, 9)} or

{(25, 196) → [3, 4, 7] → (7, 9)}.

2 : A1, A5, A7; 3 : A1, A4, A7; 5 : A1, A6; 7 : A0, A7; A2 = 1

If (α1,1, α5,1, α7,1) = (0, 2, 1), then

[1, 2, 4] → (1, 10) or

{(1, 50) → [0, 2, 5] → (5, 21) or (5, 147) → [1, 2, 7] → (4, 7)}.

If (α1,1, α5,1, α7,1) = (1, 1, 1), then [2, 4, 5] → (4, 9).

2 : A1, A5, A7; 3 : A2, A5; 5 : A1, A6; 7 : A0, A7; A4 = 1

If (α1,1, α5,1, α7,1) = (0, 2, 1), then [2, 4, 5] → (1, 3). If (α1,1, α5,1, α7,1) =
(2, 0, 1), then

[4, 5, 6] → (6, 25) or (5, 18) or

{(5, 6) → [0, 4, 7] → (3, 7) or {(1, 21) → [4, 5, 7] → (7, 36)}} or

{(18, 25) → [0, 4, 7] → (3, 7) or {(1, 21) → [4, 5, 7] → (4, 7)}}.

If (α1,1, α5,1, α7,1) = (1, 1, 1), then

[4, 5, 6] → (5, 12) or (12, 25) or (5, 36) or (25, 36).

5. Proof of the Theorem when one Aj equals 1. We suppose
throughout this section that (1.5) holds and b = D1 = 1. By Lemma 7,
we have l ≥ 5. Further we suppose that one of the Aj ’s is equal to 1. We
know that all aj ’s are distinct by Remark 2. First we show that

(5.1) k ≥ 6, l = 5 if k = 6, 7; l = 5, 7 if k = 8; l = 5 if k = 8 and 7 ∤ d.

Let k = 4. Then k ≤ l +1. Hence (3.4) is valid with s = k−2 = 2. Thus
using (2.1) we get

4 > .7θ(n + (k − 1)d)1−2/l ≥ .7θ · 5l−2.

This is not possible. Similarly k = 5 is also excluded. Next we consider
k = 8, 7 ∤ d. Then θ = 1. Suppose l ≥ 7. By (2.1), Remark 1 and Corollary 1,
we have s = k − 2 = 6 and

8 > .7θ · 11l−6 for l ≥ 11; 8 > .73 · 11 for l = 7.

This is not possible. Thus l = 5. The assertion follows similarly in the other
cases.
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Let k = 6 and l = 5. First we consider the two cases in Table 2 where
5 does not divide any Ai. We give the details for the case

2 : A1, A3, A5; 3 : A1, A4; A0 = 1.

By (2.5), we see that (a3, a5) takes the values from {(23, 2), (2, 22)}. Hence
a3 = a3

5 or a5 = a2
3. Thus the assumptions of Corollary 1 are satisfied with

r = 1 and s = 3 or 2. Hence by (3.4), we get

k = 6 > κ0θ · 75−s

with s = 2, 3. This is not possible. In the other case we have a1 = a5, which
contradicts the distinctness of aj ’s. Next we take the remaining cases in
Table 2 where 5 divides A0, A5. Hence θ = 1. Further since k ≤ l + 1, (3.4)
is valid with s = k − 2 = 4. Let us consider the case

2 : A0, A2, A4; 3 : A2, A5; 5 : A0, A5; A3 = 1.

Suppose P (∆(i)) = 7. Then we find that 7 | (n + 3d) since otherwise n + 3d
= 1 as n + 3d is not divisible by 2, 3 or 5. Further

(n, n+2d, n+3d, n+4d, n+5d) = (2β0,15β0,3 , 2β2,13β2,2 , 7β3,4 , 2β4,1 , 3β5,25β5,3).

We find that 16 ≤ n + 4d = 2β4,1 , giving β0,1 = α0,1 = 2, β2,1 = α2,1 = 1
and hence α4,1 = 2. Since n + 2d = 2 · 3β2,2 > 6, we get β2,2 ≥ 2, giving
β5,2 = α5,2 = 1 and hence α2,2 = 4. Thus

(a0, a2, a3, a4, a5) ∈ {(22 · 5, 2 · 34, 1, 22, 3 · 54), (22 · 54, 2 · 34, 1, 22, 3 · 5)}.

We use (2.9) with [2, 3, 4] to obtain

34x5
2 + 2x5

4 = x5
3.

Now we observe that x5 ≡ 0,±1 (mod11) and 11 divides at most one of
x2, x3, x4. Hence this equation is impossible by congruence mod 11. Thus
we have P (∆(i)) ≥ 11. Then we find that (3.4) does not hold. This is a
contradiction. All the cases in Table 2 are excluded similarly.

Let k = 7 and l = 5. We need to consider all possibilities in Table 3
except the 16th and 17th cases. First we consider all the cases from 7 to 15.
Then we find that there exist at least two aj ’s which are powers of 2 only.
We take one case for illustration, say the 8th:

2 : A0, A2, A4, A6; 3 : A2, A5; 5 : A0, A5; A1 = 1.

Then (a4, a6) ∈ {(2, 22), (22, 2)} by (2.4). Thus either a6 = a2
4 or a4 = a2

6.
Hence (3.4) is valid with s = 2, which is not possible since

7 < .7θ · 115−s for s ≤ 3.

The other cases are excluded similarly. Next we consider cases 1–6 in Table 3.
Then we have 5 ∤ d. Hence θ = 1. We find that in these cases the following
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equalities hold:

a0a1a4a5 = a4
6t

l; a0a3a5a6 = a4
4t

l; a0a1a3a6 = a4
4t

l;

a0a1a4a5 = a4
3t

l; a0a3a5a6 = a4
1t

l; a0a1a3a6 = a4
5t

l,

respectively, which satisfy the assumption of Corollary 1. But (3.4) is not
satisfied with s = 4, a contradiction.

Let k = 8 with l = 5, 7. In cases 13 to 26 of Table 4, we find that there
exists an (r, s)-product with s ≤ 3 if l = 5 and s ≤ 4 if l = 7 since there
exist at least two aj ’s which are powers of 2 only. This is also true for the
27th case, since then there exist at least two aj ’s which are powers of 3 only.
On the other hand, we see that

8 < .7θ · 11l−s for l = 5, s ≤ 3 and l = 7, s ≤ 4.

This contradicts (3.4). Now we consider the combinations numbered 1 to 12
in Table 4. By (5.1), we see that l = 5 for all these cases, since 7 ∤ d. We
consider the 10th case in Table 4,

2 : A0, A2, A4, A6; 3 : A1, A4, A7; 5 : A1, A6; 7 : A0, A7; A5 = 1.

First we use (2.9) with [i1, i2, i3] = [2, 4, 5] to get

2α2,1−1x5
2 + x5

5 = 3α4,2+12α4,1−1x5
4.

By (2.4) and (2.7), we see that α2,1, α4,1 ∈ {1, 2} and α4,2 ∈ {1, 3}. Sup-
pose α2,1 = 1. Then we get an equation as in Lemma 3 with C = 3α4,2+1,
2α4,1−1 6= 2, which is a contradiction. Thus α2,1 = 2. Then by (2.4), α0,1 =
α4,1 = α6,1 = 1. Now we apply (2.9) with [4, 5, 6] to get

3α4,2x5
4 + 5α6,3x5

6 = x5
5.

Using congruence mod 11, we see that (α4,2, α6,3) ∈ {(1, 4), (3, 1)}. Thus

(a0, a1, a2, a4, a5, a6, a7) ∈ {(2 · 7α0,4 , 3 · 5, 22, 2 · 3, 1, 2 · 54, 33 · 7α7,4),

(2 ·7α0,4, 33 ·5, 22, 2 ·3, 1, 2 ·54, 3 ·7α7,4), (2 ·7α0,4, 3 ·54, 22, 2 ·33, 1, 2 ·5, 3 ·7α7,4)}.

In these cases we find that

a1a6 = a45
l; a0a7 = a47

l; a0a7 = a1a6(7/5)l,

respectively. This contradicts Corollary 1 as earlier. The other cases are
excluded similarly.

6. Proof of the Theorem when no Aj equals 1. We suppose
throughout this section that (1.5) holds and b = D1 = 1 and none of the
Aj ’s is 1. We know that all aj ’s are distinct by Remark 2. First we use
Lemmas 1 and 2 to bound l. Then for the small values of l we use the same
strategy as in Section 5. Further by Lemma 7, we have l 6= 3.
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Let k = 4. Then from Table 1 we have

2 : A0, A2; 3 : A0, A3.

We use (2.9) with [0, 2, 3] to get an equation as in Lemma 2 with ord2(Byl)
≥ l − 2. Thus by Lemma 2, we conclude that l = 5. Then we get

x5 + y5 = 2333z5 or x5 + 23y5 = 33z5.

The first equation has no solution by Lemma 3. The second equation is
impossible by using congruence mod 11.

Let k = 5. Then from Table 1 we have

2 : A0, A2, A4; 3 : A0, A3.

We apply (2.9) with [0, 2, 4] to get an equation as in Lemma 2 with ord2(by
l)

≥ l−5. Hence by Lemma 2, we get l ≤ 7. We observe that (3.2) with D1 = 1
is satisfied for l = 5 only when l′ ≤ 3, and for l = 7 only when l′ ≤ 4. On
the other hand, by (2.5), we get

a0a3 = a2
2t

l if l = 5; a0a3a
2
2 = a4

4t
l or a0a3 = a2

2t
l or a0a3 = a2

4t
l if l = 7.

This contradicts Lemma 5.

Let k = 6. We have

(6.1)

{

2 : A0, A2, A4; 3 : A0, A3; 5 : A0, A5,

2 : A1, A3, A5; 3 : A1, A4; 5 : A0, A5.

For the first case we apply (2.10) with {0, 2, 3, 5} to get an equation of the
form (i) of Lemma 1 and hence we have l = 5. In the second case we first
apply (2.10) with {0, 1, 4, 5} to conclude that α1,1 = α5,1 = 1, α3,1 = l − 2.
Then we apply Lemma 2 to conclude that l = 5. Since 5 divides A0, A5, we
have 5 ∤ d and hence θ = 1. Suppose P (∆(i)) = 7. Let us consider

2 : A0, A2, A4; 3 : A0, A3; 5 : A0, A5.

Since not both n+2d and n+4d can be high powers of 2 we see that 7 divides
either n+2d or n+4d. Then n+3d = 3β3,2 > 3 implies that α3,2 = 4. Similarly
n + 5d = 5β5,3 > 5 gives α5,3 = 4. Suppose 7 | (n + 2d). Then n + 4d = 2β4,1 ,
implying that α4,1 = 2, by (2.5). Thus (a3, a4, a5) = (34, 22, 54). We use (2.9)
with [3, 4, 5] and a congruence argument mod 11 to exclude this possibility.
If 7 | (n + 4d), then n + 2d = 2β2,1 implies that a2 = 2 or 23, by (2.5). Thus

(a2, a3, a5) ∈ {(2, 34, 54), (23, 34, 54)}.

We use (2.9) with [2, 3, 5] and a congruence argument mod 11 to exclude
these possibilities. Thus we have P (∆(i)) ≥ 11. Then (3.2) is valid with
l′ = 4. We use (2.5) to see that a0a2a3a5 = a4

4t
l, a contradiction to Lemma 5.

The other case in (6.1) is excluded similarly.
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Let k = 7. In Table 3, we take the last two possibilities where no Aj

equals 1. For these cases we apply (2.10) with {0, 1, 4, 5}, {1, 2, 5, 6}, respec-
tively, to get an equation of the form (i) of Lemma 1. Hence we conclude
that l = 5. Then θ = 1. Hence (3.2) is satisfied with l′ ≤ 4. We find that in
these two cases

a0a5 = a1a4t
l and a1a6 = a2a5t

l,

respectively, which contradicts Lemma 5 when l = 5.

Let k = 8. We give in Table 5 the choice of {p, q, r, s} in (2.10) and the
equation we get in Lemma 1 to conclude that l ≤ 7 in cases 1, 3 and l = 5
in cases 2, 4, 5. We consider the first three cases in Table 5. We show that
P (∆(i)) ≥ 13 arguing as in the case k = 6. Thus (3.2) is valid for all l′ ≤ 4
if l = 5 and l′ = 6 if l = 7.

We give the details for excluding the first case in Table 5. The other
cases follow similarly. Let l = 5. We have

(a0, a2, a3, a4, a5, a6, a7) ∈ {(2 · 335α0,37α0,4, 22, 3, 2, 5α5,3, 2 · 3, 7α7,4),

(2·335α0,37α0,4, 2, 3, 22, 5α5,3, 2·3, 7α7,4), (2·3·5α0,37α0,4, 22, 33, 2, 5α5,3, 2·3, 7α7,4),

(2·3·5α0,37α0,4, 2, 33, 22, 5α5,3, 2·3, 7α7,4), (2·3·5α0,37α0,4, 22, 3, 2, 5α5,3, 2·33, 7α7,4),

(2 · 3 · 5α0,37α0,4 , 2, 3, 22, 5α5,3, 2 · 33, 7α7,4)}.

Then we find that

a0a4a5a7 = a2a
3
3t

l; a0a2a5a7 = a3
3a4t

l; a0a5a7 = a2
3a4t

l;

a0a5a7 = a2a
2
3t

l; a0a2a5a7 = a3a
3
4t

l; a0a4a5a7 = a3
2a3t

l,

respectively. This contradicts Lemma 5.

Let l = 7. Then we find that a0a3a4a5a6a7 = a6
2t

l, contradicting Lemma 5
with l′ = 6.

Next we consider the 4th and 5th cases in Table 5. Then l = 5 and
(3.2) is valid with l′ ≤ 3. Using (2.4)–(2.7), we find that in the 4th case
a1a4a7 = a3

2t
l or a3

6t
l and in the 5th case a1a6 = a2a5t

l or a1a6 = a0a7t
l,

contradicting Lemma 5 with l′ = 3, 2, respectively.
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