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Rational points on 
ertain ellipti
 surfa
esby
Maciej Ulas (Kraków)Dedi
ated to Professor A. S
hinzel on the o

asion of his 70th birthday

1. Introdu
tion. Let E be an ellipti
 surfa
e given by the equation
E : y2z = x3 +A(t)xz2 +B(t)z3,where A,B ∈ Q[t]. The dis
riminant for E is de�ned by∆(t) = −16(4A(t)3+

27B(t)2), while the j-invariant is j(t) = −1728(4A(t))3/∆(t). We 
all thesurfa
e E isotrivial if its j-invariant is 
onstant. We say that E splits if thereexists an ellipti
 
urve E su
h that E ≃ E × P over C. In what follows, byan ellipti
 surfa
e we mean a non-split one. There is a natural proje
tion on
E given by π : E ∋ ([x : y : z], t) 7→ t ∈ P. The mapping σ : P → E satisfying
π ◦σ = idP will be 
alled a se
tion on E . Throughout the paper, by a se
tionwe mean one de�ned over Q. Note that we always have the zero se
tion on
E given by σ0 = ([0 : 1 : 0], t). We 
an look at the surfa
e E as an ellipti

urve de�ned over Q(t). Hen
e, we have the Mordell�Weil type theorem for
E , whi
h says that the set of se
tions (or equivalently points on E de�nedover Q(t)) forms a �nitely generated abelian group.Sin
e for all but �nitely many t ∈ Q the �bre Et of the mapping π isan ellipti
 
urve, a natural question arises: what 
an we say about the setof t ∈ Q su
h that the ellipti
 
urve Et has a positive rank? If E has anon-torsion se
tion, an answer to this question follows trivially from Silver-man's spe
ialization theorem ([12, p. 368℄). It says that for all but �nitelymany t ∈ Q the 
urve Et has a positive rank. Another interesting question
on
erns the existen
e of rational 
urves on E . Note that ea
h su
h 
urve,say (x(u), y(u), ψ(u)), yields a rational base 
hange t = ψ(u) su
h that σ =
(x(u), y(u)) is a se
tion on the surfa
e Eψ : y2 = x3 + A(ψ(u))x+ B(ψ(u)).We will see that in many 
ases σ is a non-torsion se
tion. A problem of this2000 Mathemati
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168 M. Ulaskind was 
onsidered in Whitehead's paper [13℄. He proved that there existsa rational 
urve on the surfa
e given by the equation z2 = f(x, y), where
f ∈ Q[x, y] and deg f = 3. It is easy to see that su
h a surfa
e is birationallyequivalent to E for some A,B ∈ Q[t] with degA ≤ 2, degB ≤ 3.Also note that the existen
e of a rational base 
hange t = ψ(u) su
hthat Eψ has a non-torsion se
tion, and Silverman's spe
ialization theorem,imply that for all but �nitely many u ∈ Q, ea
h �bre Eψ(u) has a dense set ofrational points. This also proves that the set of rational points on E is densein the Zariski topology.In Se
tion 2 we 
onsider a surfa
e of the form Ef : y2 = x3 + f(t)x,where f ∈ Q[t] and deg f ≤ 4. If deg f ≤ 3, then we show that there existsa rational base 
hange t = ϕ(s) su
h that the surfa
e Ef◦ϕ has a non-torsionse
tion. A similar theorem is proved for deg f = 4 under the assumption thatthere exists t0 ∈ Q su
h that there are in�nitely many rational points on the
urve Et0 : y2 = x3 + f(t0)x. In parti
ular, we prove that if f of degree fouris not even, then there is a non-trivial rational point on the surfa
e Ef .In Se
tion 3 we 
onsider a surfa
e of the form Eg : y2 = x3 + g(t), where
g ∈ Q[t] is a moni
 polynomial of degree six. We prove that if g is not even,then there is a rational base 
hange t = χ(u) su
h that Eg◦χ has a non-torsionse
tion. Moreover, if g is even, and there exists t0 ∈ Q su
h that the 
urve
Et0 : y2 = x3 + g(t0) 
ontains in�nitely many rational points, then the setof t0 ∈ Q su
h that Et0 has a positive rank is in�nite.In Se
tion 4 we present some results 
on
erning diophantine equations ofthe form

x2 − y3 − g(z) = t,where g(z) = z6 + az4 + bz3 + cz2 + dz + e ∈ Z[z] and t is a variable. Wewill deal with solutions of this equation in the ring of polynomials Q[t]. Inparti
ular, we prove that if a ≡ 1 (mod2) and b 6= 0, then the above equationhas in�nitely many solutions in Q[t].In Se
tion 5 we give some results about rational points on 
ertain non-isotrivial ellipti
 surfa
es.Remark 1.1. Most of the ellipti
 surfa
es 
onsidered in this paper aregeometri
ally rational, in other words, rational over C. The referee sug-gested approa
hing our issues with the use of the theory of Mordell�Weillatti
es for rational ellipti
 surfa
es [11℄, [9℄. This theory shows that r(E) =
rank(E(C(t))) ≤ 8. Moreover, for generators (x1, y1), . . . , (xn, yn) of theMordell�Weil group of E(C(t)) we know that xi ∈ K[t] and deg xi(t) ≤ 2,where K is a 
ertain �nite extension of Q. So, we 
an try to �nd su
hgenerators if r(E) > 0 and next 
onsider the Galois invariant part of thegroup E(K(t)). Unfortunately, in a general situation (for instan
e, the one
onsidered in this work) it is pra
ti
ally unfeasible, be
ause it requires the
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es 169examination of extensions of Q by roots of polynomial equations of degree
> 3 with variable 
oe�
ients. To the best of the author's knowledge the onlywork where this method was used and all 
al
ulations are 
ondu
ted is thework by A. Bremner [1℄. He 
onsiders the ellipti
 surfa
e y2 = x3 + f(t),where f ∈ Q[t] and deg f ≤ 3. Already in this 
ase, when we have onlythree variable 
oe�
ients, the solutions get more and more 
omplex and itis di�
ult to devise how the method 
an be generalized.2. Rational points on Ef : y2 = x3 + f(t)x. Let f ∈ Q[t] \ Q andassume that deg f ≤ 4 and f has at least two di�erent 
omplex roots. We
onsider the surfa
e Ef given by the equation

Ef : y2 = x3 + f(t)x.Sin
e f does not have a root of multipli
ity four, Ef is non-split. For a given
t ∈ Q denote the 
urve y2 = x3 + f(t)x by Et. Note that for �xed t ∈ Q, thetorsion part of the group Et(Q) is isomorphi
 to one of the following ([12,p. 323℄): Z/4Z if f(t) = 4; Z/2Z×Z/2Z if −f(t) is a square; Z/2Z otherwise.As an immediate 
onsequen
e we �nd that if there is a rational base 
hange
t = β(u) su
h that the surfa
e Ef◦β has a se
tion σ = (x, y) with y 6= 0, then
σ is non-torsion.We show the followingTheorem 2.1.(1) If deg f ≤ 3, then there exists a rational base 
hange t = ϕ(s) su
hthat there is a non-torsion se
tion on the surfa
e Ef◦ϕ.(2) If deg f = 4 and there is t0 ∈ Q su
h that the 
urve Et0 has in�nitelymany rational points, then there exists a rational base 
hange t =

ψ(r) su
h that there is a non-torsion se
tion on Ef◦ψ.Proof. It will be 
onvenient to work with the surfa
e E ′

f given by theequation
E ′

f : XY 2 = X2 + f(t),whi
h is birationally equivalent to Ef via the mapping (x, y, t) = (X,XY, t)with inverse (X,Y, t) = (x, y/x, t). Set F (X,Y, t) := XY 2 −X2 − f(t).Proof of (1). Let f ∈ Q[t] and deg f ≤ 3. Without loss of generality we
an assume that f(t) = at3 + bt2 + ct+ d for some a, b, c, d ∈ Z with a 6= 0or b 6= 0. If a = b = 0, then f has degree 1 and if we put t = (s4 − d)/c,the surfa
e splits over Q(s). Set X = pT + q, Y = rT + s, t = T . For these
X,Y, t we obtain

F (X,Y, t) = a0 + a1T + a2T
2 + a3T

3,where
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a0 = −d− q2 + qs2, a1 = −c− 2pq + 2qrs+ ps2,

a2 = −b− p2 + qr2 + 2prs, a3 = −a+ pr2.Note that the system of equations a2 = a3 = 0 has exa
tly one solution givenby(2.1) p =
a

r2
, q =

a2 + br4 − 2ar3s

r6
.For these p, q the equation F (pT + q, rT + s, T ) = 0 has a root T =

−ϕ1(r, s)/ϕ2(r, s), where
ϕ1(r, s) = a4 + 2a2br4 + b2r8 + dr12 − 4ar3(a2s+ br4)s

+ r6(3a2 − br4)s2 + 2ar9s3,

ϕ2(r, s) = r4(2a3 + 2abr4 + cr8 − 2r3(3a2 + br4)s+ 3ar6s2).We have obtained a two-parameter solution of the equation de�ning thesurfa
e E ′

f . If we de�ne ϕ(s) := −ϕ1(1, s)/ϕ2(1, s) and t = ϕ(s), then σ =
(pϕ(s) + q, (pϕ(s) + q)(ϕ(s) + s)) is a se
tion on the surfa
e Ef◦ϕ. Be
ause
(pϕ(s) + q)(ϕ(s) + s) is a non-zero rational fun
tion, the se
tion σ is not oforder two, whi
h proves that it is non-torsion.Proof of (2). Sin
e deg f = 4, we 
an assume without loss of generalitythat f(t) = at4 + bt2 + ct+ d for 
ertain a, b, c, d ∈ Z with a 6= 0. From theassumption, there exists t0 ∈ Q su
h that (x0, y0, t0) is a rational point on
Ef and x0 6= 0. Then (x0, y0/x0, t0) is a rational point on E ′

f .Set X = pT 2 + qT + x0, Y = rT + y0/x0, t = T + t0. For these X, Y , twe get
F (X,Y, t) = (a1T + a2T

2 + a3T
3 + a4T

4)/x2
0,where

a1 = x2
0(c+ 2bt0 + 4at30 − 2ry0) + q(2x3

0 − y2
0),

a2 = x0(bx0 + q2x0 + 6at20x0 − r2x2
0 − 2qry0) + p(2x3

0 − y2
0),

a3 = x0(2pqx0 − qr2x0 + 4at0x0 − 2pry0),

a4 = (a+ p2 − pr2)x2
0.If now 2x3

0 − y2
0 6= 0, then the system of equations a1 = a2 = 0 is triangularwith respe
t to p, q. Be
ause the 
urve Et0 has in�nitely many rational points,for �xed a, b, c, d we 
an 
hoose x0, y0 su
h that 2x3

0−y
2
0 6= 0, and the system

a1 = a2 = 0 has a solution satisfying p 6= 0 or q 6= 0. Therefore, we obtain
(2.2) q = −

x2
0(c+ 2bt0 + 4at30 − 2ry0)

2x3
0 − y2

0

,

p = −
x0(bx0 + q2x0 + 6at20x0 − r2x2

0 − 2qry0)

2x3
0 − y2

0

.
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 surfa
es 171For these p, q, the equation F (pT 2 + qT + x0, rT + y0/x0, T + t0) = 0 has atriple root T = 0 and another root(2.3) T = −
2pqx0 − qr2x0 + 4at0x0 − 2pry0

(a+ p2 − pr2)x0
=: ψ(r) − t0.If we now put t = ψ(r), then the surfa
e Ef◦ψ has a se
tion

σ = (pT 2 + qT + x0, (rT + y0/x0)(pT
2 + qT + x0)),where p, q are given by (2.2) and T is given by (2.3). Sin
e (rT+y0/x0)(pT

2+
qT + x0) 6= 0, the se
tion σ is not of order two, whi
h proves that it isnon-torsion.Here a natural and non-trivial problem is to 
onstru
t polynomials f ofdegree four for whi
h there is a rational point with y 6= 0 on the surfa
e Ef .It turns out that there exists a wide 
lass of polynomials with this property.Now we will show the followingTheorem 2.2. If f ∈ Q[t], deg f = 4 and f(t) 6= f(−t), then there existsa rational base 
hange t = ϕ(u) su
h that the surfa
e Ef◦ϕ has a non-torsionse
tion.Proof. We 
an assume that f(t) = at4 +bt2 +ct+d for some a, b, c, d ∈ Zwith ac 6= 0. Let u be a variable, put x = au2 and treat our surfa
e as a
urve of degree 4 de�ned over Q(u), i.e. we 
onsider the 
urve

C1 : y2 = a2u2t4 + abu2t2 + acu2t+ adu2 + a3u6 =: h1(t).Note that the point at in�nity on C1 is rational. Now put t = T, y = auT 2 +
pT + q. Then

(auT 2 + pT + q)2 − h1(T ) = a0 + a1T + a2T
2 + a3T

3,where
a0 = −q2 + adu2 + a3u6, a1 = −2pq + acu2,

a2 = −p2 − 2aqu+ abu2, a3 = −2apu.The system a2 = a3 = 0 has a solution p = 0, q = bu/2. For these p, q, theequation (auT 2 + pT + q)2 − h1(T ) = 0 has a root
T = −

−b2 + 4ad+ 4a3u4

4ac
=: ϕ(u).We have shown that if ac 6= 0 then the surfa
e Ef◦ϕ has a se
tion

σ1 =

(

au2,
(−b4 − 8abc2 + 8ab2d− 16a2d2)u+ 8a3(b2 − 4ad)u5 − 16a6u9

16ac2

)

,whi
h is 
learly non-torsion.From the above theorem we obtain two interesting 
orollaries:



172 M. UlasCorollary 2.3. If f(t) = at4 + bt2 + ct + d ∈ Z[t], a, c ∈ {−1, 1} and
b ≡ 0 (mod2), then the diophantine equation y2 = x3 + f(t)x has in�nitelymany solutions in integers.Corollary 2.4. If f ∈ Q[t], deg f = 4, f is not even and has at leasttwo 
omplex roots , then the diophantine equation v2 = u4+f(w) has in�nitelymany rational parametri
 solutions.Proof. Write S : v2 = u4 + f(w). The method des
ribed in [7, p. 77℄shows that S is birationally equivalent to the surfa
e

E : y2 = x3 − 4f(t)x.The relevant mapping from S to E is given by
(u, v, w) =

(

y

2x
,
2x3 + y2

4x2
, t

)

,with inverse
(x, y, t) = (−2(u2 − v),−4u(u2 − v), w).Applying now Theorem 2.2 we obtain the statement of our 
orollary.An interesting question is whether there exists a non-trivial rational pointon Ef if f(t) = at4 + bt2 + d for some a, b, d ∈ Z. Note that if the equation

f(t) = 0 has a rational root t0, then on Ef we have a rational 
urve (x, y, t) =
(u2, u3, t0) and we 
an use the se
ond part of Theorem 2.1 to 
onstru
tother rational 
urves on Ef . Without any di�
ulty we 
an give other in�nitefamilies of polynomials satisfying 
ondition (2) of Theorem 2.1. For instan
e,if f(t) = at4 + bt2 + u(v2 − u), then on the 
urve E0 : y2 = x3 + u(v2 − u)xthere is a point (u, uv) whi
h is not of �nite order if uv 6= 0.One 
an 
he
k by 
omputer that if max{|a|, |b|, |d|} ≤ 100, then thereexists t ∈ Q su
h that there are in�nitely many rational points on the 
urve
Et : y2 = x3 + f(t)x. This leads us to the followingConje
ture 2.5. Let a, b, d ∈ Z and f(t) = at4 + bt2 + d. Then thereexists t0 ∈ Q su
h that there are in�nitely many rational points on the
urve Et0 .3. Rational points on Eg : y2 = x3 + g(t). Let g ∈ Q[t] be a moni
polynomial of degree 6 and assume g(t) 6= t6. For su
h g 
onsider the surfa
e

Eg : y2 = x3 + g(t).For �xed t ∈ Q, denote the 
urve y2 = x3 + g(t) by Et. Its torsion part is asfollows ([12, p. 323℄). If g(t) = 1, then TorsEt ∼= Z/6Z. If g(t) 6= 1 and g(t) isa square in Q, then TorsEt = {O, (0,
√

g(t)), (0,−
√

g(t))}. If g(t) = −432we have TorsEt = {O, (12, 36), (12,−36)}. If g(t) 6= 1 and g(t) is a 
ube in
Q, then TorsEt = {O, (− 3

√

g(t), 0)}. In the remaining 
ases, TorsEt = {O}.



Rational points on ellipti
 surfa
es 173As an immediate 
onsequen
e we see that if there is a rational base 
hange
t 7→ β(t) su
h that the surfa
e Eg◦β has a se
tion σ = (x, y) with xy 6= 0,then σ is non-torsion.We show the followingTheorem 3.1. Let g ∈ Q[t] be a moni
 polynomial of degree six. If gis not even, then there exists a rational base 
hange t = χ(u) su
h that thesurfa
e Eg◦χ has a non-torsion se
tion.Proof. We 
an assume that g(t) = t6 + at4 + bt3 + ct2 + dt+ e for some
a, b, c, d, e ∈ Z with b 6= 0 or d 6= 0. Let now C2 denote the 
urve over Q(t)obtained from Eg after substituting x = (u2 − a)/3 − t2. Then

C2 : y2 = u2t4 + bt3 −
a2 − 3c− 2au2 + u4

3
t2 + dt

+
−a3 + 27e+ 3a2u2 − 3au4 + u6

27
=: h2(t).Note that the point at in�nity on C2 is rational. Set t = T, y = uT 2 +pT +q.Then

(uT 2 + pT + q)2 − h2(T ) = a0 + a1T + a2T
2 + a3T

3,where
a0 =

a3 − 27e+ 27q2 − 3a2u2 + 3au4 − u6

27
, a1 = −d+ 2pq,

a2 =
a2 − 3c+ 3p2 + 6qu− 2au2 + u4

3
, a3 = −b+ 2pu.Solving the system a2 = a3 = 0 with respe
t to p, q we obtain(3.1) p =

b

2u
, q =

−3b2 − 4a2u2 + 12cu2 + 8au4 − 4u6

24u3
.Now, if p, q are given by (3.1), then the equation (uT 2+pT +q)2−h2(T ) = 0has a root T = −χ1(u)/χ2(u) =: χ(u), where

χ1(u) = −27b4 − 72b2(a2 − 3c)u2 − 48(a4 − 3ab2 − 6a2c+ 9c2)u4

+ 8(16a3 − 9b2 − 72ac+ 216e)u6 − 96(a2 − 3c)u8 + 16u12,

χ2(u) = 72u2(3b3 + 4b(a2 − 3c)u2 − 8(ab− 3d)u4 + 4bu6).Our 
omputations imply that the surfa
e Eg◦χ has a se
tion σ2 = ((u2 − a
− 3T 2)/3, uT 2 + pT + q), where p, q are given by (3.1) and T = χ(u). It iseasy to see that σ2 is non-torsion.Note that the assumption �b 6= 0 or d 6= 0� is essential for the methodemployed be
ause in the opposite 
ase the fun
tion χ2 is identi
ally zero.Here a natural question arises whether the assumption that for some
t0 ∈ Q there are in�nitely many rational points on the 
urve Et0 enables oneto 
onstru
t a rational 
urve on the surfa
e Eg. Unfortunately, we are not



174 M. Ulasable to give su
h a 
onstru
tion for any even polynomial g. However, we 
anproveTheorem 3.2. Let g ∈ Q[t] be a moni
 and even polynomial of degreesix. If there exists t0 ∈ Q su
h that there are in�nitely many rational pointson the 
urve Et0 , then the set of t ∈ Q su
h that Et has positive rank isin�nite.Proof. Be
ause g is even we 
an assume that g(t) = t6 + at4 + ct2 + e forsome a, c, e ∈ Z with a 6= 0 or c 6= 0. The 
ase a = c = 0 will be dis
ussed inthe next se
tion. For the proof it will be 
onvenient to work with the surfa
e
Fg given by the equation

Fg : Y 2 + 2t3Y = X3 + at4 + ct2 + e.Set G(X,Y, t) := Y 2 + 2t3Y − (X3 + at4 + ct2 + e). Then Eg is birationallyequivalent to Fg via the mapping (x, y, t) = (X,Y + t3, t) with inverse
(X,Y, t) = (x, y − t3, t). By assumption there exists t0 ∈ Q su
h that thereare in�nitely many rational points on Et0 . Thus, there is a rational point
(x0, y0, t0) on Eg su
h that x0y0 6= 0. Then (x0, y0 − t30, t0) is on Fg. Set
X = pT + x0, Y = qT + y0 − t30, t = T + t0. Then

G(X,Y, t) = a1T + a2T
2 + a3T

3 + a4T
4,where

a1 = −3px2
0 + 2qy0 − 2ct0 − 4at30 − 6t50 + 6t20y0,

a2 = q2 + 6qt20 − 3p2x0 − c+ 6at20 − 6t40 + 6t0y0,

a3 = −p3 + 6qt0 − 4at0 − 2t30 + 2y0,

a4 = 2q − a.Solving the system a1 = a4 = 0 with respe
t to p, q we obtain(3.2) p = −
2ct0 + 4at30 + 6t50 − ay0 − 6t20y0

3x2
0

, q =
a

2
.For these p, q, the equation G(pT + x0, qT + y0 − t30, T + t0) = 0 has a root

T = 0 and another root(3.3) T = −
q2 + 6qt20 − 3p2x0 − c+ 6at20 − 6t40 + 6t0y0

−p3 + 6qt0 − 4at0 − 2t30 + 2y0
.From the above 
omputations we see that the point (pT + x0, qT + y0 − t30,

T + t0), for p, q given by (3.2) and T de�ned by (3.3), lies on Fg. Hen
e thepoint P = (pT + x0, qT + y0 − t30 + (T + t0)
3, T + t0) is on Eg. Be
ause theset of rational points on Et0 is in�nite, we 
an assume that the 
oordinatesof P are non-zero, g(T ) 6= 0,−432 and g(T + t0)/g(t0) is not a sixth power.If we now put t1 = T + t0, then the 
urve Et1 has in�nitely many rationalpoints.
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 surfa
es 175Now suppose that we have already 
onstru
ted t1, . . . , tn su
h that Etihas a positive rank for i = 1, . . . , n. Then we 
an apply the above pro
edureto the point (xn, yn, tn), where (xn, yn) is a rational point on Etn su
h that
T given by (3.3) satis�es: g(T + tn) 6= 0,−432 and g(T + tn)/g(ti) is not asixth power for i = 1, . . . , n. Why 
an we �nd su
h a T? If g has no rootof multipli
ity 5, then there are only �nitely many rational points on every
urve g(u) = g(ti)v

6 (of genus > 1) for i = 1, . . . , n. This is an immediate
onsequen
e of the Faltings theorem [3℄. The 
ase when g has a root ofmultipli
ity 5 (it is then a rational root) 
an be easily ex
luded, as thenthe surfa
e Eg is rational over Q. Be
ause there are in�nitely many rationalpoints on the 
urve Etn , we see that T given by (3.3) 
an be sele
ted tosatisfy all the ne
essary 
onditions. Now using the previous reasoning we
an 
onstru
t in�nitely many t ∈ Q su
h that Et has a positive rank.Remark 3.3. Note that if g(t0) = 0 for a rational number t0, thenthe set of rational points on the 
urve Et0 : y2 = x3 is parametrized by
x = u2, y = u3. Using the reasoning from Theorem 3.2 we 
an easily dedu
ethat in this 
ase it is possible to 
onstru
t a rational 
urve on Eg.From the above remark we obtain the followingCorollary 3.4. Let h ∈ Q[t] with deg h = 5, h(0) = 1 and 
onsider thesurfa
e S : y2 = x3 + h(t). Then there is a rational base 
hange t = γ(u)su
h that the surfa
e Sγ : y2 = x3 + h(γ(u)) has a non-torsion se
tion.Proof. Note that S is birationally equivalent to Eg, where g(t) = t6h(1/t).The mapping from S to Eg is given by (x, y, t) 7→ (x/t2, y/t3, 1/t). Be
ause
g(0) = 0, we 
an use Remark 3.3 to obtain the statement.Example 3.5. Let g(t) = t6 + t2 + 1 and 
onsider the surfa
e Eg :
y2 = x3 + g(t). For t0 = 1, on the 
urve E1 : y2 = x3 + 3 we have anon-torsion point P = (1, 2). Now we 
al
ulate the quantities p, q givenby (3.2) and T given by (3.3) from the proof of Theorem 3.2. We obtain
p = 16/13, q = −1/13, T = −358/169 and next t1 = T + t0 = −189/169.Thus, on the 
urve

Et1 : y2 = x3 +
47 · 2085456070589

1312we have a non-torsion point
P =

(

−
3531

2197
,
1137934

4826809

)

.Similarly to the 
ase of the surfa
e Ef 
onsidered in Se
tion 2, we 
anask whether for a given polynomial g of the form g(t) = t6 + at4 + ct2 + ethere is t0 ∈ Q su
h that the 
urve Et0 has in�nitely many rational points.
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tion we will prove that the answer is positive forpolynomials of the form g(t) = t6 + e. We 
he
ked by 
omputer that if
max{|a|, |c|, |e|} ≤ 10, then there exists t ∈ Q su
h that there are in�nitelymany rational points on the 
urve Et : y2 = x3 + t6 + at4 + ct2 + e. Thisleads us to the followingConje
ture 3.6. Let a, c, e ∈ Z and g(t) = t6 + at4 + ct2 + e. Thenthere exists t0 ∈ Q su
h that there are in�nitely many rational points on the
urve Et0 .In view of Theorem 3.2 a natural question arises:Question 3.7. Let g(t) = t6 +at4 + ct2 + e . What 
onditions guaranteethe existen
e of a rational base 
hange t = κ(u) su
h that the surfa
e Eg◦κhas a non-torsion se
tion?4. Some results on the diophantine equation x2 − y3 − g(z) = t.Let g(z) = z6 + az4 + bz3 + cz2 + dz + e ∈ Z[z] and let t be a variable. Inthis se
tion we will deal with the diophantine equation(4.1) x2 − y3 − g(z) = t.We will show that if there are in�nitely many rational points on the 
urve
C : v2 = s4−12as2+48bs+6(a2−12c), then the equation (4.1) has in�nitelymany solutions in Q[t]. For g(t) = t6 + e, we will use this result to provethe promised theorem on the existen
e of a rational base 
hange t = χ1(s)su
h that there exists a non-torsion se
tion on Eg◦χ1 . We will also give someresults 
on
erning the representability of integers in the form x2 − y3 − g(z).We start with the followingTheorem 4.1. If there are in�nitely many rational points on the 
urve
C : v2 = s4 − 12as2 + 48bs + 6(a2 − 12c), in parti
ular if b 6= 0 and a ≡ 1
(mod2), then the equation (4.1) has in�nitely many solutions in Q[t].Proof. Set G(x, y, z) := x2 − y3 − g(z) and observe that solving theequation G(x, y, z) = t in polynomials with rational 
oe�
ients is equivalentto 
onstru
ting polynomials x, y, z∈Q[t] su
h that degG(x(t), y(t), z(t))=1.Now put x = 3T 3 + pT 2 + qT + r, y = 2T 2 + sT + u, z = T . Then
G(3T 3+pT 2+qT+r, 2T 2+sT+u, T ) = a0+a1T+a2T

2+a3T
3+a4T

4+a5T
5,where

a0 = r2 − u3 − e, a1 = −d+ 2qr − 3su2,

a2 = −c+ q2 + 2pr − 3s2u− 6u2, a3 = −b+ 2pq + 6r − s3 − 12su,

a4 = −a+ p2 + 6q − 6s2 − 12u, a5 = 6(p− 2s).
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 surfa
es 177Solving the system a3 = a4 = a5 = 0 with respe
t to p, q, r we obtain(4.2) p = 2s, q =
a+ 2s2 + 12u

6
, r =

3b− 2as− s3 + 12su

18
.After substituting p, q, r into the equation a2 = 0 and solving it with respe
tto u, we obtain(4.3) u =

3s2 + 2a±
√

s4 − 12as2 + 48bs+ 6(a2 − 12c)

12
.Thus, we 
an see that if there are in�nitely many rational points on the 
urve

C : v2 = s4 − 12as2 + 48bs+ 6(a2 − 12c) =: U(s),then all but �nitely many points on C, by (4.2) and (4.3), give us a tripleof polynomials x, y, z ∈ Q[T ] su
h that G(x(T ), y(T ), z(T )) = a1T + a0 and
a1 6= 0. After substitution T = (t − a0)/a1 we obtain a solution of theequation x2 − y3 − g(z) = t. Moreover, note that we always have in�nitelymany rational points on C when the polynomial U has multiple roots, whi
his equivalent to the 
ondition D := 25a6 − 144a3b2 − 2592b4 − 180a4c +
5184ab2c− 1296a2c2 − 1728c3 = 0.Sin
e the 
urve C is rational over Q if D = 0, we 
an assume that
D 6= 0. To show that if b 6= 0 and a ≡ 1 (mod2), then there are in�nitelymany rational points on C, we transform C into an ellipti
 
urve with theWeierstrass equation. We 
an do this be
ause the point at in�nity on C isrational. Using the method des
ribed in [7℄ one more time, we birationallytransform C into the 
urve

E : Y 2 = X3 − 72(a2 − 4c)X + 64(a3 + 36b2 − 36ac).The mapping transforming C into E is
(s, v) =

(

48b− Y

16a− 2X
, 2a+

X

2
−

(

48b− Y

16a− 2X

)2)

,with inverse
(X,Y ) = (2(−2a+ s2 + v), 4(12b− 6as+ s3 + sv)).Note that the rational point P = (8a, 48b) lies on the 
urve E. Using the
hord and tangent method of adding points on an ellipti
 
urve, we obtain

2P = (x1, y1) where
x1 =

25a4 − 256ab2 + 120a2c+ 144c

16b2
,

y1 = 48b+
(5a2 + 12c)(25a4 − 384ab2 + 120a2c+ 144c2)

64b3
.Be
ause a ≡ 1 (mod2) the numerator of x1 is odd, so x1 ∈ Q \ Z. Bythe Nagell�Lutz theorem ([12, p. 77℄) torsion points on an ellipti
 
urve

y2 = x3 + px + q, p, q ∈ Z, have integer 
oordinates, so the point 2P is



178 M. Ulasnot of �nite order. This proves that the 
urve E has a positive rank and we
on
lude that there are in�nitely many rational points on the 
urve C.Remark 4.2. After noti
ing that the point P = (8a, 48b) lies on the
urve E (see the proof above), we suspe
ted that this point is not of �niteorder for ab 6= 0 and any c ∈ Z. As suggested by Professor S
hinzel, this isnot true. Indeed, if a = 6p2, c = p(4b− 15p3), then the 
urve E is ellipti
 if
∆ = −764411904b2(3b−16p3) 6= 0. In this 
ase the point P = (6p2, 48b) is oforder three on E. If we now put p = 1, b = 1, then a = 6, c = −11. The 
urve
E is then birationally equivalent to E′ : y2 = x3 − 360x + 2628. Applying
APECS [2℄ we found that the rank of E′ is zero. Despite this, there exists anon-trivial solution of the equation x2 − y3 − g(z) = t for b = 1 and even for
b 6= 0; this is equivalent to the fa
t that the point P is not of order two. Whyis it so? If b 6= 0, then the order of P is at least 3 and the s-
oordinate of thepreimage of 2P (di�erent from the point at in�nity O) equals (5a2+12c)/18b.Be
ause the expression a1 from the proof of Theorem 4.1 depends linearlyon d and is not identi
ally zero, there is at least one d ∈ Z for whi
h a1 = 0and our method does not give a solution of the equation x2 − y3 − g(z) = t.It should be noted that there exists a polynomial g ∈ Z[t] for whi
hour method does not give a solution of the equation x2 − y3 − g(z) = t.For example, if g(t) = t6 + 6t4 + 6t3 + 9t2 − 150t, then the 
urve C isbirationally equivalent to the ellipti
 
urve E′ : y2 + y = x3 − 7. We have
TorsE′ = {O, (3, 4), (3,−5)} and using APECS on
e again, we �nd that E′has rank zero. In this 
ase, our method leads to the identity

(3T 3 + 12T 2 + 33T + 25)2 − (2T 2 + 6T + 10)3 − g(T ) = −375.Now we re
ord several interesting 
orollaries of Theorem 4.1.Corollary 4.3. If there are in�nitely many rational points on the 
urve
C : v2 = s4 − 12as2 + 48bs + 6(a2 − 12c), then every polynomial h ∈ Q[t]
an be represented in in�nitely many ways in the form x2 − y3 − g(z), where
x, y, z ∈ Q[t].In the following 
orollary we give the promised proof of the existen
e ofrational 
urves on the surfa
e y2 = x3 + t6 + e.Corollary 4.4. Let Eg : y2 = x3 +g(t), where g(t) = t6 +e. Then thereexists a rational base 
hange t = χ1(s) su
h that the surfa
e Eg◦χ1 : y2 =
x3 + g(χ1(s)) has a non-torsion se
tion.Proof. Note that if a = b = c = 0, then the 
urve C is rational and thesystem a2 = a3 = a4 = a5 = 0 from the proof of Theorem 4.1 has exa
tlytwo solutions given by

p1 = 2s, q1 = 2s2/3, r1 = s3/18, u1 = s2/6,

p2 = 2s, q2 = s2, r2 = s3/6, u2 = s2/3.
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 surfa
es 179For su
h pi, qi, ri, ui (i = 1, 2) we obtain the following identities:
(4.4)

(

3T 3 + 2sT 2 +
2s2

3
T +

s3

18

)2

−

(

2T 2 + sT +
s2

6

)3

− (T 6 + dT + e)

= −
648e+ s6

648
−

648d+ 6s5

648
T,

(4.5)

(

3T 3 + 2sT 2 + 2s2T +
s3

6

)2

−

(

2T 2 + sT +
s2

3

)3

− (T 6 + dT + e)

= −
108e+ s6

108
− dT.If now d = 0 and if we put T = χ1(s) = −(648e + s6)/(6s5) then the rightside of the identity (4.4) disappears and the surfa
e Eg◦χ1 : y2 = x3+g(χ1(s))has a se
tion

σ =

(

419904e2 − 648es6 + s12

18s10
,

−
272097792e3 − 419904e2s6 + 1944es12 + s18

72s15

)

.It is easy to see that the order of σ is not �nite.Re
all that a1 = −d+ 2qr − 3su2, where q, r, s, u are given by (4.2) and(4.3) from the proof of Theorem 4.1.Corollary 4.5. Let d ∈ Z and suppose that on the 
urve C : v2 =
s4−12as2+48bs+6(a2−12c), there is a rational point whi
h leads to a1 6= 0.Then for every integer n the diophantine equation x2 − y3 − g(z) = n hasa solution in rationals x, y, z su
h that there exists an integer Lg, dependingonly on the polynomial g, with Lgx, Lgy, Lgz ∈ Z. In parti
ular , for g(z) = z6we have Lg = 124416 = 29 · 35.Proof. In view of Theorem 4.1 the �rst part of the statement is obvious.Now putting d = e = 0, s = 6 and next T = (n + 72)/72 into the identity(4.4) we obtain
(

n3 − 72n2 + 15552n+ 373248

124416

)2

−

(

n2 − 72n+ 5184

2592

)3

−

(

n+ 72

72

)6

= n.This proves the se
ond part of the 
orollary.Corollary 4.6. Let g(z) = z6 + dz. If d = 1, then for every integer nthe diophantine equation x2 − y3 − g(z) = n has in�nitely many solutions inintegers. If d = −72t5 + 1 for some integer t, then for every integer n thediophantine equation x2 − y3 − g(z) = n has a solution in integers.Proof. Let n be a �xed integer. If d = −1, then for the proof we willuse the identity (4.5). Set e = 0, s = 6t and T = −432t6 − n. Then the
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x(t) = 3n3 + 12t(−1 + 324t5)n2 + 36t2(1 − 288t5 + 46656t10)n

+ 36t3(−1 + 432t5 − 62208t10 + 6718464t15),

y(t) = 2n2 + 6t(−1 + 288t5)n+ 12t2(1 − 216t5 + 31104t10),

z(t) = −n− 432t6satisfy x(t)2 − y(t)3 − g(z(t)) = n.If now d = −72t5 − 1, then we put e = 0, s = 6t, T = −n− 72t6 into theidentity (4.4). We �nd that x2 − y3 − g(z) = n for
x = 3n3 + 12t(−1 + 54t5)n2 + 24t2(1 − 725 + 1944t10)n

+ 12t3(−1 + 144t5 − 5184t10 + 93312t15),

y = 2n2 + 6t(−1 + 48t5)n+ 6t2(1 − 72t5 + 1728t10),

z = −n− 72t6.5. Rational points on some non-isotrivial ellipti
 surfa
es. Inview of our 
onsiderations it is natural to ask whether it is possible to obtainsimilar results for non-isotrivial ellipti
 surfa
es of the form
E : y2 = x3 +A(t)x+B(t),where A,B ∈ Q[t] \ {0}. If t 7→ α(t) is a rational base 
hange, then let Eαdenote the surfa
e Eα : y2 = x3 +A(α(t))x+B(α(t)). Moreover, re
all thatif C : y2 = x3 + m(t)x + n(t), where m,n ∈ Z[t], is an ellipti
 
urve over

Q(t), then points of �nite order on C have 
oordinates in Z[t].In this se
tion we will prove a generalization of Theorems 2.1 and 2.2.Theorem 5.1. Let E : y2 = x3 + f4(t)x + g4(t), where f4, g4 ∈ Q[t]. Ifeither deg f4 = 3 and deg g4 ≤ 4, or deg f4 = 4, deg g4 ≤ 4, and if at leastone of the polynomials f4, g4 is not even, then there exists a rational base
hange t = ψ(s) su
h that the surfa
e Eψ has a non-torsion se
tion.Proof. Set H(x, y, t) := y2−(x3 +f4(t)x+g4(t)). First, 
onsider the 
asewhen deg f4 = 3 and deg g4 ≤ 4. We 
an assume that f4(t) = at3 + bt + c,
g4(t) = dt4 + et3 + ft2 + gt + h for some a, b, . . . , h ∈ Z with a 6= 0 and
g4(t) 6= 0. Set x = pT + q, y = rT 2 + sT + u, t = T . For these x, y, t weobtain

H(x, y, t) = a0 + a1T + a2T
2 + a3T

3 + a4T
4,where

a0 = −h− cq − q3 + u2, a1 = −g − cp− bq − 3pq2 + 2su,

a2 = −f − bp− 3p2q + s2 + 2ru, a3 = −e− p3 − aq + 2rs,

a4 = −d− ap+ r2.
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 surfa
es 181The system a2 = a3 = a4 = 0 has a solution
(5.1) p =

−d+ r2

a
, q = −

−d3 + a3e+ 3d2r2 − 3dr4 + r6 − 2a3rs

a4
,

u = −
−f − bp− 3p2q + s2

2r
.If p, q, u are given by (5.1), then the equation H(pT +q, rT 2 +sT +u, T ) = 0has a solution(5.2) T = −

h+ cq + q3 − u2

g + cp+ bq + 3pq2 − 2su
=: ψ(r, s).In this 
ase we obtain a two-parameter solution of the equation de�ningthe surfa
e E . For 
onvenien
e let r = 1 and ψ(s) := ψ(1, s). We see thatif p, q, u are given by (5.1) and T = t = ψ(s), then the surfa
e Eψ has ase
tion σ = (pT + q, T 2 + sT + u). An a�ne 
hange of variables transforms

Eψ into E ′

ψ : y2 = x3 + f ′4(s)x + g′4(s), where f ′4, g′4 ∈ Z[s]. Then σ goesto a se
tion σ′ on E ′

ψ. It turns out that the x-
oordinate of the se
tion 2σ′belongs to Q(s) \ Q[s]. By the remark at the beginning of this se
tion, σ′ isnot of �nite order. We omit the lengthy 
omputations of this proof, whi
hare troublesome to perform without 
omputer.Let us now 
onsider the 
ase when deg f4 = 4, deg g4 ≤ 4 and at least oneof f4, g4 is not even. We 
an assume that f4(t) = at4 + bt2 + ct+ d, g4(t) =
et4 + ft3 + gt2 + ht+ i, where a, b, . . . , i ∈ Z, a 6= 0 and at least one of thenumbers c, f, h is not zero. Let now C3 denote the 
urve over Q(u) obtainedfrom E after substitution x = (u2 − e)/a. Hen
e,

C3 : y2 = u2t4 + ft3 +
−be+ ag − bu2

a
t2 +

−ce+ ah− cu2

a
t

+
−a2de− e3 + a3i+ (a2d+ 3e2)u2 − 3eu4 + u6

a3
=: V (t).Now putting y = uT 2 + pT + q, t = T we obtain

(uT 2 + pT + q)2 − V (T ) = a0 + a1T + a2T
2 + a3T

3,where
a0 =

−a2de− e3 + a3i+ (a2d+ 3e2)u2 − 3eu4 + u6

a3
,

a1 =
−ce+ ah− 2apq + cu2

a
,

a2 =
−be+ ag − ap2 − 2aqu+ bu2

a
, a3 = f − 2pu.



182 M. UlasThe system a2 = a3 = 0 has a solution(5.3) p =
f

2u
, q =

−af2 − 4beu2 + 4agu2 + 4bu4

8au3
.For these p, q the equation (uT 2 + pT + q)2 − V (T ) = 0 has exa
tly onesolution(5.4) T =

−a2de− e3 + a3i+ (a2d+ 3e2)u2 − 3eu4 + u6

a2(−ce+ ah− 2apq + cu2)
=: ψ1(u).Now, putting t = ψ1(u) we obtain the se
tion σ1 = ((u2−e)/a, uT 2+pT+q)on the surfa
e Eψ1

, and similarly to the previous 
ase, we show that the orderof σ1 is not �nite.Remark 5.2. Let now K be a real �eld for whi
h [K : Q] <∞. Considerthe ellipti
 surfa
e E : y2 = x3 + C1(t)x + C2(t), where C1, C2 ∈ Q[t] and
max{degC1, degC2} = 3, de�ned over K. Let S := {t ∈ K : rank(Et) > 0}.R. Munshi in [8℄ has shown that there exists a 
onstant M , depending onlyon [K : Q], su
h that if |S| > M , then the set S is dense in R (Theorem 1.9in [8℄). The �rst part of Theorem 5.1 shows that in fa
t the surfa
e E isunirational. Without any additional assumptions this proves that the set Sis dense in R.With a similar method we 
an prove the followingTheorem 5.3.(1) Let E : y2 = x(x2 + f2(t)x + f4(t)), where f2, f4 ∈ Q[t]. If either

deg f2 ≤ 2, deg f4 ≤ 3, or deg f2 ≤ 2, deg f4 = 4, and if at least oneof the polynomials f2, f4 is not even, then there exists a rational base
hange t = ψ(u) su
h that the surfa
e Eψ has a non-torsion se
tion.(2) If deg f2 = 2, deg f4 = 4 and there is t0 ∈ Q su
h that the 
urve
Et0 : y2 = x(x2+f2(t0)x+f4(t0)) has in�nitely many rational points,then there exists a rational base 
hange t = ψ(u) su
h that Eψ has anon-torsion se
tion.(3) Let E : y2 = x(x2 + f4(t)x+ g4(t)), where f4, g4 ∈ Q[t] and deg f4 =
deg g4 = 4. If f4 or g4 is not even, then there exists a rational base
hange t = ψ(u) su
h that Eψ has a non-torsion se
tion.Proof. The proofs of (1) and (2) do not bring any di�
ulties, and there-fore they will be omitted (the reasoning is exa
tly the same as in the proofof Theorem 2.1).We now outline the proof of (3). Let a, b be the leading 
oe�
ients of

f4, g4, respe
tively. Set x = b/(u2 − a) and treat E as a 
urve de�ned over
Q(u); denote the latter 
urve by C4. Then the point at in�nity, say P , on
C4 is rational. Sin
e f4 or g4 is not even, with the use of the point P we 
an
onstru
t a non-torsion se
tion on E .



Rational points on ellipti
 surfa
es 183The previously 
onsidered ellipti
 surfa
es (ex
luding the one from The-orem 5.3(3)) are rational over C. This means that they are rational over a
ertain �nite extension of Q. Can one say something more about rationalpoints on general ellipti
 surfa
es? With referen
e to this question, in 1992B. Mazur proposed an interesting 
onje
ture 
on
erning rational points on E .For t ∈ Q let Et be the �bre of the mapping π : E → P over t.Conje
ture 5.4 (Conje
ture 4 from [6℄). The family {Et}t∈Q of ellipti

urves satis�es one of the following 
onditions:(1) for all but �nitely many t ∈ Q the 
urve Et has Mordell�Weil rankzero,(2) there exists a set R ⊂ Q su
h that R is dense in R and for ea
h
t ∈ R, the Mordell�Weil rank of Et is positive.As pointed out in [6℄, the only known example of an ellipti
 surfa
e whose�bres satisfy 
ondition (1) of the above 
onje
ture is the split ellipti
 surfa
e

E ≃ E × C, where E is an ellipti
 
urve of rank zero. It seems plausiblethat if the family {Et}t∈Q 
omes from a non-split ellipti
 surfa
e, then (1)is not valid. It should be mentioned that re
ently N. Elkies gave heuristi
arguments whi
h suggest that 
ertain isotrivial families of ellipti
 
urves over
Q violate Mazur's 
onje
tured rule.Examples of families of ellipti
 surfa
es satisfying 
ondition (2) of theabove 
onje
ture 
an be found in [4℄, [10℄, [5℄, [8℄.We believe that the following 
onje
ture may be easier to prove:Conje
ture 5.5. Let E be a non-split ellipti
 surfa
e. Then there is
t ∈ Q su
h that the 
urve Et has in�nitely many rational points.As a 
orollary, we obtain an interestingTheorem 5.6. Assume that Conje
ture 5.5 is true. Then for the family
{Et}t∈Q of ellipti
 
urves , the set of rational numbers t su
h that the rank of
Et is positive, is in�nite.Proof. Assuming Conje
ture 5.5 to be true, we �nd t1 ∈ Q su
h thatthere are in�nitely many rational points on the 
urve Et1 . Suppose that wehave already 
onstru
ted t2, . . . , tn su
h that the 
urve Eti for i = 1, . . . , n hasin�niteley many rational points. Further suppose that there is a polynomial
h ∈ Q[t] su
h that for i = 1, . . . , n the equation h(t) = ti has no solutions inrationals and the system of equations
(5.5) 













A(t1)Y
4
1 = A(h(T1)), B(t1)Y

6
1 = B(h(T1)),... ...

A(tn)Y
4
n = A(h(Tn)), B(tn)Y

6
n = B(h(Tn)).



184 M. Ulasalso has no su
h solutions. Then there exists t ∈ Q su
h that the 
urve
Eh(t) : y2 = x3 + A(h(t))x + B(h(t)) has a positive rank. De�ning now
tn+1 = h(t) and repeating the reasoning, we obtain the statement of thetheorem.We now show that there exists h ∈ Q[t] satisfying the above 
ondi-tions. Let h1 ∈ Q[t] be su
h that the equation h1(t) = ti for i = 1, . . . , nhas no solutions. Clearly it is enough to show the existen
e of our poly-nomial for the �rst row in the system (5.5). Therefore, 
onsider the sys-tem A(t1)Y

4
1 = A(h1(T1)), B(t1)Y

6
1 = B(h1(T1)). If A(t1)B(t1) = 0, thenthis system has �nitely many rational solutions, and we 
an �nd h2 ∈ Q[t]su
h that h = h1 ◦ h2 is as desired. Now, assume that A(t1)B(t1) 6= 0.If (A(h1(T1))/A(t1))

3 6= (B(h1(T1))/B(t1))
2, then our system has at most

3 deg(A◦h1)+2 deg(B ◦h1) solutions in Q and so there exists h2 ∈ Q[t] su
hthat h = h1 ◦ h2 does the job. If (A(h1(T1))/A(t1))
3 = (B(h1(T1))/B(t1))

2,the problem redu
es to the examination of the 
urve C : Y 2
1 = H(T1), where

H is a polynomial su
h that A(h1(T1))/A(t1) = H(T1)
2, B(h1(T1))/B(t1) =

H(T1)
3. If H were the square of another polynomial, the family {Et}t∈Qwould be related to a split ellipti
 surfa
e E , whi
h 
ontradi
ts the assump-tion. Therefore, H is not a square. Now, there exists a polynomial h2 su
hthat the genus of the 
urve C ′ : Y 2

1 = H(h2(T1)) is ≥ 2. From the Faltingstheorem there are only �nitely many rational points on C ′; so after a poly-nomial 
hange of variable, we obtain a polynomial satisfying all the required
onditions. Applying this reasoning to the se
ond, . . . , nth equation in (5.5)we obtain the statement of the theorem.In view of the above theorem, a natural question arises:Question 5.7. Is 
ondition (2) of Conje
ture 5.4 equivalent to Conje
-ture 5.5?A
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