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Generalized modular forms representable as eta products

by

Wissam Raji (Philadelphia, PA)

1. Introduction. Let τ be in the upper half plane H and n ∈ Z. The
Dedekind eta function is defined by

η(τ) = eπiτ/12
∞
∏

n=1

(1 − e2πinτ )

and the generalized Dedekind eta function [5, 6] is defined by

ηδ,g(τ) = eπiP2(g/δ)δτ
∏

m>0
m≡g mod δ

(1 − xm)
∏

m>0
m≡−g mod δ

(1 − xm),

where x = e2πiτ , τ ∈ H, g ∈ Z is such that 0 ≤ g < δ,

P2(t) = {t}2 − {t} + 1/6

is the second Bernoulli function, and {t} = t− [t] is the fractional part of t.
Note that

ηδ,0(τ) = η(δτ)2

and that

ηδ,δ/2(τ) =
η2((δ/2)τ)

η2(δτ)
.

Consider

SL2(Z) =

{(

a b

c d

)

: a, b, c, d ∈ Z, ad − bc = 1

}

.

Consider also

Γ0(N) =

{(

a b

c d

)

∈ SL2(Z) : c ≡ 0 mod N

}

,
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Γ1(N) =

{(

a b

c d

)

∈ SL2(Z) : c ≡ 0 mod N, a ≡ d ≡ 1 mod N

}

,

Γ (N) =

{(

a b

c d

)

∈ SL2(Z) : a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}

,

which are congruence subgroups of the full modular group.

Definition 1. A generalized modular form (GMF) of weight k on Γ is
a function f(τ) meromorphic throughout the complex upper half plane H,
which is also meromorphic at the cusps and satisfies the transformation law

f(Mτ) = ν(M)(cτ + d)kf(τ)

for all M ∈ Γ . Here we allow the possibility that |ν(M)| 6= 1 where ν is a
character of the group Γ .

In [3], Kohnen and Mason proved the following theorem.

Theorem 1. Let f be a GMF of weight 0. Assume that f has no poles

or zeroes in H∪Q∪∞. Assume furthermore that Γ is a congruence subgroup

and that the Fourier coefficients at i∞ are rational and are p-integral for all

but a finite number of primes p. Then f is constant.

Afterwards, they considered the subgroup Γ0(N) and proved that a GMF
with zeroes and poles supported at the cusps, and such that the order of the
function at the cusp is independent of the numerator of that cusp with the
above conditions on the Fourier coefficients, is a classical eta product. Their
result is given in Theorem 2 below. In this paper, we replace the condition
imposed by Kohnen and Mason on the order of the function at the cusp by a
condition on N . We then prove a theorem with conditions at the cusps which
are similar to those of Kohnen and Mason, but on Γ1(N) instead of Γ0(N).
It will turn out that functions with such conditions upon the order of the
function at the cusps are also representable as eta products and generalized
eta products on Γ1(N). Finally, we deduce similar theorems on Γ (N).

The theorem of Kohnen and Mason on the subgroup Γ0(N) is as follows.
Note that a complete set of representatives of the cusps of Γ0(N) [3] is given
by a/c where c divides N and a is taken modulo N , with (a, N) = 1 and
the a’s are inequivalent modulo (c, N/c).

Theorem 2. Let f be a GMF of integral weight k on Γ0(N). Suppose

that the poles and zeroes of f are supported at the cusps. Suppose that the

Fourier coefficients at i∞ are rational and are p-integral for all but a finite

number of primes p. Suppose further that the order of f at each cusp of

Γ0(N) is independent of a. Then f is an eta quotient , i.e. there are integers
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M 6= 0 and mt for t |N such that

fM (τ) = c
∏

t|N

∆(tτ)mt,

where ∆(τ) = η(τ)24.

Notice that the Fourier coefficients of fM/
∏

t|N ∆(tτ)mt are rational and
p-integral for all but a finite number of primes p. This is due to the fact that
the product in the denominator has integer coefficients with 1 as leading
coefficient. Theorem 2 then easily follows from Theorem 1.

To modify the condition on the order of the cusps we define a class of
functions which is a form on Γ1(N) and then lift it by applying a coset
operator.

We now present another class of functions called the generalized Dede-
kind eta products. Consider

(1) f(τ) =
∏

δ|N
g

η
rδ,g

δ,g (τ),

where 0 ≤ g < δ and rδ,g are integers and may be half integers only if
g = 0 or g = δ/2 (we allow half integers in order to include the ordinary eta
products).

In [5], S. Robins proved that (1) is a modular function on Γ1(N) under
certain conditions on the rδ,g’s. It will be sufficient for our purposes to
note that the above function is a classical modular form on Γ1(N) with a
multiplier system. For A ∈ Γ1(N), the transformation law of f(τ) is given
by

(2) f(Aτ) = f(τ)eπi
∑

µδ,grδ,g ,

where

µδ,g =
δa

c
P2

(

g

δ

)

+
δd

c
P2

(

ag

δ

)

− 2s

(

a,
c

δ
, 0,

g

δ

)

and s(h, k, x, y) is the Meyer sum, a generalized Dedekind sum, defined by

s(h, k, x, y) =
∑

µ mod k

((

h

(

µ + y

k

)

+ x

))((

µ + y

k

))

.

As usual ((x)) = x − [x] − 1/2 if x is not an integer and 0 otherwise.

2. GMF’s on Γ0(N) representable as generalized eta products.

As we have already pointed out, a complete set of representatives of the
cusps of Γ0(N) is given by

(3) a/c
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where c is a positive divisor of N and a runs through integers with 1≤a≤N ,
(a, N) = 1 that are inequivalent modulo (c, N/c). The width of the cusp a/c
in (3) is given by

wa/c = N/(c2, N).

Theorem 3. Let f be a GMF of rational weight k′ on Γ0(N). Suppose

that the rank of

(4) ((δ, c)2P2(ag/(δ, c)))(δ|N,0≤g<δ),(c|N,a)

is equal to the number of cusps, where the columns of the matrix corresponds

to the cusps a/c of Γ0(N). Suppose further that the Fourier coefficients at

i∞ are rational and are p-integral for all but a finite number of primes p
and that the poles and zeroes of f are supported at the cusps. Then f is a

classical modular form.

Remark. Note that the rank of the above matrix is less than or equal to
the number of cusps. I will mention several examples where the rank turned
out to be equal to the number of cusps while in another example this will
fail to happen. For N = 9 the above matrix has rank less than the number
of cusps, while for N = 16, 20, 24, 28 and also for any square free integer,
the matrix has rank equal to the number of cusps.

Proof of Theorem 3. For given integers rδ,g put

(5) F (τ) =
∏

δ|N

∏

0≤g<δ

ηδ,g(τ)rδ,g .

Then F (τ) is a modular form on Γ1(N) of weight k =
∑

rδ,0 and by [5],

(6) orda/c F =
wa/c

2

∑

δ|N

∑

0≤g<δ

(δ, c)2

δ
P2

(

ag

(δ, c)

)

rδ,g.

We now consider the cosets of Γ1(N) in Γ0(N). By applying the operator
defined below, we lift the generalized eta product in (5) from a modular form
on Γ1(N) to a modular form on Γ0(N). For

βj =

(

aj bj

cj dj

)

and F a function on H, we define the following operator:

(7) F |kβj = (cjτ + dj)
−kF (βjτ).

Let

(8) H(F ) =
∏

j

F |kβj
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where {βj} are coset representatives. We see from (5) and (7) that

F (τ)|kβj = (cjτ + dj)
−k

∏

δ|N

∏

0≤g<δ

ηδ,g(βjτ)rδ,g .

Recall that F is a modular form on Γ1(N) of weight k. It follows that
H(F ) in (8) is a modular form on the larger group Γ0(N) of weight k1 =
|Γ1(N)\Γ0(N)|k. We have to determine the order of H(F ) at any cusp of
Γ0(N). We have to show first that after applying the operator we again
get an eta product and that the operator will not affect the order of the
function at the cusps as calculated in [5]. Recall that Robins [5] found the
transformation of ηδ,g under A ∈ Γ0(N). For g 6= 0 and A =

(

a b
c d

)

∈ Γ0(N)
we have, by (2),

(9) ηδ,g(Aτ) = eπiµδ,gηδ,ag(τ).

Thus if βj =
( aj bj

cj dj

)

and for a given δ where (aj , δ) = 1, if 0 ≤ g < δ, then

ajg will run through a complete set of representatives modulo δ, and also
for a given δ, if g1 ≡ −g2 mod δ then

∏

m>0
m≡g1 mod δ

(1 − xm)
∏

m>0
m≡−g1 mod δ

(1 − xm)

=
∏

m>0
m≡g2 mod δ

(1 − xm)
∏

m>0
m≡−g2 mod δ

(1 − xm)

and

P2

(

g1

δ

)

= P2

(

kδ − g2

δ

)

= P2

(

1 −
g2

δ

)

= P2

(

g2

δ

)

.

Hence

ηδ,g1
= ηδ,g2

.

Recall that βj ∈ Γ0(N). Also ηδ,0 and ηδ,δ/2 are forms on Γ0(δ) and hence
on Γ0(N). As a result, using (9) we obtain

F (τ)|kβj = νj(cjτ + dj)
−k

∏

δ|N

∏

0≤g<δ

ηδ,g(βjτ)rδ,g(10)

= νj(cjτ + dj)
−k

∏

δ|N

ηδ,0(βjτ)rδ,0

∏

δ|N

∏

0<g<δ

ηδ,g(βjτ)rδ,g

= ν∗
j

∏

δ|N

ηδ,0(τ)rδ,0

∏

δ|N

∏

0<g<δ

ηδ,g(τ)rδ,g ,

where the exponents rδ,g are renamed according to the new values of g, and
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νj is a constant depending on βj . Thus by (10) we obtain

H(F ) = ν
∏

δ|N

∏

0≤g<δ

ηδ,g(τ)r′
δ,g ,

where again r′δ,g =
∑

j rδ,ajg are new exponents and ν is a constant depend-
ing on βj for all j. Using the condition on the matrix (4), we have to solve
now for r′δ,g. To do this we have to determine the order of H(F ) at the cusps.
In [5], it is shown that

(11) orda/c

∏

δ|N

η
rδ,g

δ,g =
wa/c

2

∑

δ|N

(δ, c)2

δ
P2

(

ag

(δ, c)

)

rδ,g.

Thus using (11), we get

orda/c H(F ) =
wa/c

2

∑

δ|N

∑

0≤g<δ

(δ, c)2

δ
P2

(

ag

(δ, c)

)

r′δ,g.

Notice now that the product of two expressions whose Fourier coefficients
are rational and p-integral for all but a finite number of primes p has rational
Fourier coefficients that are p-integral for all but a finite number of primes p.
As ηδ,g(τ) has Fourier coefficients that are rational and p-integral for all but
a finite number of primes, so also are the Fourier coefficients of H(F ) since
H(F ) has turned to be a generalized eta product. We still want to show
that r′δ,g can be chosen so that

(12) orda/c H(F ) = mha/c

for all cusps a/c of Γ0(N). Here ha/c is the order of f at a/c and m is an
appropriate non-zero integer depending only on f . By hypothesis, the rank
of

((δ, c)2P2(ag/(δ, c)))(δ|N,0≤g<δ),(c|N,a)

is equal to the number of cusps. Therefore we can choose r′δ,g so that (12) is
satisfied, with an appropriate m. Since η does not vanish on H, we find from
the valence formula applied to H(F ) that the sum of the orders of H(F ) at
the different cusps of Γ0(N) is equal to

k1

12
[Γ (1) : Γ0(N)].

On the other hand, the valence formula is also valid for the GMF f of weight
k′ (see [2]). We then deduce from (12) that

k1 = mk′.

We see that fm/H(F ) is a GMF satisfying all the assumptions of Theorem 1.
We conclude that fm = cH(F ), as required.
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Note that for N = p1 · · · pn square-free, the cusps of Γ0(N) are 1/1,
1/p1, . . . , 1/pn and 1/N . Hence Γ0(N) satisfies the condition on the order of
the cusps given in the paper of Kohnen and Mason [3].

For N = p2, the condition of Theorem 3 fails. This happens because
P2(a1g/(δ, c)) = P2(a2g/(δ, c)) for c = p and for all a1 ≡ −a2 mod p for all
g and thus

((δ, c)2P2(ag(δ, c)))(δ|N,0≤g<δ),(c|N,a)

has a rank smaller than the number of cusps.

3. GMF’s on Γ1(N) representable as eta products. In this section,
we derive theorems similar to those derived in the previous section but on
the congruence subgroup Γ1(N). We impose different conditions on the order
of the function at the cusps in one theorem and then relax the condition in
the following theorem. Every cusp of Γ1(N) is equivalent to

(13) a/c

where c is taken modulo N and a is taken modulo d = (N, c), and (a, d) = 1.
Moreover, for every cusp of Γ1(N) there exist precisely two fractions a/c of
the above form that are equivalent to that cusp. The width of every cusp in
(13) is given by

wa/c = N/(c, N).

Theorem 4. Let f be a GMF of integral weight k on Γ1(N). Suppose

that the poles and zeroes of f are supported at the cusps and that the Fourier

coefficients at i∞ are rational and are p-integral for all but a finite number

of primes p. Suppose further that the order of the function f at each cusp of

Γ1(N) is independent of a and for the cusps a1/c1 whose denominator does

not divide N , the function has the same order at a1/c1 as at those cusps

whose denominators are (c1, N). Then f is an eta quotient , i.e., there are

integers M 6= 0 and mt for all t |N such that

fM (τ) = c
∏

t|N

∆(tτ)mt.

Proof. We have

∆(τ) = q
∏

n≥1

(1 − qn)24.

For given integers mt put

F (τ) =
∏

t|N

∆(tτ)mt .
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Then F is a modular form on Γ1(N) and

orda/c F = wa/c

(

∑

t|N

(t, c)2

t
mt

)

.

Note that the order at every cusp a/c is independent of a and hence
F itself satisfies the order condition given by Theorem 4. Moreover the
conditions imposed in the theorem are important since the sum in the above
expression for orda/c runs only over the divisors of N . We want to show that
mt can be chosen so that

(14) orda/c F = mha/c

for all cusps a/c of Γ1(N). Here ha/c is the order of f12 at a/c and m is an
appropriate non-zero integer depending only on f . Note that by assumption
ha/c is independent of a. Note that in the case of Γ1(N), the denominator of
the cusp is taken modulo N , not as a divisor of N as in the case of Γ0(N).
Since we know that the order of the function at the cusp a/c whose denom-
inator does not divide N is equal to the order of the function at the cusp
whose denominator is (c, N), there are σ0(N) equations. So as in the proof
of Mason and Kohnen, it will be sufficient to prove that the square matrix

AN = ((t, c)2)t|N,c|N

of size σ0(N) × σ0(N) is invertible. Now using [1], we see that

A′
N = ((t, c))t|N,c|N

is positive definite and hence invertible. The Oppenheim inequality [4] states
that if two matrices A and B are positive definite, then

|A ◦ B| ≥ |B|
∏

i

aii,

where ◦ denotes the Hadamard product of matrices. As a result,

|A′
N ◦ A′

N | = |AN | ≥ |A′
N |

∏

i

aii.

Thus our matrix is invertible. We have thus established formula (14), with
an appropriate m.

Let k1 be the weight of F . Since ∆ does not vanish on H, we find from
the valence formula applied to F that the sum of the orders of F at the
different cusps of Γ (N) is equal to

k1

12
[Γ (1) : Γ1(N)].

On the other hand, the valence formula is also valid for the GMF f12 of
weight 12k (see [2]). We then deduce from (14) that

k1 = 12mk.
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Letting M = 12m we see that fm/F is a GMF satisfying all the assumptions
of Theorem 1. We conclude that fM = cF , as required.

We now change, in the above theorem, a condition on the order of the
function at the cusps to a condition on the level N of the congruence sub-
group.

Theorem 5. Let f be a GMF of integral weight k on Γ1(N), and sup-

pose that the poles and zeroes of f are supported at the cusps. Suppose that

the Fourier coefficients at i∞ are rational and are p-integral for all but a

finite number of primes p. Suppose further that for the cusps a/c whose de-

nominator does not divide N , the function has the same order at a/c as at

any of those cusps whose denominators are (c, N), and that the rank of

(15) ((δ, c)2P2(ag/(δ, c)))(δ|N,0≤g<δ),(c|N,a)

is equal to the number of cusps whose denominator divides N . Then f is a

classical modular form.

Remark. For N = 9 as well, the above matrix has rank less than the
number of cusps whose denominator divides N while for N = 16 it has rank
equal to the number of cusps whose denominators divide N .

Proof of Theorem 5. For given integers rδ,g put

F (τ) =
∏

δ|N

∏

0≤g<δ

ηδ,g(τ)rδ,g .

We want to find rδ,g such that fm = cF for some constant c. Now, F is a
modular form on Γ1(N) of weight k1 =

∑

rδ,0 and by [5],

orda/c F =
wa/c

2

∑

δ|N

∑

0≤g<δ

(δ, c)2

δ
P2

(

ag

(δ, c)

)

rδ,g.

Using the condition on the matrix (15), we have to solve now for rδ,g.
Notice that (by arguing as in the proof of Theorem 3) the Fourier coefficients
of F are rational and p-integral for all but a finite number of primes p. We
still want to show that rδ,g can be chosen so that

(16) orda/c F = mha/c

for all cusps a/c of Γ0(N). Here ha/c is the order of f at a/c and m is an
appropriate non-zero integer depending only on f . By assumption, the rank
of (15) is equal to the number of cusps whose denominator divides N . Thus
we have a non-trivial solution. Thus we have established formula (16), with
an appropriate m. Since η does not vanish on H, we find from the valence
formula applied to F that the sum of the orders of F at the different cusps
of Γ1(N) is equal to

k1

12
[Γ (1) : Γ1(N)].
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On the other hand, the valence formula is also valid for the GMF f of weight
k (see [2]). We then deduce from (16) that

k1 = mk.

We see that fm/F is a GMF satisfying all the assumptions of Theorem 1.
We conclude that fm = cF , as required.

4. GMF’s on Γ (N) representable as eta products. A complete set
of representatives of the cusps of Γ (N) is given by

(17) a/c

where c is taken modulo N and a is taken modulo N and (a, ν) = 1 where
ν = (c, N). In this set of representatives, the cusps pair up. The width of
every cusp a/c in (17) is given by

wa/c = N.

In the case of Γ (N), we can also derive a theorem with strong restrictions
on the order of the function at the cusps and then in a following theorem,
we relax those conditions by imposing a condition on N as in the case of
Γ1(N).

Theorem 6. Let f be a GMF of integral weight k on Γ (N). Suppose

that the poles and zeroes of f are supported at the cusps and that the Fourier

coefficients at i∞ are rational and are p-integral for all but a finite number

of primes p. Suppose further that the order of f at each cusp a/c of Γ (N)
is independent of a and for the cusps a1/c1 whose denominator does not

divide N , the function has the same order as at those cusps whose denomi-

nators are (c1, N). Then f is an eta quotient , i.e. there are integers M 6= 0
and mt for t |N such that

fM (τ) = c
∏

t|N

∆(tτ)mt.

Proof. We follow exactly the proof of Theorem 4.

Theorem 7. Let f be a GMF of integral weight k on Γ (N), and suppose

that the poles and zeroes of f are supported at the cusps. Suppose that the

Fourier coefficients at i∞ are rational and are p-integral for all but a finite

number of primes p. Suppose further that for the cusps a/c whose denomi-

nator does not divide N , the function has the same order at a/c as at any

of those cusps whose denominators are (c, N), and that the rank of

(18) ((δ, c)2P2(ag/(δ, c)))(δ|N,0≤g<δ),(c|N,a)

is equal to the number of cusps whose denominator divides N . Then f is a

classical modular form.
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Proof. Since every modular form on Γ1(N) is a modular form on Γ (N),
follow exactly the proof of Theorem 5.
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