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1. Introduction. Let £ be an elliptic surface given by the equation
E: y?z=a+ A(t)z2® + B(t)2?,

where A, B € Q[t]. The discriminant for £ is defined by A(t) = —16(4A(t)3+
27B(t)?), while the j-invariant is j(t) = —1728(4A(t))3/A(t). We call the
surface & isotrivial if its j-invariant is constant. We say that £ splits if there
exists an elliptic curve F such that £ ~ E x P over C. In what follows, by
an elliptic surface we mean a non-split one. There is a natural projection on
Egivenby m: €3 ([x:y:z2],t) — t € P. The mapping o : P — £ satisfying
moo = idp will be called a section on £. Throughout the paper, by a section
we mean one defined over Q. Note that we always have the zero section on
& given by o9 = ([0 : 1: 0],t). We can look at the surface £ as an elliptic
curve defined over Q(t). Hence, we have the Mordell-Weil type theorem for
&, which says that the set of sections (or equivalently points on £ defined
over Q(t)) forms a finitely generated abelian group.

Since for all but finitely many ¢t € Q the fibre & of the mapping = is
an elliptic curve, a natural question arises: what can we say about the set
of t € Q such that the elliptic curve & has a positive rank? If £ has a
non-torsion section, an answer to this question follows trivially from Silver-
man’s specialization theorem ([12, p. 368]). It says that for all but finitely
many t € Q the curve & has a positive rank. Another interesting question
concerns the existence of rational curves on £. Note that each such curve,
say (z(u),y(u),¥(u)), yields a rational base change t = 1 (u) such that o =
(z(u),y(u)) is a section on the surface &, : y* = x3 + A(Y(u))z + B(¥(u)).
We will see that in many cases o is a non-torsion section. A problem of this
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kind was considered in Whitehead’s paper [13|. He proved that there exists
a rational curve on the surface given by the equation 22 = f(x,y), where
f € Qlz,y] and deg f = 3. It is easy to see that such a surface is birationally
equivalent to £ for some A, B € Q[t] with deg A < 2,deg B < 3.

Also note that the existence of a rational base change ¢ = ¥ (u) such
that £y has a non-torsion section, and Silverman’s specialization theorem,
imply that for all but finitely many u € Q, each fibre £y, has a dense set of
rational points. This also proves that the set of rational points on £ is dense
in the Zariski topology.

In Section 2 we consider a surface of the form &y : y? = 2% + f(t)r,
where f € Q[t] and deg f < 4. If deg f < 3, then we show that there exists
a rational base change t = ¢(s) such that the surface £fo, has a non-torsion
section. A similar theorem is proved for deg f = 4 under the assumption that
there exists tg € Q such that there are infinitely many rational points on the
curve By, : y? = 2% + f(to)z. In particular, we prove that if f of degree four
is not even, then there is a non-trivial rational point on the surface &;.

In Section 3 we consider a surface of the form £9 : y? = 23 + g(t), where
g € QJt] is a monic polynomial of degree six. We prove that if ¢ is not even,
then there is a rational base change ¢ = x(u) such that £9°X has a non-torsion
section. Moreover, if g is even, and there exists o € Q such that the curve
E' : y? = 23 4 g(to) contains infinitely many rational points, then the set
of tg € Q such that E% has a positive rank is infinite.

In Section 4 we present some results concerning diophantine equations of
the form

2t -y’ —g(2) =t,
where g(z) = 25 4+ az* + 023 + c2%2 + dz + e € Z[2] and t is a variable. We
will deal with solutions of this equation in the ring of polynomials Q[t]. In
particular, we prove that if @ = 1 (mod 2) and b # 0, then the above equation
has infinitely many solutions in Q[¢].

In Section 5 we give some results about rational points on certain non-
isotrivial elliptic surfaces.

REMARK 1.1. Most of the elliptic surfaces considered in this paper are
geometrically rational, in other words, rational over C. The referee sug-
gested approaching our issues with the use of the theory of Mordell-Weil
lattices for rational elliptic surfaces [11], [9]. This theory shows that (&) =
rank(£(C(t))) < 8. Moreover, for generators (z1,y1),...,(n,yn) of the
Mordell-Weil group of £(C(t)) we know that z; € K[t] and degz;(t) < 2,
where K is a certain finite extension of Q. So, we can try to find such
generators if 7(£) > 0 and next consider the Galois invariant part of the
group £(K(t)). Unfortunately, in a general situation (for instance, the one
considered in this work) it is practically unfeasible, because it requires the
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examination of extensions of Q by roots of polynomial equations of degree
> 3 with variable coefficients. To the best of the author’s knowledge the only
work where this method was used and all calculations are conducted is the
work by A. Bremner [1]. He considers the elliptic surface y? = 3 + f(t),
where f € QJt] and deg f < 3. Already in this case, when we have only
three variable coefficients, the solutions get more and more complex and it
is difficult to devise how the method can be generalized.

2. Rational points on & : y? = 23 + f(t)z. Let f € Q[t] \ Q and
assume that deg f < 4 and f has at least two different complex roots. We
consider the surface £; given by the equation

=2+ f(H).
Since f does not have a root of multiplicity four, £; is non-split. For a given
t € Q denote the curve y? = 23 + f(t)x by E;. Note that for fixed ¢ € Q, the
torsion part of the group F:(Q) is isomorphic to one of the following ([12,
p. 323]): Z/AZ if f(t) = 4; Z/2Z X /27 if — f(t) is a square; Z/2Z otherwise.
As an immediate consequence we find that if there is a rational base change
t = B(u) such that the surface £¢.5 has a section o = (x,y) with y # 0, then
o is non-torsion.
We show the following

THEOREM 2.1.

(1) If deg f < 3, then there exists a rational base change t = (s) such
that there is a non-torsion section on the surface wa.

(2) Ifdeg f =4 and there is tg € Q such that the curve Ey, has infinitely
many rational points, then there exists a rational base change t =
Y(r) such that there is a non-torsion section on Efoy.

Proof. 1t will be convenient to work with the surface 5} given by the
equation
g XY? = X2+ f(t),
which is birationally equivalent to £y via the mapping (z,y,t) = (X, XY, t)
with inverse (X,Y,t) = (z,y/z,t). Set F(X,Y,t) := XY? - X2 — f(¢).

Proof of (1). Let f € Q[t] and deg f < 3. Without loss of generality we
can assume that f(t) = at® + bt? + ct + d for some a,b,c,d € Z with a # 0
orb#0.If a =0b =0, then f has degree 1 and if we put t = (s* — d)/c,
the surface splits over Q(s). Set X = pT' + ¢,Y = rT + s,t = T. For these
X, Y, t we obtain

F(X,Y,t) = a0+ a1T + aoT? + a3T?,

where
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ap = —d — ¢* + qs°, a1 = —c — 2pq + 2qrs + ps?,
ag = —b—p? +qr? +2prs, az3=—a+pri.

Note that the system of equations a2 = a3 = 0 has exactly one solution given
by

2.1) b= %7 = aQ—}—briG— 2a7"33'
For these p,q the equation F(pT + q,7T + s,7) = 0 has a root T =
—p1(r,s)/a(r, s), where

©1(r,5) = at + 2abrt + *r® 4 dr'? — dar3(a®s + brt)s

+75(3a% — brt)s? + 2ar%s3,
©a(r,8) = r(2a% + 2abr* + er® — 2r3(3a® + brt)s 4 3ar%s?).
We have obtained a two-parameter solution of the equation defining the

surface £}. If we define ¢(s) := —p1(1,)/p2(1, ) and ¢t = ¢(s), then o =
(pe(s) + g, (pe(s) + q)(¢(s) + s)) is a section on the surface £y,,. Because

(pp(s) + q)(¢(s) + s) is a non-zero rational function, the section o is not of
order two, which proves that it is non-torsion.

Proof of (2). Since deg f = 4, we can assume without loss of generality
that f(t) = at* + bt? + ct + d for certain a,b,c,d € Z with a # 0. From the
assumption, there exists g € Q such that (xg,yo,%0) is a rational point on
Er and xg # 0. Then (0, y0/x0,to) is a rational point on 5}.

Set X = pT? +qT + 20, Y = 7T +yo/x0, t = T + to. For these X, Y, ¢
we get

F(X,Y,t) = (a1 T + aoT? 4 a3T> + a4T?) /23,
where
ay = x3(c+ 2btg + daty — 2ryo) + q(2x3 — 3),
as = zo(bxo + ¢xo + 6atdze — r2xd — 2qrye) + p(2x5 — yi),
az = zo(2pqro — qrizo + datozo — 2pryo),
as = (a+ p* — pr)aj.

If now ng — yg = 0, then the system of equations a; = ay = 0 is triangular
with respect to p, q. Because the curve E}, has infinitely many rational points,
for fixed a, b, ¢, d we can choose z¢, Yo such that 223 —y3 # 0, and the system
a1 = az = 0 has a solution satisfying p # 0 or ¢ # 0. Therefore, we obtain

~ @d(c+ 2bto + 4atd — 2ryo)

’ xo(bxo + ¢’z + 6at33:0 — 7’%% — 2qrYo)

23 — 3

p=-
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For these p, ¢, the equation F(pT? 4 qT + xo,7T + yo/x0, T + to) = 0 has a

triple root T' = 0 and another root

2pqro — qrizo + datozo — 2pryo
(a+p? —pr?)xg

(2.3) T=- = (r) — to.

If we now put ¢t = (), then the surface €., has a section

o= (pT2 +qT + xo, (rT + yo/ﬂzo)(pT2 +qT + x9)),

where p, g are given by (2.2) and T is given by (2.3). Since (rT+yo/zo)(pT?+
qT + xy) # 0, the section o is not of order two, which proves that it is
non-torsion. m

Here a natural and non-trivial problem is to construct polynomials f of
degree four for which there is a rational point with y # 0 on the surface &;.
It turns out that there exists a wide class of polynomials with this property.

Now we will show the following

THEOREM 2.2. If f € Q[t], deg f =4 and f(t) # f(—t), then there exists
a rational base change t = ¢(u) such that the surface Efop, has a non-torsion
section.

Proof. We can assume that f(t) = at*+bt?> 4 ct+d for some a,b, c,d € Z
with ac # 0. Let u be a variable, put z = au? and treat our surface as a
curve of degree 4 defined over Q(u), i.e. we consider the curve

Cy: y? = a®u*t* + abut? + acu’t + adu® + au® =: hy(t).
Note that the point at infinity on C} is rational. Now put ¢t = T,y = auT? +
pT + q. Then
(auT? + pT + q)? — hi(T) = ag + a1 T + aoT? + a3T3,

where

ap = —¢° + adu® + ®u®, a1 = —2pq + acu®,

ap = —p® — 2aqu + abu?, az = —2apu.
The system ay = az = 0 has a solution p = 0,¢ = bu/2. For these p, q, the
equation (auT? + pT + q)% — h1(T) = 0 has a root

—b% + 4ad + 4a3u?
T=-— 1 =: p(u).
ac

We have shown that if ac # 0 then the surface £y, has a section

(—b* — 8abc? + 8ab*d — 16a%d?)u + 8a>(b* — dad)u® — 16a5u°
o1= au2, 16ac2 ’
ac

which is clearly non-torsion. m

From the above theorem we obtain two interesting corollaries:
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COROLLARY 2.3. If f(t) = at* + bt> + ct +d € Z[t], a,c € {—1,1} and
b =0 (mod?2), then the diophantine equation y> = x> + f(t)x has infinitely
many solutions in integers.

COROLLARY 2.4. If f € Q[t], deg f = 4, f is not even and has at least
two complex roots, then the diophantine equation v = u*+ f(w) has infinitely
many rational parametric solutions.

Proof. Write S : v? = u* + f(w). The method described in [7, p. 77]
shows that S is birationally equivalent to the surface

E: y? =2 —4f(t)x.
The relevant mapping from S to £ is given by

( ) Y 2.%'3+y2t
U,0,W) =\ —, 5 —
s Uy 9 ) {2 ) )

with inverse
(‘Tv Y, t) = (—2(U2 - U)v —4U(U2 - 7)), ’UJ)

Applying now Theorem 2.2 we obtain the statement of our corollary. m

An interesting question is whether there exists a non-trivial rational point
on & if f(t) = at* + bt> + d for some a,b,d € Z. Note that if the equation
f(t) = 0 has a rational root ¢y, then on £ we have a rational curve (z,y,t) =
(u?,u3,1p) and we can use the second part of Theorem 2.1 to construct
other rational curves on £¢. Without any difficulty we can give other infinite
families of polynomials satisfying condition (2) of Theorem 2.1. For instance,
if f(t) = at* + bt? + u(v? — u), then on the curve Fy : y? = 23 + u(v? — u)x
there is a point (u,uv) which is not of finite order if uv # 0.

One can check by computer that if max{|al, |b|,|d|} < 100, then there
exists t € Q such that there are infinitely many rational points on the curve
E; : y? = 2% + f(t)z. This leads us to the following

CONJECTURE 2.5. Let a,b,d € Z and f(t) = at* + bt?> + d. Then there
exists to € Q such that there are infinitely many rational points on the
curve Ey,.

3. Rational points on &9 : y? = 2% + g(t). Let g € Q[t] be a monic
polynomial of degree 6 and assume g(t) # 5. For such g consider the surface

E9: =23 +g(t).
For fixed t € Q, denote the curve y? = 23 + g(¢) by E". Its torsion part is as
follows ([12, p. 323]). If g(t) = 1, then Tors E* 2 Z/67Z. If g(t) # 1 and g(t) is

a square in Q, then Tors E* = {0, (0,/g(t)), (0, —/g(t))}. If g(t) = —432
we have Tors E* = {0, (12, 36), (12, —36)}. If g(t) # 1 and g¢(t) is a cube in
Q, then Tors E* = {O, (—{/g(t),0)}. In the remaining cases, Tors E! = {O}.



Rational points on elliptic surfaces 173

As an immediate consequence we see that if there is a rational base change
t +— B(t) such that the surface £9°% has a section o = (z,y) with zy # 0,
then o is non-torsion.

We show the following

THEOREM 3.1. Let g € Q[t] be a monic polynomial of degree siz. If g
is not even, then there exists a rational base change t = x(u) such that the
surface £9°X has a non-torsion section.

Proof. We can assume that g(t) = t® + at* + bt® + ct? + dt + e for some
a,b,c,d,e € Z with b # 0 or d # 0. Let now Co denote the curve over Q(t)
obtained from &9 after substituting x = (u? — a)/3 — ¢2. Then

a? — 3c — 2au? + ut
3

3 2,2 4 6
—a° + 27e + 3a“u” — 3au® +u
—+ 57 = hg(t).

Note that the point at infinity on Cy is rational. Set t = T,y = uT? +pT +q.
Then

Co: y? =2t +bt3 — 2+ dt

(uT? + pT + q)* — hao(T) = ap + a1 T + a2T* + a3T>,

where
3 2 2,2 4 6
a’ —27e + 27q¢° — 3a”u” + 3au™ — u
ag = q , a1 =—d+2pq,
27
2 2 2 4
—3c+3 6qu — 2
a2:a c+3ap +3qu au —|—u’ as = —b + 2pu.
Solving the system as = a3 = 0 with respect to p, ¢ we obtain
(3.1) b B —3b% — 4au® + 12cu® + Sau* — 4ub
' P=ow 17 2443 '

Now, if p, g are given by (3.1), then the equation (uT?+pT +q)? —ha(T) =0
has a root T'= —x1(u)/x2(u) =: x(u), where

x1(u) = =276 — 720 (a® — 3c)u? — 48(a* — 3ab® — 6a%c + 9¢2)u?

+ 8(16a> — 9b* — 72ac + 216e)u’ — 96(a* — 3c)u® + 16u'?,

xo(u) = 72u? (363 + 4b(a® — 3c)u? — 8(ab — 3d)u® + 4bu’).
Our computations imply that the surface £9°X has a section o3 = ((u? — a
—372)/3,uT? 4 pT + q), where p, q are given by (3.1) and T = x(u). It is
easy to see that oo is non-torsion.

Note that the assumption “b # 0 or d # 0” is essential for the method
employed because in the opposite case the function o is identically zero. m

Here a natural question arises whether the assumption that for some
to € Q there are infinitely many rational points on the curve E enables one
to construct a rational curve on the surface £9. Unfortunately, we are not
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able to give such a construction for any even polynomial g. However, we can
prove

THEOREM 3.2. Let g € Q[t] be a monic and even polynomial of degree
siz. If there exists to € Q such that there are infinitely many rational points
on the curve EY, then the set of t € Q such that E' has positive rank is
infinite.

Proof. Because g is even we can assume that g(t) = t% + at* + ct? + e for
some a,c, e € Z with a # 0 or ¢ # 0. The case a = ¢ = 0 will be discussed in
the next section. For the proof it will be convenient to work with the surface
JFY given by the equation

FI:Y2428Y = X3+ at* + ct® + e
Set G(X,Y,t) :=Y? +2t3Y — (X3 + at* + ct? + ¢). Then &9 is birationally
equivalent to F9 via the mapping (z,y,t) = (X,Y + t3,t) with inverse
(X,Y,t) = (z,y — t3,t). By assumption there exists ty € Q such that there
are infinitely many rational points on E%. Thus, there is a rational point
(w0, Yo, to) on &9 such that moyy # 0. Then (xg,yo — t3,t0) is on F9. Set
X =pT +20,Y = qT +yo — t3,t = T + to. Then
G(X,Y,t) = arT + asT? + a3T? + asT*,
where
_ 2 3 5 2
a1 = —3pxy + 2qyo — 2cto — 4aty — 6ty + 6tg5yo,
as = ¢ + 6qt% —3px0 —c+ 6at% — 6t6l + 6t0y0,
az = —p3 + 6qt0 — 4at0 — Qt% + 2y0,
a4 = 2q — a.
Solving the system a; = a4 = 0 with respect to p, ¢ we obtain
2cty + daty + 6t — ayy — 6t3yo
323 ’
For these p, ¢, the equation G(pT + x¢, ¢T + yo — t%, T+t
T = 0 and another root
q* + 6qt3 — 3p*xo — ¢ + 6atd — 6t + 6toyo
—p3 + 6qto — dato — 2t3 + 2yo '
From the above computations we see that the point (pT" + zg, ¢T + yo — t%,
T + 1), for p, q given by (3.2) and T defined by (3.3), lies on F9. Hence the
point P = (pT + x0,qT + yo — t§ + (T + to)>, T + to) is on EY. Because the
set of rational points on E' is infinite, we can assume that the coordinates
of P are non-zero, g(T') # 0,—432 and g(T + to)/g(to) is not a sixth power.

If we now put t; = T + t(, then the curve E'! has infinitely many rational
points.

(32) p=

= 0 has a root

(3.3) T=-—
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Now suppose that we have already constructed t1,...,t, such that E%
has a positive rank for = 1,...,n. Then we can apply the above procedure
to the point (zn,Yn,tn), where (x,,y,) is a rational point on E' such that
T given by (3.3) satisfies: g(T + t,,) # 0,—432 and g(T + t,)/g(t;) is not a
sixth power for ¢ = 1,...,n. Why can we find such a T? If g has no root
of multiplicity 5, then there are only finitely many rational points on every
curve g(u) = g(t;)v® (of genus > 1) for i = 1,...,n. This is an immediate
consequence of the Faltings theorem [3]. The case when g has a root of
multiplicity 5 (it is then a rational root) can be easily excluded, as then
the surface £9 is rational over Q. Because there are infinitely many rational
points on the curve E'", we see that T given by (3.3) can be selected to
satisfy all the necessary conditions. Now using the previous reasoning we
can construct infinitely many ¢ € Q such that E? has a positive rank. =

REMARK 3.3. Note that if g(tg) = 0 for a rational number ¢y, then
the set of rational points on the curve E% : y? = 23 is parametrized by
x = u?,y = u>. Using the reasoning from Theorem 3.2 we can easily deduce

that in this case it is possible to construct a rational curve on £9.
From the above remark we obtain the following

COROLLARY 3.4. Let h € Q[t] with degh = 5,h(0) =1 and consider the
surface S : y?> = x3 + h(t). Then there is a rational base change t = y(u)
such that the surface 87 : y?> = x3 + h(y(u)) has a non-torsion section.

Proof. Note that S is birationally equivalent to £9, where g(t) = th(1/t).
The mapping from S to £9 is given by (x,y,t) — (x/t?,y/t3,1/t). Because
9(0) = 0, we can use Remark 3.3 to obtain the statement. m

ExAMPLE 3.5. Let g(t) = t% + > + 1 and consider the surface &9 :
y? = 23 4 g(t). For to = 1, on the curve E' : y> = 23 + 3 we have a
non-torsion point P = (1,2). Now we calculate the quantities p,q given
by (3.2) and T given by (3.3) from the proof of Theorem 3.2. We obtain
p=16/13,q = —1/13,T = —358/169 and next ¢; = T + to = —189/169.
Thus, on the curve

3y 47 - 2085456070589

t. .2
E': y =2 1312

we have a non-torsion point

p_ 3531 1137934
~\| 219774826809 )
Similarly to the case of the surface &; considered in Section 2, we can

ask whether for a given polynomial g of the form g(t) = t5 + at* + ct® + e
there is tg € Q such that the curve £ has infinitely many rational points.
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In the following section we will prove that the answer is positive for
polynomials of the form g(t) = t% 4+ e. We checked by computer that if
max{|al, |c|,|e|} < 10, then there exists ¢ € Q such that there are infinitely
many rational points on the curve E' : y? = x3 + % + at* + ct? + e. This
leads us to the following

CONJECTURE 3.6. Let a,c,e € Z and g(t) = t% + at* + ct? + e. Then
there exists tg € Q such that there are infinitely many rational points on the
curve E'o.

In view of Theorem 3.2 a natural question arises:

QUESTION 3.7. Let g(t) = t5 4+ at* + ct?> + e . What conditions guarantee
the existence of a rational base change t = k(u) such that the surface E9°%
has a non-torsion section?

4. Some results on the diophantine equation z% — 3 — g(2) = t.
Let g(z) = 2% 4+ az* 4+ b23 + 22 + dz + e € Z[2] and let t be a variable. In
this section we will deal with the diophantine equation

(4.1) 22—y —g(z) =t

We will show that if there are infinitely many rational points on the curve
C :v? = s* —12as% 4+ 48bs+6(a® —12c¢), then the equation (4.1) has infinitely
many solutions in Q[t]. For g(t) = t% + e, we will use this result to prove
the promised theorem on the existence of a rational base change t = x(s)
such that there exists a non-torsion section on £9°X1. We will also give some
results concerning the representability of integers in the form 22 —y3 — g(2).

We start with the following

THEOREM 4.1. If there are infinitely many rational points on the curve
C :v? = s* — 12as% + 48bs + 6(a® — 12¢), in particular if b # 0 and a = 1
(mod 2), then the equation (4.1) has infinitely many solutions in Q[t].

Proof. Set G(z,y,z) := 2% — y> — g(z) and observe that solving the
equation G(z,y, z) =t in polynomials with rational coefficients is equivalent
to constructing polynomials x, y, z € Q[t] such that deg G(x(t),y(t), z(t)) =1.
Now put @ = 373 + pT? + qT + r,y = 2T7?% + sT + u,z = T. Then
GB3T3+pT?+qT+r, 2T +5sT+u, T) = ag+a1T+asT* +azT? +a, T +asT°,
where

a=r>—ud—e, a1 = —d + 2qr — 3su?,

as = —c+ ¢ + 2pr — 3s*u — 6u?, a3 = —b+ 2pq + 61 — 53 — 12su,

ay = —a + p* + 6¢ — 65° — 12u, as = 6(p — 2s).
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Solving the system as = a4 = a5 = 0 with respect to p, ¢, we obtain

252 + 12 3b — 2as — s> + 12

(4.2) D= 2s. q:a—}—5+ ua i as — s° + su.
6 18

After substituting p, ¢, r into the equation a2 = 0 and solving it with respect

to u, we obtain

(4.3) Y 352 +2a £ /st — 12a1522 + 48bs + 6(a2 — 120)_

Thus, we can see that if there are infinitely many rational points on the curve
C: v? =" —12as® + 48bs + 6(a® — 12¢) =: U(s),

then all but finitely many points on C, by (4.2) and (4.3), give us a triple
of polynomials z,y, z € Q[T] such that G(x(T),y(T), 2(T)) = a1T + ap and
ap # 0. After substitution " = (¢ — ag)/a; we obtain a solution of the
equation 22 — y® — g(z) = t. Moreover, note that we always have infinitely
many rational points on C' when the polynomial U has multiple roots, which
is equivalent to the condition D := 25a% — 144a3b? — 2592b* — 180a’c +
5184ab*c — 1296ac* — 1728¢% = 0.

Since the curve C is rational over Q if D = 0, we can assume that
D # 0. To show that if b # 0 and a = 1 (mod2), then there are infinitely
many rational points on C, we transform C into an elliptic curve with the
Weierstrass equation. We can do this because the point at infinity on C is
rational. Using the method described in [7] one more time, we birationally
transform C' into the curve

E: Y?=X3-72(a® - 4¢)X + 64(a® + 360> — 36ac).
The mapping transforming C' into F is

(o) (AB=Y L, X (48-Y 2
B =\ 160 —2x """ 2 16a—2x) )
with inverse

(X,Y) = (2(=2a + s® +v),4(12b — 6as + s° + sv)).
Note that the rational point P = (8a,48b) lies on the curve E. Using the

chord and tangent method of adding points on an elliptic curve, we obtain
2P = (x1,y1) where

_ 25a" — 256ab”® + 120a”c + 144c

B 16b2 ’

(5a2 4 12¢)(25a* — 384ab® + 120a%c + 144¢?)
6403

Because a = 1 (mod2) the numerator of z; is odd, so 1 € Q \ Z. By

the Nagell-Lutz theorem ([12, p. 77]) torsion points on an elliptic curve

y? = 22 + px + q, p,q € Z, have integer coordinates, so the point 2P is

I

Y1 = 48b +
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not of finite order. This proves that the curve F has a positive rank and we
conclude that there are infinitely many rational points on the curve C. =

REMARK 4.2. After noticing that the point P = (8a,48b) lies on the
curve E (see the proof above), we suspected that this point is not of finite
order for ab # 0 and any ¢ € Z. As suggested by Professor Schinzel, this is
not true. Indeed, if a = 6p?, ¢ = p(4b — 15p3), then the curve E is elliptic if
A = —764411904b%(3b— 16p?) # 0. In this case the point P = (6p?, 48b) is of
order three on E. If we now put p =1,b =1, then a = 6,¢ = —11. The curve
E is then birationally equivalent to E’ : % = 2% — 360z + 2628. Applying
APECS [2] we found that the rank of E’ is zero. Despite this, there exists a
non-trivial solution of the equation 2 — y3 — g(2) =t for b = 1 and even for
b # 0; this is equivalent to the fact that the point P is not of order two. Why
is it so? If b # 0, then the order of P is at least 3 and the s-coordinate of the
preimage of 2P (different from the point at infinity O) equals (5a%+12c¢)/18b.
Because the expression a; from the proof of Theorem 4.1 depends linearly
on d and is not identically zero, there is at least one d € Z for which a; =0
and our method does not give a solution of the equation 2% — y® — g(2) = ¢.

It should be noted that there exists a polynomial g € Z[t] for which
our method does not give a solution of the equation z? — y3 — g(z) = t.
For example, if g(t) = % + 6t* + 6t3 + 92 — 150¢, then the curve C is
birationally equivalent to the elliptic curve E' : 42 4+ y = 23 — 7. We have
Tors E' = {0, (3,4),(3,—5)} and using APECS once again, we find that E’
has rank zero. In this case, our method leads to the identity

(373 4+ 1272 4 33T + 25)? — (272 + 61 + 10)® — g(T) = —375.
Now we record several interesting corollaries of Theorem 4.1.

COROLLARY 4.3. If there are infinitely many rational points on the curve
C :v? = s* — 12as® + 48bs + 6(a® — 12¢), then every polynomial h € QIt]

can be represented in infinitely many ways in the form x> —y3 — g(2), where

xr, Y,z S Q[t] .
In the following corollary we give the promised proof of the existence of
rational curves on the surface y? = 23 +t5 4 e.

COROLLARY 4.4. Let £9 : y? = a3+ g(t), where g(t) = t® +e. Then there
exists a rational base change t = x1(s) such that the surface £9°X1 : y? =

23 + g(x1(s)) has a non-torsion section.

Proof. Note that if a = b = ¢ = 0, then the curve C is rational and the
system ao = a3 = a4 = as = 0 from the proof of Theorem 4.1 has exactly
two solutions given by

p1=2s, q =252/3, r=5/18 wu =s?/6,

P =25, qo=5, Ty = 5°/6, uy = s%/3.
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For such p;, q;, i, u; (i = 1,2) we obtain the following identities:

83 2

92 2 2 3
(4.4) <3T3 4 2sT? + % T+ E) - <2T2 45T+ %) — (T% +dT +e)
648¢ + s5  648d + 6s° T

648 648
3\ 2 2\ 3
(4.5) <3T3 +25T2 +252T + %) - <2T2 +sT + %) — (TS +dT +e)

108¢ + s°
__eets ur
108
If now d = 0 and if we put 7 = x1(s) = —(648e + s°)/(65°) then the right
side of the identity (4.4) disappears and the surface £9°X1 : y? = 23 +g(x1(5))

has a section
~[419904€? — 648es° + 52
- ( 18510 ’
272097792 — 419904250 + 1944es'? + 518
- 72515 )

It is easy to see that the order of ¢ is not finite. m

Recall that a1 = —d + 2qr — 3su?, where ¢, 7, s, u are given by (4.2) and
(4.3) from the proof of Theorem 4.1.

COROLLARY 4.5. Let d € Z and suppose that on the curve C : v?> =
s* —12as%+48bs+6(a® —12c), there is a rational point which leads to a1 # 0.
Then for every integer n the diophantine equation x> — y® — g(z) = n has
a solution in rationals x,y, z such that there exists an integer L, depending
only on the polynomial g, with Lyx, Lyy, Lyz € Z. In particular, for g(z) = 2°
we have L, = 124416 = 29 - 3°.

Proof. In view of Theorem 4.1 the first part of the statement is obvious.
Now putting d = e = 0,5 = 6 and next 7' = (n + 72)/72 into the identity
(4.4) we obtain

<n3—72n2+15552n+373248>2 <n2—72n+5184>3 <n+72>6
— — =n

124416 2592 72
This proves the second part of the corollary. =
COROLLARY 4.6. Let g(z) = 2% +dz. If d = 1, then for every integer n
the diophantine equation x> —y> — g(2) = n has infinitely many solutions in
integers. If d = —T2t° 4+ 1 for some integer t, then for every integer n the
diophantine equation x*> — y3 — g(z) = n has a solution in integers.

Proof. Let n be a fixed integer. If d = —1, then for the proof we will
use the identity (4.5). Set e = 0, s = 6t and T' = —432t% — n. Then the
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polynomials
z(t) = 3n® 4+ 12t(—1 4 324t°)n? 4 36t%(1 — 288t° + 46656t')n
+ 363 (—1 + 432t° — 62208t'° 4 6718464t1°),
y(t) = 2n? + 6t(—1 + 288t%)n + 12t3(1 — 216t° + 31104¢'0),
2(t) = —n — 432t°
satisfy x(t)? — y(t)® — g(2(t)) = n.
If now d = —72t° — 1, then we put e = 0, s = 6t,7 = —n — 72t5 into the
identity (4.4). We find that 22 — y3 — g(z) = n for
x =30 + 12t(—1 + 54t°)n? + 24t*(1 — 72° + 1944t'%)n
+ 1263 (—1 + 144¢° — 51840 + 93312t1%),
y = 2n? + 6t(—1 4 48t°)n + 6t2(1 — 72t + 1728t17),

2=-n—"72t5. u

5. Rational points on some non-isotrivial elliptic surfaces. In
view of our considerations it is natural to ask whether it is possible to obtain
similar results for non-isotrivial elliptic surfaces of the form

£y =2+ A(t)z + B(t),
where A, B € Q[t] \ {0}. If t — «(t) is a rational base change, then let &,
denote the surface &, : y*> = 23 + A(a(t))x + B(a(t)). Moreover, recall that
if C : y? = 23+ m(t)x + n(t), where m,n € Z[t], is an elliptic curve over
Q(t), then points of finite order on C have coordinates in Z][t].
In this section we will prove a generalization of Theorems 2.1 and 2.2.

THEOREM 5.1. Let € : y* = a® + fa(t)x + ga(t), where fu,94 € Qt]. If
either deg f4 = 3 and deg gy < 4, or deg f4 = 4, deggs < 4, and if at least
one of the polynomials f4,gs is not even, then there exists a rational base
change t = 1(s) such that the surface £y, has a non-torsion section.

Proof. Set H(x,y,t) := y?— (23 + f4(t)x +ga(t)). First, consider the case
when deg f4 = 3 and deg gy < 4. We can assume that f4(t) = at® + bt + c,
ga(t) = dt* + et® + ft> + gt + h for some a,b,...,h € Z with a # 0 and
ga(t) # 0. Set © = pT + q,y = rT? + sT + u,t = T. For these x,y,t we
obtain

H(z,y,t) = ag+ a1 T + axT? + a3T> + a,T*,
where

ap = —h — cq — ¢ + u?, a1 = —g — cp — bq — 3pg* + 2su,

ag = —f —bp —3pPq+ s> +2ru, az=—e—p* —aq+2rs,

ay = —d —ap + 2.
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The system as = a3 = a4 = 0 has a solution

—d+1? —d® + ade + 3d%r? — 3dr* +r5 — 2a’rs
p=—", q=- I )
a a

(5.1)
_—f=bp=3pq+ 5
2r '
If p, q, u are given by (5.1), then the equation H (pT +q,rT?+sT +u,T) =0
has a solution

u =

h+cq+ ¢ —u?
5.2 T=— = .
(5.2) 0Tt ba 3P —2su P(r, )

In this case we obtain a two-parameter solution of the equation defining
the surface £. For convenience let r = 1 and v (s) := (1, s). We see that
if p,q,u are given by (5.1) and T = t = ¢(s), then the surface &y has a
section o = (pT + q,T? + sT + u). An affine change of variables transforms
&y into & : y? = 2% + fi(s)x + g4(s), where f},g; € Z[s]. Then o goes
to a section ¢’ on &, It turns out that the z-coordinate of the section 20’
belongs to Q(s) \ Q[s]. By the remark at the beginning of this section, o’ is
not of finite order. We omit the lengthy computations of this proof, which
are troublesome to perform without computer.

Let us now consider the case when deg f4 = 4, deg g4 < 4 and at least one
of fi,g4 is not even. We can assume that fi(t) = at* + bt? + ct + d, g4(t) =
et + ft3 + gt®> + ht + i, where a,b,...,i € Z,a # 0 and at least one of the
numbers ¢, f, h is not zero. Let now C3 denote the curve over Q(u) obtained
from & after substitution z = (u? — ¢)/a. Hence,

Cy - y2:u2t4_|_ft3+—be+ag—bu2t2+—ce+ah—cu2t

a
N —a’de — €3 + a’i + (a?d + 3e?)u? — 3eu* + u®
3
a

=:V(t).

Now putting y = uT? + pT + q,t = T we obtain
(uT? +pT +q)> = V(T) = ap + a1 T + aoT? 4 a3T?,

where

—a?de — €3 + a3i + (a®d + 3e?)u? — 3eu* + u
ag = )

a3
—ce + ah — 2apq + cu®
a; = ,
! a
—be + ag — ap® — 2aqu + bu?
az = y a3z = f - 2pu.

a
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The system as = a3 = 0 has a solution

f —af? — 4beu? + dagu® + 4bu*
(5.3) p=-=—, q= 3 .
2u Sau
For these p,q the equation (uT? + pT + q)?> — V(T) = 0 has exactly one

solution

—a?de — €3 + a’i + (a®d + 3e?)u? — 3eu* + ub ()
=:Y1(u).
a?(—ce + ah — 2apq + cu?) !
Now, putting ¢t = 91 (u) we obtain the section o1 = ((u?—e)/a,uT?+pT +q)
on the surface &y, , and similarly to the previous case, we show that the order
of o1 is not finite. m

REMARK 5.2. Let now K be a real field for which [K : Q] < co. Consider
the elliptic surface &£ : y? = 23 4+ O1(t)z + Ca(t), where C1,Cy € QJt] and
max{deg C1,deg Cy} = 3, defined over K. Let S := {t € K : rank(&) > 0}.
R. Munshi in [8] has shown that there exists a constant M, depending only
on [K : Q], such that if |S| > M, then the set S is dense in R (Theorem 1.9
in [8]). The first part of Theorem 5.1 shows that in fact the surface £ is
unirational. Without any additional assumptions this proves that the set S
is dense in R.

(54) T =

With a similar method we can prove the following
THEOREM 5.3.

(1) Let € : y? = z(z® + folt)x + fa(t)), where fo, f1 € Q[t]. If either
deg fo < 2,deg f4 < 3, or deg fo < 2,deg f4 = 4, and if at least one
of the polynomials fa, f4 is not even, then there exists a rational base
change t = 1(u) such that the surface £y has a non-torsion section.

(2) If deg fo = 2,deg f4 = 4 and there is tg € Q such that the curve
Eo Y% = 2(2®+ fo(to)x+ fa(to)) has infinitely many rational points,
then there exists a rational base change t = 1(u) such that £y has a
non-torsion section.

(3) Let € : y? = x(2% + fa(t)x + ga(t)), where f1, 94 € Q[t] and deg fy =
deg gy = 4. If f4 or g4 is not even, then there exists a rational base
change t = v(u) such that £y has a non-torsion section.

Proof. The proofs of (1) and (2) do not bring any difficulties, and there-
fore they will be omitted (the reasoning is exactly the same as in the proof
of Theorem 2.1).

We now outline the proof of (3). Let a,b be the leading coefficients of
f1, 94, respectively. Set = = b/(u? — a) and treat £ as a curve defined over
Q(u); denote the latter curve by C4. Then the point at infinity, say P, on
Cj is rational. Since f4 or g4 is not even, with the use of the point P we can
construct a non-torsion section on £.
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The previously considered elliptic surfaces (excluding the one from The-
orem 5.3(3)) are rational over C. This means that they are rational over a
certain finite extension of Q. Can one say something more about rational
points on general elliptic surfaces? With reference to this question, in 1992
B. Mazur proposed an interesting conjecture concerning rational points on £.
For t € Q let & be the fibre of the mapping 7 : £ — P over t.

CONJECTURE 5.4 (Conjecture 4 from [6]). The family {& }eq of elliptic
curves satisfies one of the following conditions:

(1) for all but finitely many t € Q the curve & has Mordell-Weil rank
zero,

(2) there exists a set R C Q such that R is dense in R and for each
t € R, the Mordell-Weil rank of £ is positive.

As pointed out in [6], the only known example of an elliptic surface whose
fibres satisfy condition (1) of the above conjecture is the split elliptic surface
£ ~ E x C, where E is an elliptic curve of rank zero. It seems plausible
that if the family {& };cq comes from a non-split elliptic surface, then (1)
is not valid. It should be mentioned that recently N. Elkies gave heuristic
arguments which suggest that certain isotrivial families of elliptic curves over
Q violate Mazur’s conjectured rule.

Examples of families of elliptic surfaces satisfying condition (2) of the
above conjecture can be found in [4], [10], [5], 8]

We believe that the following conjecture may be easier to prove:

CONJECTURE 5.5. Let £ be a mon-split elliptic surface. Then there is
t € Q such that the curve & has infinitely many rational points.

As a corollary, we obtain an interesting

THEOREM 5.6. Assume that Conjecture 5.5 is true. Then for the family
{&}eq of elliptic curves, the set of rational numbers t such that the rank of
& is positive, is infinite.

Proof. Assuming Conjecture 5.5 to be true, we find ¢; € Q such that
there are infinitely many rational points on the curve &,. Suppose that we
have already constructed to, . .., t, such that the curve &, fori =1,...,n has
infiniteley many rational points. Further suppose that there is a polynomial
h € Q[t] such that for i = 1,...,n the equation h(t) = ¢; has no solutions in
rationals and the system of equations

A(t)Yy = A(h(Th)), B(t)Y? = B(h(T1)),
(5.5)
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also has no such solutions. Then there exists t € Q such that the curve
Enwy + 2 = @ 4+ A(h(t))z + B(h(t)) has a positive rank. Defining now
tn+1 = h(t) and repeating the reasoning, we obtain the statement of the
theorem.

We now show that there exists h € Qt] satisfying the above condi-
tions. Let h; € Q[t] be such that the equation hy(t) = t; for i = 1,...,n
has no solutions. Clearly it is enough to show the existence of our poly-
nomial for the first row in the system (5.5). Therefore, consider the sys-
tem A(t1)Y{ = A(hi(Th)), B(t1)Y? = B(hi(Ty)). If A(t1)B(t1) = 0, then
this system has finitely many rational solutions, and we can find hy € Q[t]
such that h = hj o hy is as desired. Now, assume that A(t1)B(t1) # 0.
If (A(hi(T1))/A(t1))? # (B(h1(T1))/B(t1))?, then our system has at most
3deg(Aohy)+2deg(Boh) solutions in Q and so there exists ha € Q[t] such
that h = hy o hy does the job. If (A(h1(T1))/A(t1))? = (B(h1(T1))/B(t1))?,
the problem reduces to the examination of the curve C : Y2 = H(T}), where
H is a polynomial such that A(hy(T1))/A(t1) = H(T1)?, B(h1(T1))/B(t1) =
H(Ty)3. If H were the square of another polynomial, the family {&};cq
would be related to a split elliptic surface £, which contradicts the assump-
tion. Therefore, H is not a square. Now, there exists a polynomial he such
that the genus of the curve C’ : Y2 = H(hg(T1)) is > 2. From the Faltings
theorem there are only finitely many rational points on C’; so after a poly-
nomial change of variable, we obtain a polynomial satisfying all the required
conditions. Applying this reasoning to the second, ..., nth equation in (5.5)
we obtain the statement of the theorem. m

In view of the above theorem, a natural question arises:

QUESTION 5.7. Is condition (2) of Conjecture 5.4 equivalent to Conjec-
ture 5.5¢
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