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Let p(n) denote the average prime divisor of an integer n. That is,

p(n) =
1

ω(n)

∑

p prime
p|n

p,

where ω(n) denotes the number of distinct prime divisors of n.
It is clear that if n is a prime power, then p(n) |n. In this paper we

consider the set

A = {n : ω(n) > 1, p(n) ∈ N, p(n) |n and p(n) is prime}.
It is obvious that n ∈ A if and only if the square-free part of n is in A.
The first few square-free elements of A are: 105, 231, 627, 897, 935, 1365,

1581, 1729, 2465, 2967, 4123, 4301, 4715, 5313, 5487, 6045, 7293, 7685, 7881,
7917, 9717, 10707, 10965, 11339, 12597, 14637, 14993, 16377, 16445, 17353,
18753, 20213, 20757, 20915, 21045, 23779, 25327, 26331, 26765, 26961, 28101,
28497, 29341, 29607.

It is clear that A contains only odd numbers since otherwise ω(n) and
∑

p|n p would have different parities and in order for p(n) to be odd, ω(n)

should be even and could not divide
∑

p|n p. Here, we prove the following
result:

Theorem 1. Let A(x) := A ∩ [1, x]. The estimates

x

exp((2 + o(1))
√

log x log log x)
≤ #A(x)

≤ x

exp((1/
√

2 + o(1))
√

log x log log x)

hold as x → ∞.

Since the counting function of the prime powers n < x which are not
primes is O(

√
x/log x), it follows that the same result is valid if we enlarge A
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to be the set of all composite integers n whose average prime factor is an
integer and is a prime factor of n.

Our theorem complements the results from [1], where several results
concerning the function p(n) were obtained, such as the uniform distribution
of the fractional parts {p(n)} in the interval [0, 1) when n ranges in the set
of all positive integers, and the order of magnitude of the counting function
of the set of positive integers n such that p(n) is an integer.

Throughout, we use the Vinogradov symbols ≫ and ≪ and the Landau
symbols O and o with their regular meanings. We use log for the natural
logarithm and ⌊ ⌋ for the “integer part” function.

Proof of the upper bound. Consider the following sets:

A1(x) = {n ≤ x : P (n) < y},
A2(x) = {n ≤ x : n 6∈ A1(x), P (n)2 |n},

where y is a parameter which depends on x to be chosen later and which
satisfies exp((log log x)2) ≤ y ≤ x, and P (n) denotes the largest prime factor
of n.

From standard estimates for smooth numbers [2], we know that if we set
u = log x/log y, then

(1) #A1(x) ≪ x

exp((1 + o(1))u log u)
(x → ∞)

in our range of y versus x, while

(2) #A2(x) ≤
∑

p prime
p≥y

⌊

x

p2

⌋

≤ x
∑

n≥y

1

n2
≪ x

y
.

Let A3(x) = A(x) \ (A1(x) ∪A2(x)). If n ∈ A3(x), then we can write
n = P (n)m, where m > 1 (because ω(n) > 1). Furthermore, since n 6∈
A2(x), P (n) ∤ m, and p(n) < P (n) since the average of at least two distinct
integers is less than their maximum. Thus, the condition that p(n) is prime
and divides n implies that p(n) |m, and so we can write

p(n) =
P (n) +

∑

q|m q

ω(m) + 1
,

which gives

P (n) = p(n)(ω(m) + 1) −
∑

q|m

q.

Hence, P (n) is uniquely determined by p(n) and by m. But since p(n) is
a prime divisor of m, it follows that for any fixed value of m, there are at
most ω(m) possible values of P (n). Furthermore, for the positive integers n
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under consideration, we have P (n) ≥ y, therefore m ≤ x/y, so

(3) #A3(x) ≤
∑

m≤x/y

ω(m) ≪ x log log x

y
,

where we have used the well known fact that
∑

t≤x

ω(t) ≪ x log log x.

From (1)–(3), we immediately deduce that

#A(x) ≤ #A1(x) + #A2(x) + #A3(x)

≪ x log log x

y
+

x

exp((1 + o(1))u log u)
.

To minimize the right hand side above we choose y = exp(u log u), which
amounts to

log2 y = log x log

(

log x

log y

)

.

Thus, we get y = (1 + o(1))
√

log x log log x as x → ∞, and with this choice
of y versus x we obtain

#A(x) ≪ x

exp((1/
√

2 + o(1))
√

log x log log x)
as x → ∞.

Proof of the lower bound. Let y be a parameter depending on x (different
from the one from the proof of the upper bound) and k an even positive
integer depending also on x, both tending to infinity with x which we will
choose later. For the moment we assume that k > 5 and y > k4. Suppose
that P, Q, p1, . . . , pk are prime numbers which lie in the respective intervals:

P ∈ (y/2, y], Q ∈ (y/4, y/2], p1, . . . , pk ∈ (y/2k2, y/k2].

It is clear that all the above primes are distinct and odd. Furthermore, the
integer

N = (k + 4)Q − P − (p1 + · · · + pk)

is odd, positive and

N ≥ kQ + 4Q− k max{p1, . . . , pk} > ky/4 + y − y − k(y/k2) = ky/4− y/k,

therefore it lies in the interval (ky/5, ky] once x is sufficiently large. By
Vinogradov’s three primes theorem [3], the equation

N = q1 + q2 + q3

has ≫ N2/log3 N solutions in primes q1 < q2 < q3 as N → ∞. It is also
clear that, at the cost of reducing the constant implied by the above ≫,
we can assume that q1 > c1N , where c1 is some absolute positive constant,
and that the three primes above are distinct. Note that with these choices,
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min{q1, q2, q3} > c1ky/5 > y, therefore the primes q1, q2 and q3 are different
from P, Q, p1, . . . , pk.

Consider the integer

n = p1 · · · pk · q1 · q2 · q3 · P · Q.

We claim that n ∈ A. Indeed, ω(n) = k + 5, and

1

k + 5
(p1 + · · · + pk + q1 + q2 + q3 + P + Q) = Q

is a prime factor of n. We are therefore only left with the task of counting the
number of integers up to a fixed upper bound x which can be constructed
by the above method with suitable choices of y and k versus x.

For given y and k, the number of choices for P , Q and (p1, . . . , pk) are
respectively:

π(y) − π(y/2), π(y/2) − π(y/4) and

(

π(y/k2) − π(y/2k2)

k

)

.

Therefore the number of possible n’s, when k4 < y and k is large, is

(4) ≫ y

2 log y
· y

4 log y
·
(

y

6k3 log(y/k2)

)k

· c1(ky/4)2

(log ky)3
,

where in the above estimates we used the prime number theorem and the
fact that if a > 2b, then

(

a

b

)

≫
(

a − b

b

)b

>

(

a

2b

)b

with the choices a = π(y/k2)−π(y/2k2) > y/(3k2 log(y/k2)) > 2k and b = k
(the first estimate above holds for large k by the prime number theorem,
while the second holds for large k by the fact that y > k4).

A further calculation shows that the expression appearing at (4) above
is

(5) ≫ yk+4

4kk3k−3(log y)k+5
.

We now need to find a lower bound on the above expression under the
constraint that

(6) n = p1 · · · pk · q1 · q2 · q3 · P · Q ≤
(

y

k2

)k

(ky)3y2 =: x.

We will do this by choosing k =
⌊

c
√

log x/log log x
⌋

+ ν, where ν ∈ {0, 1}
is such that k even and c is a constant to be determined later. Then, by
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estimate (5), we get

#A(x) ≥ x

exp(k log 4k + log y + (k + 5) log log y)

= x exp(−c/2
√

log x log log x − log yc
√

log x/log log x log log y

−O(k + log log y)).

Estimate (6) together with the choice of k leads to the conclusion that
log y = c−1(1 + o(1))

√
log x log log x as x → ∞, which, in turn, leads to the

lower bound

#A(x) ≫ x

exp((c + c−1 + o(1))
√

log x log log x)
.

The minimum of the function c 7→ c + c−1 is attained at c = 1. Hence,
choosing c = 1, we get the lower bound of the statement.
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