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is also triangular
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1. Introduction. For every positive integer n we put φ(n) and σ(n) for
the Euler function of n and the sum of divisors function of n, respectively.
We also put φ(0) = σ(0) = 1. Let f(X), g(X) ∈ Z[X] be polynomials of
degrees > 1 which are integer valued and with positive leading coefficients.
In this paper, we study the equations φ(f(n)) = g(m) and σ(f(n)) = g(m)
in positive integers m and n. For a positive real number x, we put

Ff,g(x) := {n ≤ x : φ(|f(n)|) = |g(m)| for some integer m},
Sf,g(x) := {n ≤ x : σ(|f(n)|) = |g(m)| for some integer m}.

Our main result consists in an upper bound for the counting functions of
the set #Ff,g(x) and #Sf,g(x).

Theorem 1. Assume that f and g are integer-valued , have positive lead-

ing coefficients and are of degrees deg g ≥ deg f > 1. Assume further that

f factors completely over Q and has only simple roots. Then there exists a

positive constant c := c(f, g) such that

(1) max{#Ff,g(x), #Sf,g(x)} ≤ c
x

(lnx)1/10

for all x > e. Here, lnx denotes the natural logarithm of x.

Note that we have excluded the case when deg f = 1. We will comment
on this in the final section of the paper.

The conditions that f(X) factors over Q and has only simple roots are
perhaps not needed if one only wants that both #Ff,g(x) and #Sf,g(x) are
o(x) as x tends to infinity. We have not been able to prove such a state-
ment. Further, the exponent 1/10 on the right hand side of (1) is perhaps
not optimal. However, note that if both p and p + 2 are prime numbers,
then σ(p(p + 2)) = (p + 1)(p + 3). Thus, such a twin prime p leads to
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the solution (n, m) = (p, p + 1) for the equation σ(f(n)) = f(m), where
f(n) = n(n + 2). Since it is believed that the number of twin primes p ≤ x
is at least c0x/(log x)2, it seems the exponent 1/10 cannot be improved to an
exponent larger than 2. Similar considerations apply when d = deg f is fixed,
for which one can use the Prime k-tuples Conjecture to construct polynomi-
als f and g of the required degree d for which Ff,g(x) and Sf,g(x) have orders
of magnitude at least x/(log x)d. When one also fixes d1 = deg g > d, one
can use instead Schinzel’s Hypothesis H to construct some polynomials f
and g of the required degrees for which one can get some large conjectural
lower bounds on the cardinalities of the above sets.

To simplify the presentation of our proof, we will illustrate it with details
only for the case f(X) = X(X + 1)/2, g(X) = X(X + 1) and the set
S = Sf,g and only point out the minor changes one needs to make in order
to obtain the full conclusion of Theorem 1. While most “counting” results
which hold for the Euler function also hold for the sum of divisors function,
it is in general easier to work with the Euler function instead of the sum of
divisors function. It is exactly for this reason that we have chosen to treat
the “harder” case. Further, this choice of polynomials is not accidental, since
every even perfect number is triangular, so it leads naturally to a solution of
the equation σ(n(n + 1)/2) = m(m + 1) with m = n (recall that a number
k is perfect if σ(k) = 2k).

Throughout this paper, we use the Vinogradov symbols ≫ and ≪ with
their regular meaning. We recall that U ≪ V and V ≫ U are each equivalent
to the assertion that U = O(V ).

For a positive real number x, we use log x for the maximum between
the natural logarithm of x (denoted lnx) and 1, and π(x) for the number
of primes p ≤ x. For a positive integer n, we write P (n), p(n), ω(n), Ω(n)
and τ(n) for the largest prime factor of n, the smallest prime factor of n,
the number of distinct prime divisors of n, the number of prime power
divisors (> 1) of n, and the total number of divisors of n, respectively. Here,
P (1) = p(1) = τ(1) = 1 and ω(1) = Ω(1) = 0.
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December of 2005. He thanks the people of that Institute for their hospitality
and the Third World Academy of Sciences for support.

2. The proof. We will proceed by eliminating several sets of positive
integers n ≤ x whose counting function is at least as small as the right hand
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side of estimate (1). Only then do we study the left-over numbers n ≤ x
in S. We assume that x is a large positive real number.

2.1. Eliminating small integers. Writing

(2) S1 := {n ≤ x/(log x)2},
we certainly have

(3) #S1 ≤ x/(log x)2.

From now on, we assume that n ≤ x is not in S1.

2.2. Eliminating smooth integers. We put

y := y(x) = exp

(

log x

4 log log x

)

.

For a positive integer n we write P (n) for the largest prime factor of n with
the convention that P (1) = 1. It is well-known (see Chapter III of [5]) that
if we put

Ψ(x, y) := #{n ≤ x : P (n) ≤ y},
then

Ψ(x, y) ≪ x exp(−u/2)

uniformly in 2 ≤ y ≤ x, where u = log x/log y. For us, u = 4 log log x,
therefore if we write

(4) S2 := {n ≤ x : P (n) ≤ y or P (n + 1) ≤ y},
then

(5) #S2 ≤ 2Ψ(x, y) + 1 ≪ x exp(−2 log log x) = x/(log x)2.

From now on, we assume that n ≤ x is not in S1 ∪ S2. In particular, we
have min{P (n), P (n + 1)} > y.

2.3. Eliminating integers with a large powerful divisor. Let v := (log x)4.
Recall that a positive integer m is called powerful if p2 |m whenever p is a
prime factor of m. Let

(6) S3 := {n ≤ x : d |n or d |n + 1 for some powerful d > v}.
For each powerful d ≤ x + 1, there are at most 2(x + 1)/d + 1 ≤ 3(x + 1)/d
positive integers n ≤ x + 1 such that n ≡ −1, 0 (mod d). Thus,

(7) #S3 ≪
∑

d≥v
d powerful

x + 1

d
≪ x

∑

d>v
d powerful

1

d
≪ x

v1/2
=

x

(log x)2
,

where the last estimate above follows easily by partial summation from the
fact that the counting function of the set of powerful numbers up to t is
O(t1/2) (see, for example, Theorem 14.4 in [3]).
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From now on, we assume that n ≤ x is not in S1 ∪S2 ∪S3. In particular,
since y > v for large x, we get P (n) ‖n and P (n + 1) ‖n + 1.

In what follows, we will use Mertens’s estimate

(8)
∑

p≤t

1

p
= log log t + A + O

(

1

log t

)

,

which holds for all t > 1 with some constant A, as well as the Brun–

Titchmarsh estimate

(9)
∑

p≤t
p≡a (mod b)

1

p
≪ 1

pa,b
+

log log t

φ(b)
,

which holds uniformly for 1 ≤ a ≤ b ≤ t and a and b coprime, where pa,b is
the first prime congruent to a modulo b.

2.4. Eliminating integers whose sum of divisors has too many divisors.

Let K := ⌊10 log log x⌋. Recall that for a positive integer n we write τ(n)
for the number of divisors of n. Let

B :=
{

n ≤ x : n 6∈
3

⋃

i=1

Si and τ(σ(n)) > exp(4K2)
}

.

To bound #B, assume first that n ≤ x is such that ω(n) > K. Let B1 be the
subset of B consisting of such n. Let m |n be such that ω(m) = K. Then
the number of n ≤ x which are multiples of m is ⌊x/m⌋ ≤ x/m. Thus,

#B1 ≤
∑

m≤x
ω(m)=K

x

m
≤ x

∑

m≤x
ω(m)=K

1

m
≤ x

K!

(

∑

pα≤x

1

pα

)K

(10)

≤ x

(

e log log x + O(1)

K

)K

≪ x

(log x)c1
<

x

(log x)3
,

where c1 := 10 ln(10/e) > 3. In the above estimates, we used the multinomial
formula, estimate (8), as well as the Stirling formula.

Now let B2 be the set of n ≤ x such that there exists a prime p |n with
ω(p + 1) > K. Let n ∈ B2. Write n = pm for some prime p ≤ x/m such
that Ω(p + 1) > K. Note that p + 1 ≤ x/m + 1 ≤ 2x/m. By Exercise 0.5 on
page 12 in [2] (which has been worked out explicitly as Lemma 13 in [4]),
the number of positive integers l ≤ 2x/m such that Ω(l) ≥ K is

≪ K

2K

x log log x

m
.

In particular, the number of numbers l ≤ x/m of the form p + 1 with
Ω(l) ≥ K does not exceed the above bound. Summing up over all m ≤ x,
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we get

#B2 ≤ Kx log log x

2K

∑

m≤x

1

m
≪ x log x(log log x)2

210 log log x
(11)

=
x

(log x)c2+o(1)
≪ x

(log x)2
,

where c2 := 10 ln 2 − 1 > 3.

Now let B3 be the set of remaining n ≤ x. Write n = lm, where l
is powerful and m is squarefree. Then l and m are coprime, so σ(n) =
σ(l)σ(m). Thus,

(12) τ(σ(n)) ≤ τ(σ(l))τ(σ(m)).

Note that Ω(l) ≤ K (because n is not in B1), and if pa ‖u, then pa ≤ v =
(log x)4, because n is not in S3. Hence,

σ(l) =
∏

pa‖l

(pa + pa−1 + · · · + 1) ≤
∏

pa‖l

(2pa) ≤ (2v)K < exp(K2),

and so

(13) τ(σ(l)) ≤ σ(l) ≤ exp(K2).

Furthermore, since n 6∈ B1 ∪ B2, we also have

(14) τ(σ(m)) = τ
(

∏

p|m

(p + 1)
)

≤ 2
∑

p|m Ω(p+1) ≤ 2K2

< exp(K2),

and now inequalities (13) and (14) together with (12) show that B ⊆ B1∪B2.
Thus, if we put

(15) S4 := {n ≤ x : n ∈ B ∪ 2B or n + 1 ∈ B ∪ 2B},
then

(16) #S4 ≤ 4#B ≪ x

(log x)2
.

From now on, we assume that n 6∈ S1 ∪ S2 ∪ S3 ∪ S4.

2.5. Eliminating integers whose sum of divisors has too few prime divi-

sors. We put

w := exp((log x)1/4) and N := ⌊(24)−3(log log x)2⌋.
For a positive integer n and an interval I we put

ωI(n) :=
∑

p∈I
p|n

1

for the number of prime factors p of n which belong to I.
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We now put I := [v2, w) and

C :=
{

n ≤ x : n 6∈
4

⋃

i=1

Si and ωI(σ(n)) < N
}

.

The purpose of this section is to bound #C. We start by putting

z := exp(
√

log x) and R := ⌊(12)−1 log log x⌋,
and letting

C1 := {n ≤ x : n 6∈ S2 and ω(z,∞)(n) < R}.
Assume that n ∈ C1. Write n = Pm, where P = P (n) > y because n 6∈ S2.
Fix m. Then the number of possibilities for P ≤ x/m is

(17) π

(

x

m

)

≤ x

m log(x/m)
≤ x

m log y
=

x log log x

m log x
,

where we have used the fact that x/m ≥ P > y. Since n ∈ C1, it follows that
we can write m = m1m2, where p(m1) > z and ω(m1) < R, and P (m2) ≤ z.
Here p(m) is the smallest prime factor of the positive integer m. Summing
up estimate (17) over all such choices for m, we get

(18) #C1 ≤ x log log x

log x

(

∑

p(m1)>z
ω(m1)<R

1

m1

)(

∑

P (m2)≤z

1

m2

)

.

For the first sum in the product (18), we have, again by the multinomial
formula, Mertens’s estimate (8), and Stirling’s formula,

∑

p(m1)>z
ω(m1)<R

1

m1
≤

∑

k<R

1

k!

(

∑

z<p≤x

∑

α≥1

1

pα

)k

(19)

≤
∑

k<R

(log log x− log log z +O(1))k

k!
≤

∑

k<R

(

e log log z +c3

k

)k

,

where c3 > 0 is some constant. In the above estimate, we also used the
fact that log log x = 2 log log z. Since for a fixed positive value of t the
function s 7→ (et/s)s is increasing for all positive s < t, and since R ≤
(12)−1 log log x < 0.5 log log x = log log z, it follows easily that in the last
sum in (19) the last term dominates, so we get

(20)
∑

p(m1)>z
ω(m1)<R

1

m1
≪ R

(

0.5e log log x + c2

R

)R

≪ (log x)c4 log log x,

where c4 := (12)−1 log(6e) < 1/4.
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As for the second sum on the right hand side of (18), we have, by
Mertens’s estimate,

(21)
∑

l≤x
P (l)≤z

1

l
≤

∏

q≤z

(

1 − 1

q

)−1

≪ log z = (log x)1/2.

Using estimates (20) and (21) in (18), we get

(22) #C1 ≪ x(log log x)2

(log x)1/2−c4
<

x

(log x)1/4

for large values of x because c4 < 1/4.

We now let

f(t) := exp((log t)1/4), g(t) := (log t)8, S(t) := ⌊(24)−2 log log t⌋,
put I(p) := [g(p), f(p)) and define the set of primes

P := {p : ωI(p)(p + 1) < S(p)}.

We first obtain a nontrivial upper bound for the counting function of the
set P(t) := P ∩ [1, t]. Let

y(t) := exp

(

log t

4 log log t

)

,

and put

(23) P1(t) := {p ∈ P : p ≤ t/log t} ∪ {p ∈ P : P (p + 1) ≤ y(t)}.
The arguments used in Section 2.2 show that

(24) #P1(t) ≤ π(t/log t) + Ψ(t, y(t)) ≪ t/(log t)2.

From now on, we look at the elements of P2(t) := P(t)\P1(t). Let p be such
a prime. Write p + 1 = Pm, where P = P (p + 1) > y(t). Fix m. Then, by
Brun’s sieve, the number of primes P ≤ (t + 1)/m such that Pm − 1 = p is
also prime is

(25) ≪ t + 1

φ(m)(log((t + 1)/m))2
≪ t

φ(m)(log(y(t)))2
≪ t(log log t)3

m(log t)2
,

where in the above estimates we have used, aside from the fact that
(t + 1)/m ≥ P ≥ y(t), also the minimal order of the Euler function in
the interval [1, t], which is φ(m)/m ≫ log log t. We now write m = d1d2d3,
where P (d1) < g(t), P (d2) < f(t/(log t)2) and p(d2) ≥ g(t), and p(d3) ≥
f(t/(log t)2). Since p ∈ P2(t), we have p > t/(log t)2, therefore P (d2) <
f(t/(log t)2) < f(p), while p(d2) ≥ g(t) ≥ g(p), so ω(d2) < S(p) ≤ S(t).
Summing up estimates (25) over all the positive integers m of the above
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form, we get

#P2(t) ≪
t(log log t)3

(log t)2

(

∑

P (d1)≤g(t)

1

d1

)

(26)

×
(

∑

P (d2)≤f(t/(log t)2)
ω(d2)<S(t)

1

d

)(

∑

d3≤t
p(d3)≥f(t/(log t)2)

1

l

)

.

To estimate the three sums above, we use an argument somewhat similar to
the one used for estimating the right hand side of (18) (see estimates (20)
and (21)).

For the first sum in (26) we have, by Mertens’s estimate,

(27)
∑

P (d1)≤g(t)

1

d1
≤

∏

q≤g(t)

(

1 − 1

q

)−1

≪ log(g(t)) ≪ log log t.

For the second sum in (26) we have, by the multinomial formula, Mertens’s
estimate (8), and Stirling’s formula,

∑

P (d)≤f(t/(log t)2)
ω(d)<S(t)

1

d
≤

∑

k<S(t)

1

k!

(

∑

p≤f(t/(log t)2)

∑

α≥1

1

pα

)k

(28)

≤
∑

k<S(t)

(

e log log(f(t/(log t)2)) + c5

k

)k

≤
∑

k<S(t)

(

0.25e log log t + c5

k

)k

,

where c5 > 0 is some constant. Again, from the fact that for a fixed positive
value of t the function s 7→ (et/s)s is increasing for all positive s < t, and
since S(t) ≤ (12)−2 log log t < 0.25 log log t, it follows easily that in the last
sum in (28) the last term dominates, therefore

(29)
∑

P (d)≤f(t/(log t)2)
ω(d)<S(t)

1

d
≪ S(t)

(

0.25e log log t + c5

S(t)

)S(t)

≪(log t)c6 log log t,

where c6 := (12)−2 log(36e).
As for the third sum in (26), we have, again by Mertens’s estimate,

∑

l≤t
p(l)≥f(t/(log t)2)

1

l
≤

∏

f(t/(log t)2)≤q≤t

(

1 − 1

q

)−1

≪ log t

log f(t/(log t)2)
(30)

≪ (log t)3/4.
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Using estimates (27), (29) and (30) in (26), we get

(31) #P2(t) ≪
t(log log t)5

(log t)5/4−c6
≪ t

(log t)6/5
,

because c6 < 1/20. Thus, by (23) and (26), we get

(32) #P(t) ≤ #P1(t) + #P2(t) ≪
t

(log t)6/5
.

Hence, the sum of the reciprocals of the members of P is convergent,
and in fact, by partial summation, from estimate (31) one gets immediately

(33)
∑

p>t
p∈P

1

p
≪ 1

(log t)1/5
.

We now let

C2 := {n ≤ x : p |n for some prime p > z in P}.
To bound #C2, let p > z be a fixed prime in P. The number of n ≤ x which
are multiples of p is at most x/p. Hence,

(34) #C2 ≤
∑

p>z
p∈P

x

p
≤ x

∑

p>z
p∈P

1

p
≪ x

(log z)1/5
=

x

(log x)1/10
,

where we have used the bound (33) with t = z.

We now show that

(35) C ⊂ C1 ∪ C2

for large values of x. We recall that I = [v2, w). Indeed, assume that n ≤ x
is neither in

⋃4
i=1 Si nor in C1∪C2. Then, since n 6∈ C1, there exist at least R

prime factors of n which are > z. Let z < p1 < · · · < pR be R such primes.
Since z > v and n 6∈ S3, it follows that pi ‖n for i = 1, . . . , R, therefore σ(n)

is a multiple of
∏R

i=1(pi + 1). Since pi > z, it follows that f(pi) ≤ f(x) = w
and g(pi) > g(z) = v2 = (log x)4. Hence, I(pi) ⊂ I. Put

T = ⌊(24)−2 log log x⌋ < S(z).

Since n 6∈ C2, it follows that

ωI(pi + 1) ≥ ωI(pi)(pi + 1) ≥ S(pi) > S(z) > T

for all i = 1, . . . , R. Since n 6∈ S4 (more precisely, since n 6∈ B3), we know
that there exists no prime q > v2 such that q2 |σ(n). Thus,

ωI(σ(n)) ≥
R

∑

i=1

(ωI(pi + 1)) > TR > N,
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which completes the proof of the inclusion (35). It is now clear that (35)
together with the bounds (22) and (34) shows that if we put

(36) S5 :=
{

n ≤ x : n /∈
4

⋃

i=1

Si and either n or n + 1 belongs to C ∪ 2C
}

,

then

(37) #S5 ≤ 2#C ≤ 2#S1 + 2#S2 ≪ x/(log x)1/10.

From now on, we assume that n 6∈
⋃5

i=1 Si.

2.6. Eliminating integers n such that σ(n) and σ(n + 1) have a large

common prime factor. We put

(38) S6 :=
{

n ≤ x : n 6∈
5

⋃

i=1

Si and q | gcd(σ(n), σ(n + 1))

for some prime q ∈ I
}

.

Let n ∈ S6 and suppose that q ∈ I is a common factor of both σ(n) and
σ(n+1). Since q ≥ v2 and n is neither in S4 (more precisely, n 6∈ B3), nor in
S3, there exist prime factors p0 and p1 of n and n+1 respectively (necessarily
distinct) such that pi ‖n + i and q | pi + 1 for i = 0, 1. Let S6,1 be the set of
n ∈ S6 such that p0p1 ≤ x. Then, given p0 and p1, we have n ≡ −i (mod pi)
for i = 0, 1, which puts n into a fixed arithmetic progression modulo p0p1.
The number of such n ≤ x is at most x/(p0p1) + 1 ≤ 2x/(p0p1) (because
p0p1 ≤ x). Thus,

#S6,1 ≤
∑

q∈I

∑

pi≤x
pi≡−1 (mod q), i=0,1

x

p0p1
≤ x

∑

q∈I

1

2

(

∑

p≤x
p≡−1 (mod q)

1

p

)2

(39)

≪ x(log log x)2
∑

q≥v2

1

q2
≪ x(log log x)2

v2
=

x(log log x)2

(log x)8
.

In the above estimates, we used the bound (9) together with the fact that
pq−1,q ≥ 2q − 1.

Now let

D :=
{

n ≤ x : n 6∈
5

⋃

i=1

Si and n = pm for some m ≤ w and some prime p
}

.

Since n ≥ x/(log x)2 (because n 6∈ S1), we get

p =
n

m
≥ x

w(log x)2
> x1/2
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for large x. Fix m. Then the number of possibilities for p ≤ x/m does not
exceed

π

(

x

m

)

≪ x

m log(x/m)
≪ x

m log x
,

where we have used the fact that x/m > p > x1/2. Thus, summing up over
all the admissible values of m, we get

#D ≤
∑

m≤w

x

m log x
=

x

log x

∑

m≤w

1

m
≪ x log w

log x
=

x

(log x)3/4
.

Hence, if we put

S6,2 := S6 ∩ {n ≤ x : either n or n + 1 belongs to D},
then

(40) #S6,2 ≤ 2#D ≪ x/(log x)3/4.

Now let

E :=
{

n ≤ x : n 6∈
5

⋃

i=1

Si and q | gcd(n, σ(n)) for some prime q ≥ v2
}

.

We now estimate the cardinality of E . Assume that q ≥ v2 is such that
q | gcd(n, σ(n)) for some n 6∈

⋃5
i=1 Si. Since n 6∈ S2 ∪ S3, we have q | p + 1

for some prime factor p of n. Fix p. Then the number of n ≤ x which are
multiples of both p and q does not exceed x/(pq). Thus,

#E ≤
∑

q≥v2

∑

p≤x
p≡−1 (mod q)

x

pq
≤ x

∑

q≥v2

1

q

∑

p≤x
p≡−1 (mod q)

1

p
(41)

≪ x log log x
∑

q≥v2

1

q2
≪ x log log x

(log x)8
,

where in the above estimates we have used again the bound (9). Thus, if we
write

S6,3 := S6 ∩ {n ≤ x : either n or n + 1 belongs to E},
then we get

(42) #S6,3 ≤ 2#E ≪ x(log log x)

(log x)8
.

For the remaining numbers n in S6 \
⋃3

i=1 S6,i, we write n = p0a and
n + 1 = p1b. Note that both a and b exceed q because n 6∈ D. We now let
S6,4 be the subset of S6 \ ⋃3

i=1 S6,i such that ab ≤ x/q. Fix the prime q.
Since p1b − p0a = 1, and p0 and p1 are both congruent to −1 modulo q,
we get b − a ≡ −1 (mod q). Fix two coprime positive integers a and b
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with ab ≤ x/q such that b − a ≡ −1 (mod q). It suffices to find an upper
bound for the number of choices of p0, since once p0 is known, then n is
also known. Since b | p0a + 1, it follows that p0 is in a certain arithmetic
progression modulo b. Further, p0 ≡ −1 (mod q). Note that q does not
divide b, otherwise q | gcd(n+1, σ(n+1)), which is impossible since n+1 6∈ E .
Thus, we can apply the Chinese remainder theorem and conclude that p0 is
in a certain arithmetic progression modulo bq. Since p0 = n/a ≤ x/a, the
number of such p0 is (even forgetting the condition that p0 is prime) at most
x/(abq) + 1 ≤ 2x/(abq) (here, we use the fact that abq ≤ x). Summing up
over all such a, b and q, we get

#S6,4 ≪
∑

q∈I

∑

a≤x/q

∑

q<b≤x/(aq)
b≡a−1 (mod q)

x

abq
(43)

≤ x
∑

q∈I

∑

a<x/q

1

aq

∑

q<b≤x/(aq)
b≡a−1 (mod q)

1

b
≤ x

∑

q∈I

∑

a≤x/q

log x

aq2

≤ x(log x)

(

∑

a≤x

1

a

)(

∑

q≥v2

1

q2

)

≪ x(log x)2

v2
=

x

(log x)6
.

Finally, let S6,5 := S6 \
⋃4

i=1 S6,i. With the previous notations, we have

p0p1 > x, therefore max{p0, p1} > x1/2. Assume that p0 > p1, since the
other case is entirely similar. Thus, p0 = P (n). Since ab ≥ x/q, we get p0p1 =
n(n+1)/(ab) ≤ x(x+1)/(ab) ≤ 2xq. Fix the number p1. Then p0 > x1/2 is a
prime number ≤ 2xq/p1 which is in a fixed arithmetic progression modulo q
(namely, is congruent to p1 modulo q). The number of such numbers is, by
the Brun–Titchmarsh theorem,

≪ xq

p1φ(q) log(x/p1)
≪ x

p1 log x1/3
≪ x

log x
,

where we have used the fact that x/p1 ≥ p0/(2q) > x1/2/(2w) > x1/3 for
large values of x. Thus, summing up over all the possible values of q and p1,
we get

#S6,5 ≤ x

log x

∑

q≤w

∑

p1≤x
p1≡−1 (mod q)

1

p1
(44)

=
x

log x

∑

p1≤x

ω(p1 + 1)

p1
≤ xK

log x

∑

p1≤x

1

p1
≪ x(log log x)2

log x
,

where we changed the order of summation and used Mertens’s estimate (8)
as well as the fact that p1 is a prime factor of n + 1 6∈ B2 ⊂ S4.
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Since the sets S6,i for i = 1, . . . , 5 cover S6, we deduce from estimates
(39), (40), (42), (43) and (44) that

(45) #S6 ≤
5

∑

i=1

#S6,i ≪ x/(log x)3/4.

From now on, we assume that n ≤ x is not in
⋃6

i=1 Si.

2.7. Analyzing the remaining set T \ ⋃6
i=1 Si. Put S7 := S(x) \ ⋃6

i=1 Si

and let n ∈ S7. Then we may write n = Pa, n + 1 = Qb, where P = P (n)
and Q = P (n + 1). We assume that a is odd since the other case can be
dealt with analogously. Since n is odd, we have n |Tn. Furthermore, since n
and (n + 1)/2 are coprime, and since P ‖n (because y > v holds for large x
and n 6∈ S1 ∪ S2), we conclude that σ(Tn) = (P + 1)σ(a)σ((n + 1)/2).

Now let m be such that σ(Tn) = m(m + 1). Since σ(k) ≪ k log log k for
all positive integers k, we get

m2 < σ(Tn) ≪ Tn log log Tn ≪ x2 log log x,

therefore
m ≤ c7x(log log x)1/2

with some positive constant c7. We write X := c7x(log log x)1/2. Further-
more,

(m + 1)2 > σ(Tn) > Tn ≫ n2 ≥
(

x

(log x)2

)2

(because n 6∈ S1), therefore m ≫ x/(log x)2.
We now fix the number a. Let M(a) be the set of all acceptable values

of m, i.e., the set of all positive integers m such that m(m + 1) = σ(Tn)
for some n of the form n = Pa ≤ x with P = P (n) and not in

⋃6
i=1 Si.

Then, when a is fixed, n is determined by its largest prime factor P . Since
(P + 1) |σ(Tn), we infer that P + 1 is a divisor of m(m + 1) for some m ∈
M(a). Thus, the number of possibilities for P when a and m ∈ M(a) are
fixed does not exceed τ(m(m+1)) = τ(σ(n(n+1)/2)) < exp(8K2), because
n 6∈ S4.

Hence, for a fixed a, the number of possibilities for n is

(46)
∑

m∈M(a)

τ(m(m + 1)) ≤ exp(8K2)#M(a).

It remains to estimate #M(a). Note that if m ∈ M(a), then σ(a) divides
m(m + 1). Thus, there exists a decomposition of the form σ(a) = d1d2,
where gcd(d1, d2) = 1, such that d1 |m and d2 |m + 1. The number of such
decompositions of σ(a) is ≤ τ(σ(a)) ≤ τ(σ(n)) < exp(4K2). Fix the pair
(d1, d2). Then m = d1γ and m + 1 = d2δ, so d2 | d1γ + 1, which puts γ
into a certain arithmetic progression modulo d2. Let r2 > 0 be the smallest



36 D. E. Iannucci and F. Luca

member of this progression. Clearly, r2 ≤ d2. In fact, even the inequality
r2 < d2 holds if d2 > 1, because the relation r2 = d2 leads to d2 | d1r2 + 1;
hence, d2 = 1.

Thus m = d1(d2λ + r2), where λ ≥ 0 is an integer. Further, m + 1 =
d2(d1λ+r1), where we use r1 = (d1r2+1)/d2. The relation σ(Tn) = m(m+1)
now simplifies to

(P + 1)σ((n + 1)/2) = (d1λ + r1)(d2λ + r2).

It remains to count such values of λ. Note first that d1d2λ ≤ m ≤ X,
therefore

λ ≤ X

d1d2
=

X

σ(a)
≪ x(log log x)1/2

a
.

Further, d1d2(λ + 1) > m ≫ x/(log x)2, therefore

λ + 1 ≫ x

(d1d2)(log x)2
>

x

σ(a)(log x)2
≫ x

a

1

(log x)2(log log x)

>
P

(log x)3
> y2/3

for large values of x. Hence, we may assume that x is so large that λ >
√

y.

Let Λ1 := d1λ + r1 and Λ2 := d2λ + r2. Note that Λ2 |m and Λ1 |m + 1,
so they are coprime. Since n 6∈ S5, it follows that σ((n+1)/2) has at least N
distinct prime factors in I. Thus, at least one of Λ1 or Λ2 has at least N/2
distinct prime factors in I. Assume that ωI(Λ1) ≥ N/2. Put U := ⌊N/2⌋.
Let L be the set of all squarefree positive integers l such that p(l) ≥ v2,
P (l) ≤ w and ω(l) = U . Then

l ≤ wU = exp(O((log x)1/4(log log x)2))(47)

= o(
√

y) = o(λ) for all l ∈ L
as x → ∞. Further, for each λ there exists l ∈ L such that d1λ + r1 ≡ 0
(mod l). Note that l is coprime to d1, since if there exists q | gcd(l, d1), we
then deduce that, on the one hand, q |σ(a) |σ(n), and on the other hand
q | d1λ+r1 | (P +1)σ((n+1)/2), therefore either q |P +1 (which is impossible
since n 6∈ B3 ⊂ S4), or q |σ((n+1)/2) (which is impossible because n 6∈ S6).
Thus, the congruence d1λ + r1 ≡ 0 (mod l) puts λ ≤ X/(d1d2) in a certain
residue class modulo l. The number of such values is at most ≤ X/(d1d2l)+
1 ≤ 2X/(d1d2l) (here, we use the observation that X/(d1d2) >

√
y > l,

which follows for x large from (47)). Summing up over all the possible values
of l ∈ L and over all the possible factorizations d1d2 = σ(a), we get

#M(a) ≤ exp(4K2)
X

σ(a)

∑

l∈L

1

l
≪ exp(4K2)

x(log log x)1/2

a

∑

l∈L

1

l
.
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Summing up over a ≤ x and using estimate (46), we get

#S7 ≤ exp(8K2)
∑

a≤x

#M(a)(48)

≪ x exp(12K2)(log log x)1/2

(

∑

a≤x

1

a

)(

∑

l∈L

1

l

)

.

It remains to estimate the sum of the reciprocals of the members of L.
But by the familiar procedure of using the multinomial formula, Mertens’s
estimate (8), and Stirling’s formula,

∑

l∈L

1

l
≤ 1

U !

(

∑

v2≤q≤w

1

q

)U

≤
(

e log log w + O(1)

U

)U

(49)

≤ exp(−c8K
2 log K)

for some positive constant c8, where we use the fact that U ≫ K and
log log w < log log x ≪

√
U . Hence, inserting (49) into (48), we get

(50) #S7 ≪ x
exp(12K2)(log x)(log log x)1/2

exp(c8K2 log K)
<

x

(log x)2

for large values of x.

The conclusion of Theorem 1 follows from the fact that Si cover S for
i = 1, . . . , 7 together with the estimates (3), (5), (7), (16), (37), (45) and (50).

3. The general case. Let us first address the case when deg f = 1.
Assume first that deg g > 1. In this case, since σ(|f(n)|) ≪ x log log x for all
n ≤ x, it follows easily that the cardinality of the set of values of

{σ(|f(n)|) : n ∈ Sf,g(x)}
is ≪ (x log log x)1/2 = x1/2+o(1). Assume now that the value of σ(|f(n)|) is
given and let us count how many of our n’s could have given rise to this
value. From an immediate adaptation of the results from Section 2.4, we may
assume that τ(σ(|f(n)|)) ≤ exp(4K2). Now if pα ‖ f(n), then (pα−1)/(p−1)
is a divisor of σ(|f(n)|), and this can be chosen in at most exp(4K2) ways.
Given (pα − 1)/(p − 1), since α ≪ log x, it follows that the number pα is
determined in at most log x ways. Thus, there are at most (log x) exp(4K2) ≤
exp(5K2) ways of choosing the prime power pα once σ(|f(n)|) is known.
Since at most K values for pα determine n, the number of possibilities for
n once σ(|f(n)|) is known is at most exp(5K3) = xo(1). So, the result of
Theorem 1 is valid in this case as well.

Assume now that deg f = deg g = 1. In this last case, we may assume
that g(X) := aX + b for some integers a > 0 and b. Let c := gcd(a, b), and
write a = a1c and b = b1c. Thus, g(x) = c(a1X + b1), where a1 and b1 are
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coprime. If a1 = 1, then both Ff,g(x) and Sf,g(x) contain almost all positive
integers up to x, so they are of cardinalities x + o(x) as x → ∞. Finally,
if a1 > 1 and n ∈ Ff,g, then f(n) must have a bounded number of prime
factors p ≡ 1 (mod a1) in its factorization, and sieve methods lead to the
conclusion that

#Ff,g(x) ≪ x

(log x)1/φ(a1)+o(1)
as x → ∞.

It is not hard to show that the above upper bound is also a lower bound on
the cardinality #Ff,g(x), so Theorem 1 does not apply say if φ(a1) > 10.
A similar argument applies to numbers n ∈ Sf,g which, in particular, must
have only a bounded number of prime factors p ≡ −1 (mod a1) which ap-
pear with exponent 1 in their prime factorization.

We mention that several particular instances of this problem for the case
when deg f = 1 were investigated previously, e.g. in [1] where the set Ff,g(x)
was analyzed for f(X) = X and g(X) = X2.

We now return to the case when deg f > 1. We only deal with Sf,g(x)
for the general case. One starts by writing

f(X) :=
d

∏

i=1

Li(X),

where Li(X) := aiX + bi with ai > 0, and −bi/ai 6= −bj/aj for i 6= j. By
putting n into a fixed progression modulo the least common denominator
of the ai’s and bi’s, if needed, one may assume that ai and bi are integers.
Now one proceeds in the same way as in the proof for the particular case
by discarding integers n ≤ x which are small, or for which Li(n) is smooth
for some i = 1, . . . , d, or for which Li(n) has a large powerful divisor, or
for which σ(Li(n)) has too many divisors, or too few prime factors in I
for some i = 1, . . . , d, or for which σ(Li(n)) and σ(Lj(n)) have a common
prime factor in I for some i 6= j. For the remaining numbers n ≤ x, one
fixes a = L1(n)/P (L1(n)) and notices that if m is fixed, then P (L1(n)) + 1
is fixed in τ(g(m)) = exp(O(K2)) ways. It remains to count the number of
possibilities for m. Clearly, m ≤ X, where X was defined in Section 2.7.
Now one distinguishes three cases:

Case 1: deg g = d and g(X) has no double root. In this case, if further

g(X) :=
∏d

i=1 Mi(X) for some linear forms Mi(X) for i = 1, . . . , d, then
one can proceed as in the particular case when g(X) = X(X + 1). But the
condition that g(X) ∈ Q(X) factors in linear forms is not needed. Indeed,
as in the particular case when f(X) = X(X + 1)/2, let us also fix a divisor
l ∈ L of σ(L2(n)). As before, σ(a) and l are coprime and σ(a)l < X. Now
the congruence g(m) ≡ 0 (mod σ(a)l) puts m ≤ X into O(dω(σ(a)l)) =
exp(O(K2)) residue classes modulo σ(a)l (because g has only simple roots).
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For each of these progressions, the number of acceptable values for m is
≤ X/(σ(a)l) + 1 ≤ 2X/(σ(a)l). Summing up over all the acceptable values
for a and l we deduce, as in Section 2.7, that the number of acceptable values
for m is x exp(−c8K

2 log K), which leads to the desired conclusion.

Case 2: deg g = d but g(X) has a double root. In this case, we further
shrink the set of allowable n ≤ x by also removing those positive integers n
such that Li(n) ∈ S8, where

S8 := {n ≤ x : q2 |σ(n) for some q > (log x)1/4}.
Suppose first that n ≤ x has a powerful divisor > (log x)1/5. Then, as in
Section 2.3, the number of such n is

≤ x
∑

a>(log x)1/5

a powerful

1

a
≪ x

(log x)1/10
.

Assume now the largest powerful divisor of n is ≤ (log x)1/5. Write n = n0n1,
where n0 and n1 are coprime, n0 is powerful, and n1 is squarefree. Then

σ(n) = σ(n0)σ(n1),

and σ(n0) ≪ n0 log log n0 ≪ (log x)1/5 log log log x = o((log x)1/4). Thus, if
such n is in S8 and x is large, it follows that there exists a prime q > (log x)1/4

such that q2 |σ(n1). As in Section 2.4, the number of such n is

≤ x
∑

q>(log x)1/4

∑

p≤x
p≡−1 (mod q2)

1

p
+

∑

q>(log x)1/4

∑

p1<p2≤x
pi≡−1 (mod q)

1

p1p2
,

which, by arguments similar to the ones used in Section 2.4, is

O

(

x(log log x)2

(log x)1/4

)

= o

(

x

(log x)1/10

)

.

Thus, #S8 = o(x/(log x)1/10).

Hence, from now on we assume that Li(n) 6∈ S8 for i = 1, . . . , d.
Let g1(X) be some irreducible factor of g(X) of positive degree such that

g1(X)2 | g(X). Then g1(m)2 |σ(f(n)) =
∏d

i=1 σ(Li(n)), therefore g1(m) has

the property that P (g1(m)) < (log x)1/4. Further, since n 6∈ S3 ∪ S4, it fol-
lows easily that the exponent with which a prime q can appear in g1(m) is
O((log log x)2). Hence, the number of values for g1(m) is

≤ (c9(log log x)2)π((log x)1/4) = exp(o(log x)1/4) = xo(1).

Since for every fixed value of g1(m), the number m can take at most deg g1 ≤
d/2 values, we see that the number of acceptable values for m is xo(1), which
is better (smaller) than in Case 1.
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Case 3: deg g = d1 > d. Here, the situation is even simpler. Indeed, the
previous arguments imply easily that if n 6∈ S3 ∪ S4, then

Ω(n) ≪ K3.

Thus, in this case Ω(σ(f(n))) = O(K3), while τ(σ(f(n))) = exp(O(K2)).
Since the number m has g(m) ≪ xd, we get m ≪ xd/d1. Hence, σ(f(n)) has
at most O(xd/d1) distinct values. For each of these values, the number of
possibilities for f(n) is

≤ τ(σ(f(n)))Ω(σ(f(n))) = exp(O(K5)) = xo(1),

which together with the fact that n is determined in at most d ways by f(n)
leads to the conclusion that the number of such values of n does not exceed
xd/d1+o(1).

Minor changes (like changing p+1 to p−1 in the definition of B2) apply
for the case of Ff,g(x). We give no further details.

Remark. As pointed out by the referee, the proof used here has the con-
sequence that for the polynomials corresponding to the title, f(X) = g(X) =
X(X +1)/2, the sets Ff,g(x) and Sf,g(x) have cardinalities O(x/(log x)3/4).
Presumably, the proof can be adapted to show that the exponent 3/4 can
be improved to 1 − ε for any fixed ε > 0.
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E-mail: fluca@matmor.unam.mx

Received on 31.5.2006

and in revised form on 31.5.2007 (5207)


