
ACTA ARITHMETICA129.2 (2007)

Rational points on ertain ellipti surfaesby
Maciej Ulas (Kraków)Dediated to Professor A. Shinzel on the oasion of his 70th birthday

1. Introdution. Let E be an ellipti surfae given by the equation
E : y2z = x3 +A(t)xz2 +B(t)z3,where A,B ∈ Q[t]. The disriminant for E is de�ned by∆(t) = −16(4A(t)3+

27B(t)2), while the j-invariant is j(t) = −1728(4A(t))3/∆(t). We all thesurfae E isotrivial if its j-invariant is onstant. We say that E splits if thereexists an ellipti urve E suh that E ≃ E × P over C. In what follows, byan ellipti surfae we mean a non-split one. There is a natural projetion on
E given by π : E ∋ ([x : y : z], t) 7→ t ∈ P. The mapping σ : P → E satisfying
π ◦σ = idP will be alled a setion on E . Throughout the paper, by a setionwe mean one de�ned over Q. Note that we always have the zero setion on
E given by σ0 = ([0 : 1 : 0], t). We an look at the surfae E as an elliptiurve de�ned over Q(t). Hene, we have the Mordell�Weil type theorem for
E , whih says that the set of setions (or equivalently points on E de�nedover Q(t)) forms a �nitely generated abelian group.Sine for all but �nitely many t ∈ Q the �bre Et of the mapping π isan ellipti urve, a natural question arises: what an we say about the setof t ∈ Q suh that the ellipti urve Et has a positive rank? If E has anon-torsion setion, an answer to this question follows trivially from Silver-man's speialization theorem ([12, p. 368℄). It says that for all but �nitelymany t ∈ Q the urve Et has a positive rank. Another interesting questiononerns the existene of rational urves on E . Note that eah suh urve,say (x(u), y(u), ψ(u)), yields a rational base hange t = ψ(u) suh that σ =
(x(u), y(u)) is a setion on the surfae Eψ : y2 = x3 + A(ψ(u))x+ B(ψ(u)).We will see that in many ases σ is a non-torsion setion. A problem of this2000 Mathematis Subjet Classi�ation: Primary 11D25; Seondary 11G05.Key words and phrases: diophantine equations, ellipti surfaes.The author is a sholarship holder of the Stanisªaw Estreiher Fund.[167℄ © Instytut Matematyzny PAN, 2007



168 M. Ulaskind was onsidered in Whitehead's paper [13℄. He proved that there existsa rational urve on the surfae given by the equation z2 = f(x, y), where
f ∈ Q[x, y] and deg f = 3. It is easy to see that suh a surfae is birationallyequivalent to E for some A,B ∈ Q[t] with degA ≤ 2, degB ≤ 3.Also note that the existene of a rational base hange t = ψ(u) suhthat Eψ has a non-torsion setion, and Silverman's speialization theorem,imply that for all but �nitely many u ∈ Q, eah �bre Eψ(u) has a dense set ofrational points. This also proves that the set of rational points on E is densein the Zariski topology.In Setion 2 we onsider a surfae of the form Ef : y2 = x3 + f(t)x,where f ∈ Q[t] and deg f ≤ 4. If deg f ≤ 3, then we show that there existsa rational base hange t = ϕ(s) suh that the surfae Ef◦ϕ has a non-torsionsetion. A similar theorem is proved for deg f = 4 under the assumption thatthere exists t0 ∈ Q suh that there are in�nitely many rational points on theurve Et0 : y2 = x3 + f(t0)x. In partiular, we prove that if f of degree fouris not even, then there is a non-trivial rational point on the surfae Ef .In Setion 3 we onsider a surfae of the form Eg : y2 = x3 + g(t), where
g ∈ Q[t] is a moni polynomial of degree six. We prove that if g is not even,then there is a rational base hange t = χ(u) suh that Eg◦χ has a non-torsionsetion. Moreover, if g is even, and there exists t0 ∈ Q suh that the urve
Et0 : y2 = x3 + g(t0) ontains in�nitely many rational points, then the setof t0 ∈ Q suh that Et0 has a positive rank is in�nite.In Setion 4 we present some results onerning diophantine equations ofthe form

x2 − y3 − g(z) = t,where g(z) = z6 + az4 + bz3 + cz2 + dz + e ∈ Z[z] and t is a variable. Wewill deal with solutions of this equation in the ring of polynomials Q[t]. Inpartiular, we prove that if a ≡ 1 (mod2) and b 6= 0, then the above equationhas in�nitely many solutions in Q[t].In Setion 5 we give some results about rational points on ertain non-isotrivial ellipti surfaes.Remark 1.1. Most of the ellipti surfaes onsidered in this paper aregeometrially rational, in other words, rational over C. The referee sug-gested approahing our issues with the use of the theory of Mordell�Weillatties for rational ellipti surfaes [11℄, [9℄. This theory shows that r(E) =
rank(E(C(t))) ≤ 8. Moreover, for generators (x1, y1), . . . , (xn, yn) of theMordell�Weil group of E(C(t)) we know that xi ∈ K[t] and deg xi(t) ≤ 2,where K is a ertain �nite extension of Q. So, we an try to �nd suhgenerators if r(E) > 0 and next onsider the Galois invariant part of thegroup E(K(t)). Unfortunately, in a general situation (for instane, the oneonsidered in this work) it is pratially unfeasible, beause it requires the



Rational points on ellipti surfaes 169examination of extensions of Q by roots of polynomial equations of degree
> 3 with variable oe�ients. To the best of the author's knowledge the onlywork where this method was used and all alulations are onduted is thework by A. Bremner [1℄. He onsiders the ellipti surfae y2 = x3 + f(t),where f ∈ Q[t] and deg f ≤ 3. Already in this ase, when we have onlythree variable oe�ients, the solutions get more and more omplex and itis di�ult to devise how the method an be generalized.2. Rational points on Ef : y2 = x3 + f(t)x. Let f ∈ Q[t] \ Q andassume that deg f ≤ 4 and f has at least two di�erent omplex roots. Weonsider the surfae Ef given by the equation

Ef : y2 = x3 + f(t)x.Sine f does not have a root of multipliity four, Ef is non-split. For a given
t ∈ Q denote the urve y2 = x3 + f(t)x by Et. Note that for �xed t ∈ Q, thetorsion part of the group Et(Q) is isomorphi to one of the following ([12,p. 323℄): Z/4Z if f(t) = 4; Z/2Z×Z/2Z if −f(t) is a square; Z/2Z otherwise.As an immediate onsequene we �nd that if there is a rational base hange
t = β(u) suh that the surfae Ef◦β has a setion σ = (x, y) with y 6= 0, then
σ is non-torsion.We show the followingTheorem 2.1.(1) If deg f ≤ 3, then there exists a rational base hange t = ϕ(s) suhthat there is a non-torsion setion on the surfae Ef◦ϕ.(2) If deg f = 4 and there is t0 ∈ Q suh that the urve Et0 has in�nitelymany rational points, then there exists a rational base hange t =

ψ(r) suh that there is a non-torsion setion on Ef◦ψ.Proof. It will be onvenient to work with the surfae E ′

f given by theequation
E ′

f : XY 2 = X2 + f(t),whih is birationally equivalent to Ef via the mapping (x, y, t) = (X,XY, t)with inverse (X,Y, t) = (x, y/x, t). Set F (X,Y, t) := XY 2 −X2 − f(t).Proof of (1). Let f ∈ Q[t] and deg f ≤ 3. Without loss of generality wean assume that f(t) = at3 + bt2 + ct+ d for some a, b, c, d ∈ Z with a 6= 0or b 6= 0. If a = b = 0, then f has degree 1 and if we put t = (s4 − d)/c,the surfae splits over Q(s). Set X = pT + q, Y = rT + s, t = T . For these
X,Y, t we obtain

F (X,Y, t) = a0 + a1T + a2T
2 + a3T

3,where



170 M. Ulas
a0 = −d− q2 + qs2, a1 = −c− 2pq + 2qrs+ ps2,

a2 = −b− p2 + qr2 + 2prs, a3 = −a+ pr2.Note that the system of equations a2 = a3 = 0 has exatly one solution givenby(2.1) p =
a

r2
, q =

a2 + br4 − 2ar3s

r6
.For these p, q the equation F (pT + q, rT + s, T ) = 0 has a root T =

−ϕ1(r, s)/ϕ2(r, s), where
ϕ1(r, s) = a4 + 2a2br4 + b2r8 + dr12 − 4ar3(a2s+ br4)s

+ r6(3a2 − br4)s2 + 2ar9s3,

ϕ2(r, s) = r4(2a3 + 2abr4 + cr8 − 2r3(3a2 + br4)s+ 3ar6s2).We have obtained a two-parameter solution of the equation de�ning thesurfae E ′

f . If we de�ne ϕ(s) := −ϕ1(1, s)/ϕ2(1, s) and t = ϕ(s), then σ =
(pϕ(s) + q, (pϕ(s) + q)(ϕ(s) + s)) is a setion on the surfae Ef◦ϕ. Beause
(pϕ(s) + q)(ϕ(s) + s) is a non-zero rational funtion, the setion σ is not oforder two, whih proves that it is non-torsion.Proof of (2). Sine deg f = 4, we an assume without loss of generalitythat f(t) = at4 + bt2 + ct+ d for ertain a, b, c, d ∈ Z with a 6= 0. From theassumption, there exists t0 ∈ Q suh that (x0, y0, t0) is a rational point on
Ef and x0 6= 0. Then (x0, y0/x0, t0) is a rational point on E ′

f .Set X = pT 2 + qT + x0, Y = rT + y0/x0, t = T + t0. For these X, Y , twe get
F (X,Y, t) = (a1T + a2T

2 + a3T
3 + a4T

4)/x2
0,where

a1 = x2
0(c+ 2bt0 + 4at30 − 2ry0) + q(2x3

0 − y2
0),

a2 = x0(bx0 + q2x0 + 6at20x0 − r2x2
0 − 2qry0) + p(2x3

0 − y2
0),

a3 = x0(2pqx0 − qr2x0 + 4at0x0 − 2pry0),

a4 = (a+ p2 − pr2)x2
0.If now 2x3

0 − y2
0 6= 0, then the system of equations a1 = a2 = 0 is triangularwith respet to p, q. Beause the urve Et0 has in�nitely many rational points,for �xed a, b, c, d we an hoose x0, y0 suh that 2x3

0−y
2
0 6= 0, and the system

a1 = a2 = 0 has a solution satisfying p 6= 0 or q 6= 0. Therefore, we obtain
(2.2) q = −

x2
0(c+ 2bt0 + 4at30 − 2ry0)

2x3
0 − y2

0

,

p = −
x0(bx0 + q2x0 + 6at20x0 − r2x2

0 − 2qry0)

2x3
0 − y2

0

.



Rational points on ellipti surfaes 171For these p, q, the equation F (pT 2 + qT + x0, rT + y0/x0, T + t0) = 0 has atriple root T = 0 and another root(2.3) T = −
2pqx0 − qr2x0 + 4at0x0 − 2pry0

(a+ p2 − pr2)x0
=: ψ(r) − t0.If we now put t = ψ(r), then the surfae Ef◦ψ has a setion

σ = (pT 2 + qT + x0, (rT + y0/x0)(pT
2 + qT + x0)),where p, q are given by (2.2) and T is given by (2.3). Sine (rT+y0/x0)(pT

2+
qT + x0) 6= 0, the setion σ is not of order two, whih proves that it isnon-torsion.Here a natural and non-trivial problem is to onstrut polynomials f ofdegree four for whih there is a rational point with y 6= 0 on the surfae Ef .It turns out that there exists a wide lass of polynomials with this property.Now we will show the followingTheorem 2.2. If f ∈ Q[t], deg f = 4 and f(t) 6= f(−t), then there existsa rational base hange t = ϕ(u) suh that the surfae Ef◦ϕ has a non-torsionsetion.Proof. We an assume that f(t) = at4 +bt2 +ct+d for some a, b, c, d ∈ Zwith ac 6= 0. Let u be a variable, put x = au2 and treat our surfae as aurve of degree 4 de�ned over Q(u), i.e. we onsider the urve

C1 : y2 = a2u2t4 + abu2t2 + acu2t+ adu2 + a3u6 =: h1(t).Note that the point at in�nity on C1 is rational. Now put t = T, y = auT 2 +
pT + q. Then

(auT 2 + pT + q)2 − h1(T ) = a0 + a1T + a2T
2 + a3T

3,where
a0 = −q2 + adu2 + a3u6, a1 = −2pq + acu2,

a2 = −p2 − 2aqu+ abu2, a3 = −2apu.The system a2 = a3 = 0 has a solution p = 0, q = bu/2. For these p, q, theequation (auT 2 + pT + q)2 − h1(T ) = 0 has a root
T = −

−b2 + 4ad+ 4a3u4

4ac
=: ϕ(u).We have shown that if ac 6= 0 then the surfae Ef◦ϕ has a setion

σ1 =

(

au2,
(−b4 − 8abc2 + 8ab2d− 16a2d2)u+ 8a3(b2 − 4ad)u5 − 16a6u9

16ac2

)

,whih is learly non-torsion.From the above theorem we obtain two interesting orollaries:



172 M. UlasCorollary 2.3. If f(t) = at4 + bt2 + ct + d ∈ Z[t], a, c ∈ {−1, 1} and
b ≡ 0 (mod2), then the diophantine equation y2 = x3 + f(t)x has in�nitelymany solutions in integers.Corollary 2.4. If f ∈ Q[t], deg f = 4, f is not even and has at leasttwo omplex roots , then the diophantine equation v2 = u4+f(w) has in�nitelymany rational parametri solutions.Proof. Write S : v2 = u4 + f(w). The method desribed in [7, p. 77℄shows that S is birationally equivalent to the surfae

E : y2 = x3 − 4f(t)x.The relevant mapping from S to E is given by
(u, v, w) =

(

y

2x
,
2x3 + y2

4x2
, t

)

,with inverse
(x, y, t) = (−2(u2 − v),−4u(u2 − v), w).Applying now Theorem 2.2 we obtain the statement of our orollary.An interesting question is whether there exists a non-trivial rational pointon Ef if f(t) = at4 + bt2 + d for some a, b, d ∈ Z. Note that if the equation

f(t) = 0 has a rational root t0, then on Ef we have a rational urve (x, y, t) =
(u2, u3, t0) and we an use the seond part of Theorem 2.1 to onstrutother rational urves on Ef . Without any di�ulty we an give other in�nitefamilies of polynomials satisfying ondition (2) of Theorem 2.1. For instane,if f(t) = at4 + bt2 + u(v2 − u), then on the urve E0 : y2 = x3 + u(v2 − u)xthere is a point (u, uv) whih is not of �nite order if uv 6= 0.One an hek by omputer that if max{|a|, |b|, |d|} ≤ 100, then thereexists t ∈ Q suh that there are in�nitely many rational points on the urve
Et : y2 = x3 + f(t)x. This leads us to the followingConjeture 2.5. Let a, b, d ∈ Z and f(t) = at4 + bt2 + d. Then thereexists t0 ∈ Q suh that there are in�nitely many rational points on theurve Et0 .3. Rational points on Eg : y2 = x3 + g(t). Let g ∈ Q[t] be a monipolynomial of degree 6 and assume g(t) 6= t6. For suh g onsider the surfae

Eg : y2 = x3 + g(t).For �xed t ∈ Q, denote the urve y2 = x3 + g(t) by Et. Its torsion part is asfollows ([12, p. 323℄). If g(t) = 1, then TorsEt ∼= Z/6Z. If g(t) 6= 1 and g(t) isa square in Q, then TorsEt = {O, (0,
√

g(t)), (0,−
√

g(t))}. If g(t) = −432we have TorsEt = {O, (12, 36), (12,−36)}. If g(t) 6= 1 and g(t) is a ube in
Q, then TorsEt = {O, (− 3

√

g(t), 0)}. In the remaining ases, TorsEt = {O}.



Rational points on ellipti surfaes 173As an immediate onsequene we see that if there is a rational base hange
t 7→ β(t) suh that the surfae Eg◦β has a setion σ = (x, y) with xy 6= 0,then σ is non-torsion.We show the followingTheorem 3.1. Let g ∈ Q[t] be a moni polynomial of degree six. If gis not even, then there exists a rational base hange t = χ(u) suh that thesurfae Eg◦χ has a non-torsion setion.Proof. We an assume that g(t) = t6 + at4 + bt3 + ct2 + dt+ e for some
a, b, c, d, e ∈ Z with b 6= 0 or d 6= 0. Let now C2 denote the urve over Q(t)obtained from Eg after substituting x = (u2 − a)/3 − t2. Then

C2 : y2 = u2t4 + bt3 −
a2 − 3c− 2au2 + u4

3
t2 + dt

+
−a3 + 27e+ 3a2u2 − 3au4 + u6

27
=: h2(t).Note that the point at in�nity on C2 is rational. Set t = T, y = uT 2 +pT +q.Then

(uT 2 + pT + q)2 − h2(T ) = a0 + a1T + a2T
2 + a3T

3,where
a0 =

a3 − 27e+ 27q2 − 3a2u2 + 3au4 − u6

27
, a1 = −d+ 2pq,

a2 =
a2 − 3c+ 3p2 + 6qu− 2au2 + u4

3
, a3 = −b+ 2pu.Solving the system a2 = a3 = 0 with respet to p, q we obtain(3.1) p =

b

2u
, q =

−3b2 − 4a2u2 + 12cu2 + 8au4 − 4u6

24u3
.Now, if p, q are given by (3.1), then the equation (uT 2+pT +q)2−h2(T ) = 0has a root T = −χ1(u)/χ2(u) =: χ(u), where

χ1(u) = −27b4 − 72b2(a2 − 3c)u2 − 48(a4 − 3ab2 − 6a2c+ 9c2)u4

+ 8(16a3 − 9b2 − 72ac+ 216e)u6 − 96(a2 − 3c)u8 + 16u12,

χ2(u) = 72u2(3b3 + 4b(a2 − 3c)u2 − 8(ab− 3d)u4 + 4bu6).Our omputations imply that the surfae Eg◦χ has a setion σ2 = ((u2 − a
− 3T 2)/3, uT 2 + pT + q), where p, q are given by (3.1) and T = χ(u). It iseasy to see that σ2 is non-torsion.Note that the assumption �b 6= 0 or d 6= 0� is essential for the methodemployed beause in the opposite ase the funtion χ2 is identially zero.Here a natural question arises whether the assumption that for some
t0 ∈ Q there are in�nitely many rational points on the urve Et0 enables oneto onstrut a rational urve on the surfae Eg. Unfortunately, we are not



174 M. Ulasable to give suh a onstrution for any even polynomial g. However, we anproveTheorem 3.2. Let g ∈ Q[t] be a moni and even polynomial of degreesix. If there exists t0 ∈ Q suh that there are in�nitely many rational pointson the urve Et0 , then the set of t ∈ Q suh that Et has positive rank isin�nite.Proof. Beause g is even we an assume that g(t) = t6 + at4 + ct2 + e forsome a, c, e ∈ Z with a 6= 0 or c 6= 0. The ase a = c = 0 will be disussed inthe next setion. For the proof it will be onvenient to work with the surfae
Fg given by the equation

Fg : Y 2 + 2t3Y = X3 + at4 + ct2 + e.Set G(X,Y, t) := Y 2 + 2t3Y − (X3 + at4 + ct2 + e). Then Eg is birationallyequivalent to Fg via the mapping (x, y, t) = (X,Y + t3, t) with inverse
(X,Y, t) = (x, y − t3, t). By assumption there exists t0 ∈ Q suh that thereare in�nitely many rational points on Et0 . Thus, there is a rational point
(x0, y0, t0) on Eg suh that x0y0 6= 0. Then (x0, y0 − t30, t0) is on Fg. Set
X = pT + x0, Y = qT + y0 − t30, t = T + t0. Then

G(X,Y, t) = a1T + a2T
2 + a3T

3 + a4T
4,where

a1 = −3px2
0 + 2qy0 − 2ct0 − 4at30 − 6t50 + 6t20y0,

a2 = q2 + 6qt20 − 3p2x0 − c+ 6at20 − 6t40 + 6t0y0,

a3 = −p3 + 6qt0 − 4at0 − 2t30 + 2y0,

a4 = 2q − a.Solving the system a1 = a4 = 0 with respet to p, q we obtain(3.2) p = −
2ct0 + 4at30 + 6t50 − ay0 − 6t20y0

3x2
0

, q =
a

2
.For these p, q, the equation G(pT + x0, qT + y0 − t30, T + t0) = 0 has a root

T = 0 and another root(3.3) T = −
q2 + 6qt20 − 3p2x0 − c+ 6at20 − 6t40 + 6t0y0

−p3 + 6qt0 − 4at0 − 2t30 + 2y0
.From the above omputations we see that the point (pT + x0, qT + y0 − t30,

T + t0), for p, q given by (3.2) and T de�ned by (3.3), lies on Fg. Hene thepoint P = (pT + x0, qT + y0 − t30 + (T + t0)
3, T + t0) is on Eg. Beause theset of rational points on Et0 is in�nite, we an assume that the oordinatesof P are non-zero, g(T ) 6= 0,−432 and g(T + t0)/g(t0) is not a sixth power.If we now put t1 = T + t0, then the urve Et1 has in�nitely many rationalpoints.



Rational points on ellipti surfaes 175Now suppose that we have already onstruted t1, . . . , tn suh that Etihas a positive rank for i = 1, . . . , n. Then we an apply the above proedureto the point (xn, yn, tn), where (xn, yn) is a rational point on Etn suh that
T given by (3.3) satis�es: g(T + tn) 6= 0,−432 and g(T + tn)/g(ti) is not asixth power for i = 1, . . . , n. Why an we �nd suh a T? If g has no rootof multipliity 5, then there are only �nitely many rational points on everyurve g(u) = g(ti)v

6 (of genus > 1) for i = 1, . . . , n. This is an immediateonsequene of the Faltings theorem [3℄. The ase when g has a root ofmultipliity 5 (it is then a rational root) an be easily exluded, as thenthe surfae Eg is rational over Q. Beause there are in�nitely many rationalpoints on the urve Etn , we see that T given by (3.3) an be seleted tosatisfy all the neessary onditions. Now using the previous reasoning wean onstrut in�nitely many t ∈ Q suh that Et has a positive rank.Remark 3.3. Note that if g(t0) = 0 for a rational number t0, thenthe set of rational points on the urve Et0 : y2 = x3 is parametrized by
x = u2, y = u3. Using the reasoning from Theorem 3.2 we an easily deduethat in this ase it is possible to onstrut a rational urve on Eg.From the above remark we obtain the followingCorollary 3.4. Let h ∈ Q[t] with deg h = 5, h(0) = 1 and onsider thesurfae S : y2 = x3 + h(t). Then there is a rational base hange t = γ(u)suh that the surfae Sγ : y2 = x3 + h(γ(u)) has a non-torsion setion.Proof. Note that S is birationally equivalent to Eg, where g(t) = t6h(1/t).The mapping from S to Eg is given by (x, y, t) 7→ (x/t2, y/t3, 1/t). Beause
g(0) = 0, we an use Remark 3.3 to obtain the statement.Example 3.5. Let g(t) = t6 + t2 + 1 and onsider the surfae Eg :
y2 = x3 + g(t). For t0 = 1, on the urve E1 : y2 = x3 + 3 we have anon-torsion point P = (1, 2). Now we alulate the quantities p, q givenby (3.2) and T given by (3.3) from the proof of Theorem 3.2. We obtain
p = 16/13, q = −1/13, T = −358/169 and next t1 = T + t0 = −189/169.Thus, on the urve

Et1 : y2 = x3 +
47 · 2085456070589

1312we have a non-torsion point
P =

(

−
3531

2197
,
1137934

4826809

)

.Similarly to the ase of the surfae Ef onsidered in Setion 2, we anask whether for a given polynomial g of the form g(t) = t6 + at4 + ct2 + ethere is t0 ∈ Q suh that the urve Et0 has in�nitely many rational points.



176 M. UlasIn the following setion we will prove that the answer is positive forpolynomials of the form g(t) = t6 + e. We heked by omputer that if
max{|a|, |c|, |e|} ≤ 10, then there exists t ∈ Q suh that there are in�nitelymany rational points on the urve Et : y2 = x3 + t6 + at4 + ct2 + e. Thisleads us to the followingConjeture 3.6. Let a, c, e ∈ Z and g(t) = t6 + at4 + ct2 + e. Thenthere exists t0 ∈ Q suh that there are in�nitely many rational points on theurve Et0 .In view of Theorem 3.2 a natural question arises:Question 3.7. Let g(t) = t6 +at4 + ct2 + e . What onditions guaranteethe existene of a rational base hange t = κ(u) suh that the surfae Eg◦κhas a non-torsion setion?4. Some results on the diophantine equation x2 − y3 − g(z) = t.Let g(z) = z6 + az4 + bz3 + cz2 + dz + e ∈ Z[z] and let t be a variable. Inthis setion we will deal with the diophantine equation(4.1) x2 − y3 − g(z) = t.We will show that if there are in�nitely many rational points on the urve
C : v2 = s4−12as2+48bs+6(a2−12c), then the equation (4.1) has in�nitelymany solutions in Q[t]. For g(t) = t6 + e, we will use this result to provethe promised theorem on the existene of a rational base hange t = χ1(s)suh that there exists a non-torsion setion on Eg◦χ1 . We will also give someresults onerning the representability of integers in the form x2 − y3 − g(z).We start with the followingTheorem 4.1. If there are in�nitely many rational points on the urve
C : v2 = s4 − 12as2 + 48bs + 6(a2 − 12c), in partiular if b 6= 0 and a ≡ 1
(mod2), then the equation (4.1) has in�nitely many solutions in Q[t].Proof. Set G(x, y, z) := x2 − y3 − g(z) and observe that solving theequation G(x, y, z) = t in polynomials with rational oe�ients is equivalentto onstruting polynomials x, y, z∈Q[t] suh that degG(x(t), y(t), z(t))=1.Now put x = 3T 3 + pT 2 + qT + r, y = 2T 2 + sT + u, z = T . Then
G(3T 3+pT 2+qT+r, 2T 2+sT+u, T ) = a0+a1T+a2T

2+a3T
3+a4T

4+a5T
5,where

a0 = r2 − u3 − e, a1 = −d+ 2qr − 3su2,

a2 = −c+ q2 + 2pr − 3s2u− 6u2, a3 = −b+ 2pq + 6r − s3 − 12su,

a4 = −a+ p2 + 6q − 6s2 − 12u, a5 = 6(p− 2s).



Rational points on ellipti surfaes 177Solving the system a3 = a4 = a5 = 0 with respet to p, q, r we obtain(4.2) p = 2s, q =
a+ 2s2 + 12u

6
, r =

3b− 2as− s3 + 12su

18
.After substituting p, q, r into the equation a2 = 0 and solving it with respetto u, we obtain(4.3) u =

3s2 + 2a±
√

s4 − 12as2 + 48bs+ 6(a2 − 12c)

12
.Thus, we an see that if there are in�nitely many rational points on the urve

C : v2 = s4 − 12as2 + 48bs+ 6(a2 − 12c) =: U(s),then all but �nitely many points on C, by (4.2) and (4.3), give us a tripleof polynomials x, y, z ∈ Q[T ] suh that G(x(T ), y(T ), z(T )) = a1T + a0 and
a1 6= 0. After substitution T = (t − a0)/a1 we obtain a solution of theequation x2 − y3 − g(z) = t. Moreover, note that we always have in�nitelymany rational points on C when the polynomial U has multiple roots, whihis equivalent to the ondition D := 25a6 − 144a3b2 − 2592b4 − 180a4c +
5184ab2c− 1296a2c2 − 1728c3 = 0.Sine the urve C is rational over Q if D = 0, we an assume that
D 6= 0. To show that if b 6= 0 and a ≡ 1 (mod2), then there are in�nitelymany rational points on C, we transform C into an ellipti urve with theWeierstrass equation. We an do this beause the point at in�nity on C isrational. Using the method desribed in [7℄ one more time, we birationallytransform C into the urve

E : Y 2 = X3 − 72(a2 − 4c)X + 64(a3 + 36b2 − 36ac).The mapping transforming C into E is
(s, v) =

(

48b− Y

16a− 2X
, 2a+

X

2
−

(

48b− Y

16a− 2X

)2)

,with inverse
(X,Y ) = (2(−2a+ s2 + v), 4(12b− 6as+ s3 + sv)).Note that the rational point P = (8a, 48b) lies on the urve E. Using thehord and tangent method of adding points on an ellipti urve, we obtain

2P = (x1, y1) where
x1 =

25a4 − 256ab2 + 120a2c+ 144c

16b2
,

y1 = 48b+
(5a2 + 12c)(25a4 − 384ab2 + 120a2c+ 144c2)

64b3
.Beause a ≡ 1 (mod2) the numerator of x1 is odd, so x1 ∈ Q \ Z. Bythe Nagell�Lutz theorem ([12, p. 77℄) torsion points on an ellipti urve

y2 = x3 + px + q, p, q ∈ Z, have integer oordinates, so the point 2P is



178 M. Ulasnot of �nite order. This proves that the urve E has a positive rank and weonlude that there are in�nitely many rational points on the urve C.Remark 4.2. After notiing that the point P = (8a, 48b) lies on theurve E (see the proof above), we suspeted that this point is not of �niteorder for ab 6= 0 and any c ∈ Z. As suggested by Professor Shinzel, this isnot true. Indeed, if a = 6p2, c = p(4b− 15p3), then the urve E is ellipti if
∆ = −764411904b2(3b−16p3) 6= 0. In this ase the point P = (6p2, 48b) is oforder three on E. If we now put p = 1, b = 1, then a = 6, c = −11. The urve
E is then birationally equivalent to E′ : y2 = x3 − 360x + 2628. Applying
APECS [2℄ we found that the rank of E′ is zero. Despite this, there exists anon-trivial solution of the equation x2 − y3 − g(z) = t for b = 1 and even for
b 6= 0; this is equivalent to the fat that the point P is not of order two. Whyis it so? If b 6= 0, then the order of P is at least 3 and the s-oordinate of thepreimage of 2P (di�erent from the point at in�nity O) equals (5a2+12c)/18b.Beause the expression a1 from the proof of Theorem 4.1 depends linearlyon d and is not identially zero, there is at least one d ∈ Z for whih a1 = 0and our method does not give a solution of the equation x2 − y3 − g(z) = t.It should be noted that there exists a polynomial g ∈ Z[t] for whihour method does not give a solution of the equation x2 − y3 − g(z) = t.For example, if g(t) = t6 + 6t4 + 6t3 + 9t2 − 150t, then the urve C isbirationally equivalent to the ellipti urve E′ : y2 + y = x3 − 7. We have
TorsE′ = {O, (3, 4), (3,−5)} and using APECS one again, we �nd that E′has rank zero. In this ase, our method leads to the identity

(3T 3 + 12T 2 + 33T + 25)2 − (2T 2 + 6T + 10)3 − g(T ) = −375.Now we reord several interesting orollaries of Theorem 4.1.Corollary 4.3. If there are in�nitely many rational points on the urve
C : v2 = s4 − 12as2 + 48bs + 6(a2 − 12c), then every polynomial h ∈ Q[t]an be represented in in�nitely many ways in the form x2 − y3 − g(z), where
x, y, z ∈ Q[t].In the following orollary we give the promised proof of the existene ofrational urves on the surfae y2 = x3 + t6 + e.Corollary 4.4. Let Eg : y2 = x3 +g(t), where g(t) = t6 +e. Then thereexists a rational base hange t = χ1(s) suh that the surfae Eg◦χ1 : y2 =
x3 + g(χ1(s)) has a non-torsion setion.Proof. Note that if a = b = c = 0, then the urve C is rational and thesystem a2 = a3 = a4 = a5 = 0 from the proof of Theorem 4.1 has exatlytwo solutions given by

p1 = 2s, q1 = 2s2/3, r1 = s3/18, u1 = s2/6,

p2 = 2s, q2 = s2, r2 = s3/6, u2 = s2/3.



Rational points on ellipti surfaes 179For suh pi, qi, ri, ui (i = 1, 2) we obtain the following identities:
(4.4)

(

3T 3 + 2sT 2 +
2s2

3
T +

s3

18

)2

−

(

2T 2 + sT +
s2

6

)3

− (T 6 + dT + e)

= −
648e+ s6

648
−

648d+ 6s5

648
T,

(4.5)

(

3T 3 + 2sT 2 + 2s2T +
s3

6

)2

−

(

2T 2 + sT +
s2

3

)3

− (T 6 + dT + e)

= −
108e+ s6

108
− dT.If now d = 0 and if we put T = χ1(s) = −(648e + s6)/(6s5) then the rightside of the identity (4.4) disappears and the surfae Eg◦χ1 : y2 = x3+g(χ1(s))has a setion

σ =

(

419904e2 − 648es6 + s12

18s10
,

−
272097792e3 − 419904e2s6 + 1944es12 + s18

72s15

)

.It is easy to see that the order of σ is not �nite.Reall that a1 = −d+ 2qr − 3su2, where q, r, s, u are given by (4.2) and(4.3) from the proof of Theorem 4.1.Corollary 4.5. Let d ∈ Z and suppose that on the urve C : v2 =
s4−12as2+48bs+6(a2−12c), there is a rational point whih leads to a1 6= 0.Then for every integer n the diophantine equation x2 − y3 − g(z) = n hasa solution in rationals x, y, z suh that there exists an integer Lg, dependingonly on the polynomial g, with Lgx, Lgy, Lgz ∈ Z. In partiular , for g(z) = z6we have Lg = 124416 = 29 · 35.Proof. In view of Theorem 4.1 the �rst part of the statement is obvious.Now putting d = e = 0, s = 6 and next T = (n + 72)/72 into the identity(4.4) we obtain
(

n3 − 72n2 + 15552n+ 373248

124416

)2

−

(

n2 − 72n+ 5184

2592

)3

−

(

n+ 72

72

)6

= n.This proves the seond part of the orollary.Corollary 4.6. Let g(z) = z6 + dz. If d = 1, then for every integer nthe diophantine equation x2 − y3 − g(z) = n has in�nitely many solutions inintegers. If d = −72t5 + 1 for some integer t, then for every integer n thediophantine equation x2 − y3 − g(z) = n has a solution in integers.Proof. Let n be a �xed integer. If d = −1, then for the proof we willuse the identity (4.5). Set e = 0, s = 6t and T = −432t6 − n. Then the



180 M. Ulaspolynomials
x(t) = 3n3 + 12t(−1 + 324t5)n2 + 36t2(1 − 288t5 + 46656t10)n

+ 36t3(−1 + 432t5 − 62208t10 + 6718464t15),

y(t) = 2n2 + 6t(−1 + 288t5)n+ 12t2(1 − 216t5 + 31104t10),

z(t) = −n− 432t6satisfy x(t)2 − y(t)3 − g(z(t)) = n.If now d = −72t5 − 1, then we put e = 0, s = 6t, T = −n− 72t6 into theidentity (4.4). We �nd that x2 − y3 − g(z) = n for
x = 3n3 + 12t(−1 + 54t5)n2 + 24t2(1 − 725 + 1944t10)n

+ 12t3(−1 + 144t5 − 5184t10 + 93312t15),

y = 2n2 + 6t(−1 + 48t5)n+ 6t2(1 − 72t5 + 1728t10),

z = −n− 72t6.5. Rational points on some non-isotrivial ellipti surfaes. Inview of our onsiderations it is natural to ask whether it is possible to obtainsimilar results for non-isotrivial ellipti surfaes of the form
E : y2 = x3 +A(t)x+B(t),where A,B ∈ Q[t] \ {0}. If t 7→ α(t) is a rational base hange, then let Eαdenote the surfae Eα : y2 = x3 +A(α(t))x+B(α(t)). Moreover, reall thatif C : y2 = x3 + m(t)x + n(t), where m,n ∈ Z[t], is an ellipti urve over

Q(t), then points of �nite order on C have oordinates in Z[t].In this setion we will prove a generalization of Theorems 2.1 and 2.2.Theorem 5.1. Let E : y2 = x3 + f4(t)x + g4(t), where f4, g4 ∈ Q[t]. Ifeither deg f4 = 3 and deg g4 ≤ 4, or deg f4 = 4, deg g4 ≤ 4, and if at leastone of the polynomials f4, g4 is not even, then there exists a rational basehange t = ψ(s) suh that the surfae Eψ has a non-torsion setion.Proof. Set H(x, y, t) := y2−(x3 +f4(t)x+g4(t)). First, onsider the asewhen deg f4 = 3 and deg g4 ≤ 4. We an assume that f4(t) = at3 + bt + c,
g4(t) = dt4 + et3 + ft2 + gt + h for some a, b, . . . , h ∈ Z with a 6= 0 and
g4(t) 6= 0. Set x = pT + q, y = rT 2 + sT + u, t = T . For these x, y, t weobtain

H(x, y, t) = a0 + a1T + a2T
2 + a3T

3 + a4T
4,where

a0 = −h− cq − q3 + u2, a1 = −g − cp− bq − 3pq2 + 2su,

a2 = −f − bp− 3p2q + s2 + 2ru, a3 = −e− p3 − aq + 2rs,

a4 = −d− ap+ r2.



Rational points on ellipti surfaes 181The system a2 = a3 = a4 = 0 has a solution
(5.1) p =

−d+ r2

a
, q = −

−d3 + a3e+ 3d2r2 − 3dr4 + r6 − 2a3rs

a4
,

u = −
−f − bp− 3p2q + s2

2r
.If p, q, u are given by (5.1), then the equation H(pT +q, rT 2 +sT +u, T ) = 0has a solution(5.2) T = −

h+ cq + q3 − u2

g + cp+ bq + 3pq2 − 2su
=: ψ(r, s).In this ase we obtain a two-parameter solution of the equation de�ningthe surfae E . For onveniene let r = 1 and ψ(s) := ψ(1, s). We see thatif p, q, u are given by (5.1) and T = t = ψ(s), then the surfae Eψ has asetion σ = (pT + q, T 2 + sT + u). An a�ne hange of variables transforms

Eψ into E ′

ψ : y2 = x3 + f ′4(s)x + g′4(s), where f ′4, g′4 ∈ Z[s]. Then σ goesto a setion σ′ on E ′

ψ. It turns out that the x-oordinate of the setion 2σ′belongs to Q(s) \ Q[s]. By the remark at the beginning of this setion, σ′ isnot of �nite order. We omit the lengthy omputations of this proof, whihare troublesome to perform without omputer.Let us now onsider the ase when deg f4 = 4, deg g4 ≤ 4 and at least oneof f4, g4 is not even. We an assume that f4(t) = at4 + bt2 + ct+ d, g4(t) =
et4 + ft3 + gt2 + ht+ i, where a, b, . . . , i ∈ Z, a 6= 0 and at least one of thenumbers c, f, h is not zero. Let now C3 denote the urve over Q(u) obtainedfrom E after substitution x = (u2 − e)/a. Hene,

C3 : y2 = u2t4 + ft3 +
−be+ ag − bu2

a
t2 +

−ce+ ah− cu2

a
t

+
−a2de− e3 + a3i+ (a2d+ 3e2)u2 − 3eu4 + u6

a3
=: V (t).Now putting y = uT 2 + pT + q, t = T we obtain

(uT 2 + pT + q)2 − V (T ) = a0 + a1T + a2T
2 + a3T

3,where
a0 =

−a2de− e3 + a3i+ (a2d+ 3e2)u2 − 3eu4 + u6

a3
,

a1 =
−ce+ ah− 2apq + cu2

a
,

a2 =
−be+ ag − ap2 − 2aqu+ bu2

a
, a3 = f − 2pu.



182 M. UlasThe system a2 = a3 = 0 has a solution(5.3) p =
f

2u
, q =

−af2 − 4beu2 + 4agu2 + 4bu4

8au3
.For these p, q the equation (uT 2 + pT + q)2 − V (T ) = 0 has exatly onesolution(5.4) T =

−a2de− e3 + a3i+ (a2d+ 3e2)u2 − 3eu4 + u6

a2(−ce+ ah− 2apq + cu2)
=: ψ1(u).Now, putting t = ψ1(u) we obtain the setion σ1 = ((u2−e)/a, uT 2+pT+q)on the surfae Eψ1

, and similarly to the previous ase, we show that the orderof σ1 is not �nite.Remark 5.2. Let now K be a real �eld for whih [K : Q] <∞. Considerthe ellipti surfae E : y2 = x3 + C1(t)x + C2(t), where C1, C2 ∈ Q[t] and
max{degC1, degC2} = 3, de�ned over K. Let S := {t ∈ K : rank(Et) > 0}.R. Munshi in [8℄ has shown that there exists a onstant M , depending onlyon [K : Q], suh that if |S| > M , then the set S is dense in R (Theorem 1.9in [8℄). The �rst part of Theorem 5.1 shows that in fat the surfae E isunirational. Without any additional assumptions this proves that the set Sis dense in R.With a similar method we an prove the followingTheorem 5.3.(1) Let E : y2 = x(x2 + f2(t)x + f4(t)), where f2, f4 ∈ Q[t]. If either

deg f2 ≤ 2, deg f4 ≤ 3, or deg f2 ≤ 2, deg f4 = 4, and if at least oneof the polynomials f2, f4 is not even, then there exists a rational basehange t = ψ(u) suh that the surfae Eψ has a non-torsion setion.(2) If deg f2 = 2, deg f4 = 4 and there is t0 ∈ Q suh that the urve
Et0 : y2 = x(x2+f2(t0)x+f4(t0)) has in�nitely many rational points,then there exists a rational base hange t = ψ(u) suh that Eψ has anon-torsion setion.(3) Let E : y2 = x(x2 + f4(t)x+ g4(t)), where f4, g4 ∈ Q[t] and deg f4 =
deg g4 = 4. If f4 or g4 is not even, then there exists a rational basehange t = ψ(u) suh that Eψ has a non-torsion setion.Proof. The proofs of (1) and (2) do not bring any di�ulties, and there-fore they will be omitted (the reasoning is exatly the same as in the proofof Theorem 2.1).We now outline the proof of (3). Let a, b be the leading oe�ients of

f4, g4, respetively. Set x = b/(u2 − a) and treat E as a urve de�ned over
Q(u); denote the latter urve by C4. Then the point at in�nity, say P , on
C4 is rational. Sine f4 or g4 is not even, with the use of the point P we anonstrut a non-torsion setion on E .



Rational points on ellipti surfaes 183The previously onsidered ellipti surfaes (exluding the one from The-orem 5.3(3)) are rational over C. This means that they are rational over aertain �nite extension of Q. Can one say something more about rationalpoints on general ellipti surfaes? With referene to this question, in 1992B. Mazur proposed an interesting onjeture onerning rational points on E .For t ∈ Q let Et be the �bre of the mapping π : E → P over t.Conjeture 5.4 (Conjeture 4 from [6℄). The family {Et}t∈Q of elliptiurves satis�es one of the following onditions:(1) for all but �nitely many t ∈ Q the urve Et has Mordell�Weil rankzero,(2) there exists a set R ⊂ Q suh that R is dense in R and for eah
t ∈ R, the Mordell�Weil rank of Et is positive.As pointed out in [6℄, the only known example of an ellipti surfae whose�bres satisfy ondition (1) of the above onjeture is the split ellipti surfae

E ≃ E × C, where E is an ellipti urve of rank zero. It seems plausiblethat if the family {Et}t∈Q omes from a non-split ellipti surfae, then (1)is not valid. It should be mentioned that reently N. Elkies gave heuristiarguments whih suggest that ertain isotrivial families of ellipti urves over
Q violate Mazur's onjetured rule.Examples of families of ellipti surfaes satisfying ondition (2) of theabove onjeture an be found in [4℄, [10℄, [5℄, [8℄.We believe that the following onjeture may be easier to prove:Conjeture 5.5. Let E be a non-split ellipti surfae. Then there is
t ∈ Q suh that the urve Et has in�nitely many rational points.As a orollary, we obtain an interestingTheorem 5.6. Assume that Conjeture 5.5 is true. Then for the family
{Et}t∈Q of ellipti urves , the set of rational numbers t suh that the rank of
Et is positive, is in�nite.Proof. Assuming Conjeture 5.5 to be true, we �nd t1 ∈ Q suh thatthere are in�nitely many rational points on the urve Et1 . Suppose that wehave already onstruted t2, . . . , tn suh that the urve Eti for i = 1, . . . , n hasin�niteley many rational points. Further suppose that there is a polynomial
h ∈ Q[t] suh that for i = 1, . . . , n the equation h(t) = ti has no solutions inrationals and the system of equations
(5.5) 













A(t1)Y
4
1 = A(h(T1)), B(t1)Y

6
1 = B(h(T1)),... ...

A(tn)Y
4
n = A(h(Tn)), B(tn)Y

6
n = B(h(Tn)).



184 M. Ulasalso has no suh solutions. Then there exists t ∈ Q suh that the urve
Eh(t) : y2 = x3 + A(h(t))x + B(h(t)) has a positive rank. De�ning now
tn+1 = h(t) and repeating the reasoning, we obtain the statement of thetheorem.We now show that there exists h ∈ Q[t] satisfying the above ondi-tions. Let h1 ∈ Q[t] be suh that the equation h1(t) = ti for i = 1, . . . , nhas no solutions. Clearly it is enough to show the existene of our poly-nomial for the �rst row in the system (5.5). Therefore, onsider the sys-tem A(t1)Y

4
1 = A(h1(T1)), B(t1)Y

6
1 = B(h1(T1)). If A(t1)B(t1) = 0, thenthis system has �nitely many rational solutions, and we an �nd h2 ∈ Q[t]suh that h = h1 ◦ h2 is as desired. Now, assume that A(t1)B(t1) 6= 0.If (A(h1(T1))/A(t1))

3 6= (B(h1(T1))/B(t1))
2, then our system has at most

3 deg(A◦h1)+2 deg(B ◦h1) solutions in Q and so there exists h2 ∈ Q[t] suhthat h = h1 ◦ h2 does the job. If (A(h1(T1))/A(t1))
3 = (B(h1(T1))/B(t1))

2,the problem redues to the examination of the urve C : Y 2
1 = H(T1), where

H is a polynomial suh that A(h1(T1))/A(t1) = H(T1)
2, B(h1(T1))/B(t1) =

H(T1)
3. If H were the square of another polynomial, the family {Et}t∈Qwould be related to a split ellipti surfae E , whih ontradits the assump-tion. Therefore, H is not a square. Now, there exists a polynomial h2 suhthat the genus of the urve C ′ : Y 2

1 = H(h2(T1)) is ≥ 2. From the Faltingstheorem there are only �nitely many rational points on C ′; so after a poly-nomial hange of variable, we obtain a polynomial satisfying all the requiredonditions. Applying this reasoning to the seond, . . . , nth equation in (5.5)we obtain the statement of the theorem.In view of the above theorem, a natural question arises:Question 5.7. Is ondition (2) of Conjeture 5.4 equivalent to Conje-ture 5.5?Aknowledgments. I would like to thank the anonymous referee forhis valuable omments and Professors A. Shinzel and K. Rusek for theirremarks improving the presentation.
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