On Erdős-Ginzburg-Ziv inverse theorems

by

D. J. Grynkiewicz (Barcelona), O. Ordaz (Caracas), M. T. Varela (Caracas), and F. Villarroel (Cumaná)

1. Introduction. Let $\mathcal{F}(G)$ denote the free abelian monoid over the set G with monoid operation written multiplicatively and given by concatenation, i.e., $\mathcal{F}(G)$ consists of all finite sequences over G modulo the equivalence relation allowing terms to be permuted. Despite possible confusion, the elements of $\mathcal{F}(G)$ will be referred to simply as sequences, and if indeed order or being infinite are needed in a sequence, it will be explicitly stated when the sequence is first introduced.

Now let G be an abelian group of order $m \geq 2$. The Erdős-GinzburgZiv theorem states that every sequence in G of length $2 m-1$ contains an m-term subsequence with zero sum [5]. There have been many related inverse theorems describing the structure of the sequences S in G with length $|S|=m+k, 1 \leq k \leq m-2$, not having any m-term subsequence with zero sum. For cyclic groups of order m, the structure of S has been described by several authors: when $k=m-2$, by Yuster and Peterson in [15], and by Bialostocki and Dierker in [1]; when $k=m-3$, by Flores and Ordaz in [7]; when $m-\lfloor m / 4\rfloor-2 \leq k \leq m-2$, by Bialostocki, Dierker, Grynkiewicz, and Lotspeich in [2] (using a related result of Gao from [8]); and when $k \geq\lceil(m-1) / 2\rceil$, by Chen and Savchev in [3].
1.1. Terminology. For $S \in \mathcal{F}(G)$, we let $|S|$ be the length of S, and employ standard multiplicative monoid notation; in particular, $S T$ denotes the concatenation of S and T, and $S^{\prime} \mid S$ indicates that S^{\prime} is a subsequence of S, in which case $S S^{\prime-1}$ denotes the subsequence of S obtained by deleting all terms from S^{\prime}. Let $\sigma(S)$ denote the sum of the terms of S, unless S is

[^0]the empty sequence, in which case $\sigma(S):=0$. Let
\[

$$
\begin{gathered}
\Sigma_{n}(S)=\left\{\sigma\left(S^{\prime}\right): S^{\prime} \mid S \text { and }\left|S^{\prime}\right|=n\right\} \\
\Sigma_{\leq t}(S)=\bigcup_{n=1}^{t} \Sigma_{n}(S), \quad \Sigma_{\geq t}(S)=\bigcup_{n=t}^{|S|} \Sigma_{n}(S), \quad \Sigma(S)=\Sigma_{\leq|S|}(S)
\end{gathered}
$$
\]

For $x \in G$, let $\nu_{x}(S)$ be the multiplicity of x in S, and let $h(S)=$ $\max _{x \in G}\left\{\nu_{x}(S)\right\}$.

A subset A of the abelian group G is periodic if A is a union of H-cosets for some nontrivial subgroup $H \leq G$. We will often write H_{a} for H if the index of H in G is a. If B is another subset of G, then the sumset $A+B$ is $\{a+b: a \in A, b \in B\}$. We will often identify a singleton set with its element for notational simplicity.

A sequence S is squarefree if $h(S) \leq 1$, in which case S can be considered as a set. An n-setpartition of a sequence S is a sequence of n nonempty, squarefree subsequences, say $A=A_{1}, \ldots, A_{n}$, such that $S=A_{1} \cdots A_{n}$. Note that we do not use multiplicative notation for the terms of a setpartition in order to distinguish the setpartition, A_{1}, \ldots, A_{n}, from the sequence it partitions/factorizes, $A_{1} \cdots A_{n}$.

Finally, the Davenport constant of G, denoted $D(G)$, is the least integer n such that every sequence from G of length n contains a nonempty subsequence whose terms sum to zero. A simple argument (see [6]) shows that $D(G) \leq|G|$.

1.2. Results. We have the following open problem:

Problem 1 ([10, 12]). For an abelian group G of order $m \geq 2$ and a positive integer k, determine the exact value or a bound of

$$
h(G, k)=\min \left\{h(S): S \in \mathcal{F}(G) \text { with }|S|=|G|+k \text { and } 0 \notin \Sigma_{|G|}(S)\right\} .
$$

There are a few results pertaining to this problem. When G is cyclic of order m, we have $h(G, k) \geq k+1$ provided $m-\lfloor m / 4\rfloor-2 \leq k \leq m-2$ (see $[8]$); $h(G, k) \geq k+1$ provided m is prime with $1 \leq k \leq m-2$ (see [11]); $h(G, m-2)=m-1$ (see [1] or [15]); and $h(G, m-3)=m-1$ (see [7]).

The main results in this paper confirm the following two conjectures.
Conjecture 1.1 ([9, Conjecture 6.9], [12]). Let G be a cyclic group of order $m \geq 2$, and p the smallest prime divisor of m. Let $S \in \mathcal{F}(G \backslash 0)$ with $|S|=m$. If $h=h(S) \geq m / p-1$, then $\Sigma_{\leq h}(S)=\Sigma(S)$.

Conjecture 1.1 was verified for cyclic groups of prime power order in [12]. The following example shows that we cannot hope, in general, for the equality of the conjecture to hold for smaller h. Indeed, the equality fails for $h \leq m / p-2$ and m composite when $m / p \neq 0,1 \bmod h$, and, if $p=2$,
$m / p \neq-1 \bmod h$. In particular, it does not hold when $h=m / p-2$ for composite $m>10$.

Let $G=\mathbb{Z} / m \mathbb{Z}$ with m composite, let p be the smallest prime divisor of m, and let $H \leq G$ be the subgroup of index m / p. Let $h \leq m / p-2$ be a positive integer such that $m / p \neq 0,1 \bmod h$, and, if $p=2$, such that $m / p \neq-1 \bmod h$ as well. Hence, in particular, $h>1$. Let

$$
t=\left\lceil\frac{m+h}{p h}\right\rceil=\frac{m+h+p h-\alpha}{p h}, \quad \text { where } 0<\alpha \leq p h
$$

Thus

$$
\begin{equation*}
((t-1) p-1) h<m=((t-1) p-1) h+\alpha \leq(t p-1) h \tag{1}
\end{equation*}
$$

whence $1<h \leq m / p-2$ implies that $2 \leq t \leq m / p$. Let $A=H \cup(1+H) \cup$ $\cdots \cup((t-1)+H)$, and let W be the sequence consisting of all elements of $A \backslash 0$, each with multiplicity h. Note that, in view of (1) and $2 \leq t \leq m / p$, we have $|W|=(t p-1) h \geq m$. Hence let S be a subsequence of W with $|S|=m$ which contains some element $y \in(t-1)+H$ with multiplicity $\min \{\alpha, h\}$, as well as all the $(t-1) p-1$ elements from $(H \backslash 0) \cup(1+H) \cup \cdots \cup((t-2)+H)$, each with multiplicity h, which is possible since $m=((t-1) p-1) h+\alpha$. Note that S contains exactly α elements from $(t-1)+H$. Since $t \geq 2$, it follows that $h(S)=h$. Note that (1) implies that

$$
\begin{equation*}
\frac{m}{p}=(t-1) h-\frac{h-\alpha}{p} \tag{2}
\end{equation*}
$$

Hence $h-\alpha \equiv 0 \bmod p$. We proceed to show, in two cases depending on the value of α, that $\Sigma_{\leq h}(S) \neq \Sigma(S)$, so S does not satisfy the conclusion of Conjecture 1.1 for $h \leq m / p-2$, under the assumed restrictions on m / p modulo h.

Suppose first that $\alpha<h$. Then $h-\alpha \equiv 0 \bmod p$ implies that $\alpha \leq h-p$. Hence (1) yields $m / p \leq(t-1) h-1$, whence $h \leq m / p-2$ forces $t \geq 3$. Thus let $x \in 1+H$ and $x^{\prime} \in(t-2)+H$ be distinct elements. Note that

$$
\alpha y+(h-\alpha) x^{\prime}+x \in \Sigma(S) \cap((t-2) h+\alpha+1+H)
$$

Thus if $(t-2) h+\alpha+1<m / p$, then

$$
\alpha y+(h-\alpha) x^{\prime}+x \notin \Sigma_{\leq h}(S) \subseteq\{0,1, \ldots, \alpha(t-1)+(h-\alpha)(t-2)\}+H
$$

whence $\Sigma(S) \neq \Sigma_{\leq h}(S)$, as desired. Therefore by (2) we can assume that

$$
(t-2) h+\alpha+1 \geq \frac{m}{p}=(t-1) h-\frac{h-\alpha}{p}
$$

whence $\alpha \leq h-p$ implies that $p \leq 2$. Thus $p=2$ and $\alpha=h-p=h-2$ (else the previous arguments yield $p<2$), whence $m / p=(t-1) h-1$ in view of (2). Consequently, $m / p \equiv-1 \bmod h$ and $p=2$, contradicting the assumptions on h.

Next suppose that $\alpha \geq h$. If $\alpha=h$, then (2) implies that $m / p \equiv 0 \bmod h$, which is not the case. Hence $\alpha>h$. Since $t \geq 2$ and $\alpha>h$, let $x \in 1+H$ with $x \mid S$ and $x \neq y$. Observe that $h y+x \in \Sigma(S) \cap((t-1) h+1+H)$. Thus if

$$
\begin{equation*}
(t-1) h+1<\frac{m}{p} \tag{3}
\end{equation*}
$$

then $h y+x \notin \Sigma_{\leq h}(S)$, whence $\Sigma(S) \neq \Sigma_{\leq h}(S)$, as desired. However, if $\alpha>h+p$, then (2) implies

$$
(t-1) h+1=\frac{m+h-\alpha}{p}+1<\frac{m}{p}
$$

whence (3) holds and $\Sigma(S) \neq \Sigma_{\leq h}(S)$. Therefore we may instead assume $\alpha \leq h+p$ and that (3) does not hold. Thus (2) and $\alpha \geq h$ imply that

$$
(t-1) h \leq \frac{m}{p} \leq(t-1) h+1
$$

whence $m / p \equiv 0$ or $1 \bmod h$, contradicting the assumptions on h, and completing the example.

Conjecture 1.2 ([9, Conjecture 7.6], [12]). Let G be a cyclic group of order $m \geq 2$, and p the smallest prime divisor of m. Let k be an integer such that $k \geq m / p-1$, and let $S \in \mathcal{F}(G)$ with $|S|=m+k$. If $0 \notin \Sigma_{m}(S)$, then $h(S) \geq k+1$.

Conjecture 1.2 was verified for cyclic groups of prime power order in [12]. The following example shows we cannot hope, in general, for the bound $h(S) \geq k+1$ of Conjecture 1.2 to be true for smaller k. Indeed, the bound fails whenever

$$
\begin{equation*}
\frac{m-d}{(t-1) d}>k \geq \frac{m+1}{t d-2} \tag{4}
\end{equation*}
$$

for integers $t, d \geq 2$ with $d \mid m$. In particular, taking $d=p$ and $t=2$, we see that for $k=m / p-2$ and $m \geq 27$ composite and odd, the bound of Conjecture 1.2 does not hold. Thus, though it appears the bound on k for $p=2$ could be improved, in all other cases it is tight.

Let $G=\mathbb{Z} / m \mathbb{Z}$, let $H \leq G$ be the subgroup of index m / d, let W be the sequence consisting of all elements of $H \cup(1+H) \cup \cdots \cup((t-1)+H)$, each with multiplicity k, and let W^{\prime} be the subsequence consisting of all elements of $(1+H) \cup \cdots \cup((t-1)+H)$, each with multiplicity k. Assume (4) holds. Hence $t \leq m / d-1$ and

$$
\begin{align*}
|W| & =t d k \geq m+2 k+1 \tag{5}\\
\left|W^{\prime}\right| & =(t-1) d k<m-d \tag{6}
\end{align*}
$$

Note that $\Sigma_{\leq k}(W) \subseteq\{0,1, \ldots, k(t-1)\}+H$. Furthermore, (4) implies that $k(t-1)<m / d-1$. We proceed to define a subsequence $S \mid W$ with
$|S|=m+k$ and $\sigma(S) \in\{k(t-1)+1, k(t-1)+2, \ldots, m / d-1\}+H$, which is disjoint from $\Sigma_{\leq k}(W)$ and thus also from $\Sigma_{k}(S)$. Note that such a subsequence will have $h \overline{(} S) \leq h(W) \leq k$ and $\sigma(S) \notin \Sigma_{k}(S)=\Sigma_{|S|-m}(S)$. Moreover, in view of the basic correspondence $\sigma(S)-\Sigma_{|S|-m}(S)=\Sigma_{m}(S)$, the latter conclusion will imply $0 \notin \Sigma_{m}(S)$, as desired. Thus it remains to construct S.

Let $\sigma(W) \equiv \alpha \bmod (m / d)$ with $0 \leq \alpha \leq m / d-1$. If $\alpha \geq k(t-1)+1$, then in view of (5) and (6) we can find a subsequence $S \mid W$ of length $m+k$ obtained by removing an appropriate number of terms all contained in H; hence $\sigma(S)+H=\sigma(W)+H=\alpha+H \subseteq\{k(t-1)+1, \ldots, m / d-1\}+H$ and $|S|=m+k$, yielding a subsequence with the desired properties. Therefore we may assume $\alpha \leq k(t-1)$. Hence $\lceil(\alpha+1) /(t-1)\rceil \leq k+1 \leq k d$. In this case, we can remove $\lceil(\alpha+1) /(t-1)\rceil-1$ terms from W contained in $(t-1)+H$, and one appropriately chosen additional term contained in $(1+H) \cup \cdots \cup((t-1)+H)$, to obtain a subsequence $S^{\prime} \mid W$ with $\sigma\left(S^{\prime}\right) \in$ $m / d-1+H$. In view of (5) and $\lceil(\alpha+1) /(t-1)\rceil \leq k+1$, it follows that $\left|S^{\prime}\right| \geq m+k$. Thus, as in the previous case, we can remove an appropriate number of terms from S^{\prime} all contained in H to get a subsequence $S \mid S^{\prime}$ with $|S|=m+k$ and $\sigma(S)+H=\sigma\left(S^{\prime}\right)+H^{\prime}=m / d-1+H$, yielding a subsequence with the desired properties.

Conjecture 1.1 will follow from case (i) with $t=0$ of the theorem below, which is our first main result.

THEOREM 1.1. Let G be an abelian group of order $m \geq 2$, let p be the smallest prime divisor of m, let q be the smallest prime divisor of m / p (if m is composite $)$, let $S \in \mathcal{F}(G \backslash 0)$, and let $h \geq h(S)$ and $t \geq 0$ be integers. If $|S| \geq m+t$, then any one of the following conditions implies that $\Sigma(S)$ is periodic with

$$
\Sigma_{\geq t+1}(S) \cap \Sigma_{\leq h+t}(S)=\Sigma(S)
$$

(i) $h+t \geq m / p-1$,
(ii) $\Sigma(S) \neq G$ and $m=p q$,
(iii) $\Sigma(S) \neq G$ and $h+t \geq m / p q+q-3$.

We will then use Theorem 1.1 to derive the following theorem, which provides a mild generalization of Conjecture 1.2.

Theorem 1.2. Let G be an abelian group G of order m, let $S \in \mathcal{F}(G)$, and let p be the smallest prime divisor of m. If $|S| \geq m+\max \{h(S), m / p-1\}$, then $0 \in \Sigma_{m}(S)$ and $\Sigma_{m}(S)$ is periodic.

Let G be an abelian group of order m, and let p be the smallest prime divisor of m. From Theorem 1.2 it follows that $h(G, k) \geq k+1$ for every G with $|G|=m$ and $k \geq m / p-1$.
1.3. Tools. We will need the following result that gives simple necessary and sufficient conditions for the existence of an n-setpartition, and in the case of existence, shows that an n-setpartition may always be found with constituent cardinalities of as near equal a size as possible [2], [14].

Proposition 1.3. Let n be a positive integer. A sequence S has an n-setpartition $A=A_{1}, \ldots, A_{n}$ if and only if $|S| \geq n$ and $h(S) \leq n$. Furthermore, if S has an n-setpartition, then S has an n-setpartition $B=$ B_{1}, \ldots, B_{n} with $\left|\left|B_{i}\right|-\left|B_{j}\right|\right| \leq 1$ for all i and j.

We will also make use of the following classical lower bound for sumsets in a prime order group [4].

Cauchy-Davenport Theorem (CDT). If $A_{1}, \ldots, A_{n} \subseteq \mathbb{Z} / p \mathbb{Z}$ are nonempty with p prime, then

$$
\left|\sum_{i=1}^{n} A_{i}\right| \geq \min \left\{p, \sum_{i=1}^{n}\left|A_{i}\right|-n+1\right\}
$$

Finally, we will need the following partition analog of CDT, which will be our main tool for proving Theorem 1.1 [13], [14].

Theorem 1.4. Let G be an abelian group of order $m \geq 2$, let $S \in \mathcal{F}(G)$, let $S^{\prime} \mid S$, let $P=P_{1}, \ldots, P_{n}$ be an n-setpartition of S^{\prime}, and let p be the smallest prime divisor of m. If $n \geq \min \left\{m / p-1,\left(\left|S^{\prime}\right|-n+1\right) / p-1\right\}$, then either:
(i) there is an n-setpartition $A=A_{1}, \ldots, A_{n}$ of a subsequence $S^{\prime \prime}$ of S with $\left|S^{\prime}\right|=\left|S^{\prime \prime}\right|, \sum_{i=1}^{n} P_{i} \subseteq \sum_{i=1}^{n} A_{i}$, and

$$
\left|\sum_{i=1}^{n} A_{i}\right| \geq \min \left\{m,\left|S^{\prime}\right|-n+1\right\}
$$

(ii) there is a proper, nontrivial subgroup H_{a} of index a, a coset $\alpha+H_{a}$ such that all but e terms of S are from $\alpha+H_{a}$, where

$$
e \leq \min \left\{a-2,\left\lfloor\frac{\left|S^{\prime}\right|-n}{\left|H_{a}\right|}\right\rfloor-1\right\}
$$

and an n-setpartition $B=B_{1}, \ldots, B_{n}$ of a subsequence $S_{0}^{\prime \prime} \in \mathcal{F}\left(\alpha+H_{a}\right)$ with $S_{0}^{\prime \prime}\left|S,\left|S_{0}^{\prime \prime}\right| \leq n+\left|H_{a}\right|-1\right.$, and $\sum_{i=1}^{n} B_{i}=n \alpha+H_{a}$.
2. Proof of Theorem 1.1. We proceed with the proof of all three parts simultaneously. In what follows, we will often make use of the fact that the function $f(a)=M / a+a$ for $M, a>0$ (and usually M will be of the form m or $m / x)$ is maximized at a boundary value of a. Thus for example, if $a \mid m$, then $m / a+a \leq m / p+p$. We begin by showing all three cases imply the following claim. Note this completes the case of $|G|$ prime.

Claim 1. Either the conclusion of Theorem 1.1 is true, or there exists a proper, nontrivial subgroup H_{a} of index a such that $\Sigma\left(S_{a}\right)=H_{a}$ and all but $e \leq a-2$ terms of S are from H_{a}, where S_{a} is the subsequence of S consisting of all terms from H_{a}.

Proof. First suppose (i) holds. Observe that $\Sigma_{h+t}\left(S 0^{h-1}\right)=\Sigma_{\geq t+1}(S) \cap$ $\Sigma_{\leq h+t}(S)$. Since $h \geq h(S)$ and $|S| \geq m+t \geq t+1$, Proposition 1.3 yields an $(h+t)$-setpartition P of $S 0^{h-1}$. Since $h+t \geq m / p-1$, we can apply Theorem 1.4 to P. If (i) of Theorem 1.4 holds, then

$$
\left|\Sigma_{h+t}\left(S 0^{h-1}\right)\right| \geq \min \{m,(|S|+h-1)-(h+t)+1\}=m=|G|
$$

Hence $\Sigma(S) \subseteq G=\Sigma_{h+t}\left(S 0^{h-1}\right)=\Sigma_{\geq t+1}(S) \cap \Sigma_{\leq h+t}(S) \subseteq \Sigma(S)$ holds trivially. So we may assume that (ii) of Theorem 1.4 holds. Consequently, all but $e \leq a-2$ terms of $S 0^{h-1}$ are from $\alpha+H_{a}$, where H_{a} is a proper, nontrivial subgroup of index a.

Suppose that $0 \notin \alpha+H_{a}$. As there are only $e \leq a-2$ terms of $S 0^{h-1}$ outside $\alpha+H_{a}$, it follows that $h-1 \leq a-2$. Since $h \geq h(S),|S| \geq m+t$, and $e \leq a-2$, it follows that

$$
\begin{aligned}
m+t+h-1 & \leq\left|S 0^{h-1}\right| \leq\left|H_{a}\right| h+e \\
& \leq \frac{m}{a} h+a-2 \leq \frac{m}{a}(a-1)+a-2
\end{aligned}
$$

Thus $h+t \leq a-m / a-1 \leq m / p-3$, contradicting (i). So we may assume $0 \in \alpha+H_{a}$, whence without loss of generality $\alpha=0$. Furthermore, since (ii) of Theorem 1.4 holds for $S 0^{h-1}$, it follows that $\Sigma_{h+t}\left(S_{a} 0^{h-1}\right)=H_{a}$, where S_{a} is the subsequence of terms of S from H_{a}. As $\nu_{0}\left(S_{a} 0^{h-1}\right)=h-1<h+t$ and all terms of $S_{a} 0^{h-1}$ are from H_{a}, it follows that $\Sigma\left(S_{a}\right)=H_{a}$, yielding the claim. So we may assume either (ii) or (iii) holds, whence $\Sigma(S) \neq G$.

Note that $\Sigma_{|S|}\left(S 0^{|S|-1}\right)=\Sigma(S)$. In view of Proposition $1.3, S 0^{|S|-1}$ has an $|S|$-setpartition P. Since $|S| \geq m+t \geq m$, we can apply Theorem 1.4 to P. If (i) of Theorem 1.4 holds, then $|\Sigma(S)|=\left|\Sigma_{|S|}\left(S 0^{|S|-1}\right)\right| \geq \min \{m, 2|S|-$ $1-|S|+1\}=m$, whence $\Sigma(S)=G$, a contradiction. Therefore we can assume that (ii) of Theorem 1.4 holds. Thus there exists a proper, nontrivial subgroup H_{a} of index a, and $\alpha \in G$, such that all but $e \leq a-2$ terms of $S 0^{|S|-1}$ are from $\alpha+H_{a}$. Since $\nu_{0}\left(S 0^{|S|-1}\right)=|S|-1 \geq m-1>a-2$, it follows that $0 \in \alpha+H_{a}$, whence we can assume $\alpha=0$. Furthermore, $\Sigma\left(S_{a}\right)=H_{a}$ as before, completing the proof of the claim.

Assume H_{a} is chosen to satisfy Claim 1 with minimal cardinality. Note that $\left|S_{a}\right|=|S|-e \geq m-e$. Since $\Sigma\left(S_{a}\right)=H_{a}$, it follows that $\Sigma(S)=$ $H_{a}+\Sigma\left(0 S S_{a}^{-1}\right)$, whence $\Sigma(S)$ is periodic. Consequently, it suffices to show $\Sigma_{\geq t+1}(S) \cap \Sigma_{\leq h+t}(S)=\Sigma(S)$.

If $h \leq a$, then
$m \leq|S| \leq\left(\frac{m}{a}-1\right) h+e \leq\left(\frac{m}{a}-1\right) h+a-2 \leq\left(\frac{m}{a}-1\right) a+a-2=m-2$, a contradiction. Therefore we can assume $h \geq a+1$.

Note that $|S| \geq m+t \geq m / 2+t \geq m / a+a-2+t \geq m / a+t+e$. Hence $\left|S_{a}\right| \geq m / a+t$. As $\Sigma\left(S_{a}\right)=H_{a}$, it follows by a simple greedy algorithm that there exists a subsequence R of S_{a} with $|R|=m / a$ and $\Sigma(R)=H_{a}$. Since $\left|S_{a}\right| \geq m / a+t$, there exists a subsequence $T_{a} \mid S_{a} R^{-1}$ with $\left|T_{a}\right|=t$. Thus every term of $\Sigma(S)$ can be expressed as a sum of all t terms from T_{a}, at most m / a terms of R (and at least one), and at most $e \leq a-2$ terms not in H_{a}, whence $\Sigma(S)=\Sigma_{\geq t+1}(S) \cap \Sigma_{\leq m / a+t+a-2}(S)$. Consequently, we may assume

$$
\begin{equation*}
h \leq \frac{m}{a}+a-3 \tag{7}
\end{equation*}
$$

else the proof is complete.
Let $S_{a}^{\prime}=S_{a} T_{a}^{-1}$. If $\left|S_{a}^{\prime}\right| \leq h-1$, then $h-1 \geq\left|S_{a} T_{a}^{-1}\right| \geq m-e \geq m-a+2$. Thus (7) implies that

$$
m \leq \frac{m}{a}+2 a-6 \leq 2+2 \frac{m}{2}-6=m-4
$$

a contradiction. Therefore we can assume $\left|S_{a}^{\prime}\right| \geq h$. As $h(S) \leq h$, Proposition 1.3 yields an h-setpartition $A=A_{1}, \ldots, A_{h}$ of S_{a}^{\prime} with $\left|\left|A_{i}\right|-\left|A_{j}\right|\right| \leq 1$ for all i and j. Assume without loss of generality that $\left|A_{1}\right| \geq \cdots \geq\left|A_{h}\right|$. Let $\lfloor(m-a+2) / h\rfloor=(m-a+2-\epsilon) / h$. Then, since $\left|S_{a}^{\prime}\right|=|S|-e-t \geq$ $m-a+2$, it follows that

$$
\begin{equation*}
\left|A_{i}\right| \geq \frac{m-a+2-\epsilon}{h} \quad \text { for all } i \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\left|A_{i}\right| \geq \frac{m-a+2-\epsilon}{h}+1>\frac{m-a+2}{h} \quad \text { for all } i \leq \epsilon \tag{9}
\end{equation*}
$$

Let x be minimal such that $\sum_{i=1}^{x}\left|A_{i}\right| \geq m / a$ (it exists since $\left|S_{a}^{\prime}\right|=$ $\left.\left|S_{a}\right|-t \geq m / a\right)$. We proceed to show that

$$
\begin{equation*}
x \leq \frac{m h / a}{m-a+2}+1 \tag{10}
\end{equation*}
$$

If $x \leq \epsilon$, then (9) implies that

$$
x \leq\left\lceil\frac{m h / a}{m-a+2}\right\rceil \leq \frac{m h / a}{m-a+2}+1
$$

yielding (10). If $x>\epsilon$ then by (8) and (9),

$$
\begin{equation*}
x \leq\left\lceil\frac{(m / a-\epsilon) h}{m-a+2-\epsilon}\right\rceil \leq \frac{(m / a-\epsilon) h}{m-a+2-\epsilon}+1 \tag{11}
\end{equation*}
$$

If (10) is false, then comparing with (11) yields $m<m / a+a-2 \leq m-1$, a contradiction. Consequently, (10) always holds.

Suppose $h-e<x$. It follows from (10) and $e \leq a-2$ that

$$
\begin{equation*}
\left(1-\frac{m / a}{m-a+2}\right) h \leq a-2 . \tag{12}
\end{equation*}
$$

If $\frac{m / a}{m-a+2}>\frac{1}{2}$, then $2 \leq a \leq m / 2$ would imply that $m \leq 2 m / a+a-3 \leq m-1$, a contradiction. Therefore $\frac{m / a}{m-a+2} \leq \frac{1}{2}$, which combined with (12) yields

$$
\begin{equation*}
a-2 \geq \frac{1}{2} h . \tag{13}
\end{equation*}
$$

In view of $h-e<x, e \leq a-2$, and $h \geq a+1$, it follows that

$$
a+1 \leq h \leq x-1+e \leq x+a-3
$$

implying $x \geq 4$. Thus (10) and (13) imply that

$$
3 m-3 a+6=3(m-a+2) \leq \frac{m}{a}(2 a-4)=2 m-4 \frac{m}{a},
$$

so that

$$
\begin{equation*}
m \leq 3 a-4 \frac{m}{a}-6 . \tag{14}
\end{equation*}
$$

If $a \leq m / 3$, then (14) yields $m \leq 3 m / 3-4 \cdot 3-6=m-18$, a contradiction. Therefore we may assume that $a=m / 2$, whence $\left|H_{a}\right|=2$. Thus S_{a} has exactly one distinct term equal to the generator of H_{a}. Consequently, in view of $h(S) \leq h$ and $e \leq a-2$,

$$
m \leq|S|=\left|S_{a}\right|+e \leq\left|S_{a}\right|+a-2=\left|S_{a}\right|+\frac{m}{2}-2 \leq h+\frac{m}{2}-2 .
$$

Hence $h \geq m / 2+2=m / a+a$, contradicting (7). So we may assume $h-e \geq x$.

Let $S_{a}^{\prime \prime}=A_{1} \cdots A_{x} \cdots A_{h-e}$. In view of the definition of x, and since $h-e \geq x$, it follows that $\left|S_{a}^{\prime \prime}\right| \geq m / a$. Let B be the $(h-e+t)$-setpartition of $S_{a}^{\prime \prime} T_{a} 0^{h-e-1}$ defined by adding a zero to each A_{i} with $i>1$, and including each term of T_{a} as a singleton set.

Suppose $\left|H_{a}\right|$ is prime. Applying CDT to B, it follows that there are at least

$$
\left|S_{a}^{\prime \prime}\right|+t+(h-e-1)-(h-e+t)+1=\left|S_{a}^{\prime \prime}\right| \geq m / a
$$

elements in the sumset of B, whence the sumset is H_{a}. Thus every element of $\Sigma(S)$ can be expressed as a sum of at most $h-e+t$, and at least

$$
h-e+t-\nu_{0}\left(S_{a}^{\prime \prime} T_{a} 0^{h-e-1}\right)=t+1,
$$

terms from $S_{a}^{\prime \prime} T_{a}$, and at most e terms not in H_{a}. Hence $\Sigma_{\geq t+1}(S) \cap \Sigma_{\leq h+t}(S)$ $=\Sigma(S)$, as desired. So we can assume $\left|H_{a}\right|=m / a$ is not prime. Since
$0<H_{a}<G$, it follows that m has at least three prime factors, which completes the proof of (ii). Consequently, since

$$
\frac{m}{p}-1=\frac{m}{2 p}+\frac{m}{2 p}-1 \geq \frac{m}{2 p}+\frac{m}{p q}+q-3
$$

both (i) and (iii) imply

$$
\begin{equation*}
h+t \geq \frac{m}{p q}+q-3 \tag{15}
\end{equation*}
$$

Suppose $h-e+t \leq m / a p^{\prime}-2$, where p^{\prime} is the smallest prime divisor of m / a. Then $e \leq a-2$ implies that

$$
\begin{equation*}
h+t \leq \frac{m}{a p^{\prime}}+a-4 \tag{16}
\end{equation*}
$$

If $a=p$, then $p^{\prime}=q$, whence (16) implies that $h+t \leq m / p q+p-4 \leq$ $m / p q+q-4$. Otherwise, since $\left|H_{a}\right|$ is composite, it follows that $q \leq a \leq$ $m / p q$, whence, in view of $p \leq p^{\prime}$ and (16),

$$
h+t \leq \frac{m}{a p^{\prime}}+a-4 \leq \frac{m}{a p}+a-4 \leq \frac{m}{q p}+q-4
$$

In both cases we contradict (15). So we may assume that

$$
\begin{equation*}
h-e+t \geq \frac{m}{a p^{\prime}}-1 \tag{17}
\end{equation*}
$$

Thus we can apply Theorem 1.4 with $S^{\prime}=S_{a}^{\prime \prime} T_{a} 0^{h-e-1}, S=S_{a} 0^{h-e-1}$, $n=h-e+t, G=H_{a}$, and $P=B$.

Suppose (i) of Theorem 1.4 holds. Then there exists $S^{\prime \prime} \mid S_{a} 0^{h-e-1}$ of length $\left|S_{a}^{\prime \prime}\right|+t+h-e-1$ with an $(h-e+t)$-setpartition whose sumset has cardinality at least

$$
\min \left\{\frac{m}{a},\left|S_{a}^{\prime \prime}\right|+t+(h-e-1)-(h-e+t)+1\right\}=\min \left\{\frac{m}{a},\left|S_{a}^{\prime \prime}\right|\right\}=\frac{m}{a}
$$

Hence $\Sigma_{\geq h-e+t-t^{\prime}}\left(S^{\prime \prime}\right) \cap \Sigma_{\leq h-e+t}\left(S^{\prime \prime}\right)=H_{a}$, where

$$
t^{\prime}=\nu_{0}\left(S^{\prime \prime}\right) \leq \nu_{0}\left(S_{a} 0^{h-e-1}\right)=h-e-1
$$

Consequently, $h-e+t-t^{\prime} \geq t+1$. Thus every term of $\Sigma(S)$ can be expressed as a sum of at most $h-e+t$ terms from $S^{\prime \prime}$ (and at least $h-e+t-t^{\prime} \geq t+1$ terms), and at most e terms not in H_{a}. Hence $\Sigma(S)=\Sigma_{\geq t+1}(S) \cap \Sigma_{\leq h+t}(S)$, as desired. So we can assume (ii) of Theorem 1.4 holds, whence there exists a proper, nontrivial subgroup $H_{k a}$ of index k in H_{a}, and $\beta \in H_{a}$, such that all but $e^{\prime} \leq k-2$ terms of $S_{a} 0^{h-e-1}$ are from $\beta+H_{k a}$.

Suppose $0 \notin \beta+H_{k a}$. Since there are only $e^{\prime} \leq k-2$ terms of $S_{a} 0^{h-e-1}$ outside of $H_{k a}$, it follows that $h-e-1 \leq k-2$. Thus, in view of (17) and $e \leq a-2$, and $2 \leq a, k \leq m / 2$, it follows that

$$
\begin{align*}
m-1 & \leq m+\frac{m}{a p^{\prime}}-2 \leq m+t+h-e-1 \leq\left|S 0^{h-e-1}\right| \tag{18}\\
& \leq\left|H_{k a}\right| h+e^{\prime}+e \leq \frac{m}{k a}(k+e-1)+k-2+e
\end{align*}
$$

$$
\begin{aligned}
& \leq \frac{m}{k a}(k+a-3)+k+a-4=\left(\frac{m}{a}+a\right)+\left(\frac{m}{k}+k\right)-3 \frac{m}{k a}-4 \\
& \leq\left(\frac{m}{2}+2\right)+\left(\frac{m}{2}+2\right)-3 \frac{m}{k a}-4=m-3 \frac{m}{k a} \leq m-3
\end{aligned}
$$

a contradiction. So we may assume $0 \in \beta+H_{k a}$, whence without loss of generality $\beta=0$.

Consequently, all but at most $k-2+a-2 \leq k a-4$ terms of S are from the same nontrivial subgroup $H_{k a}<H_{a}$. Furthermore, since (ii) of Theorem 1.4 holds for $S_{a} 0^{h-e-1}$, it follows that $\Sigma_{h-e+t}\left(S_{k a} 0^{h-e-1}\right)=H_{k a}$, where $S_{k a}$ is the subsequence of terms of S_{a} from $H_{k a}$. Hence, as $\nu_{0}\left(S_{a} 0^{h-e-1}\right)=$ $h-e-1<h-e+t$, it follows that $\Sigma\left(S_{k a}\right)=H_{k a}$. Thus $H_{k a}$ contradicts the minimality of H_{a}, completing the proof of both (i) and (iii).
3. Proof of Theorem 1.2. Since $|S| \geq m+m / p-1$, let $|S|=m+k$ with $k \geq m / p-1$. Note that

$$
\Sigma_{m}(S)=\sigma(S)-\Sigma_{|S|-m}(S)=\sigma(S)-\Sigma_{k}(S)
$$

Thus it suffices to show that $\sigma(S) \in \Sigma_{k}(S)$, and that $\Sigma_{k}(S)$ is periodic.
By translation we may assume 0 is the term with greatest multiplicity $h=h(S)$ in S. Since by hypothesis $h=h(S) \leq|S|-m=k$, let $t=k-h \geq 0$ and $S^{\prime}=S 0^{-h}$. Note that $\left|S^{\prime}\right|=m+k-h=m+t$, and $h\left(S^{\prime}\right) \leq h(S)=h$. Since $h+t=k \geq m / p-1$, it follows that S^{\prime} satisfies (i) of Theorem 1.1, whence

$$
\Sigma_{\geq t+1}\left(S^{\prime}\right) \cap \Sigma_{\leq h+t}\left(S^{\prime}\right)=\Sigma_{\geq t+1}\left(S^{\prime}\right) \cap \Sigma_{\leq k}\left(S^{\prime}\right)=\Sigma\left(S^{\prime}\right)
$$

and $\Sigma\left(S^{\prime}\right)$ is periodic.
Thus for every $z \in \Sigma\left(S^{\prime}\right)=\Sigma_{\geq t+1}\left(S^{\prime}\right) \cap \Sigma_{\leq k}\left(S^{\prime}\right)$, there exists a subsequence T_{z} of S^{\prime} with sum z such that

$$
k-h+1=t+1 \leq\left|T_{z}\right| \leq k
$$

Since $\left|S S^{\prime-1}\right|=h$, adding an appropriate number of zeros to T_{z} yields a k-term subsequence whose sum is z. Consequently, $\Sigma\left(S^{\prime}\right) \subseteq \Sigma_{k}(S)$. Since $S^{\prime}=S 0^{-h}$, it follows that $\Sigma_{k}(S) \backslash 0 \subseteq \Sigma\left(S^{\prime}\right)$. However, as $\left|S^{\prime}\right|=m+t \geq$ $m=|G| \geq D(G)$, it follows that $0 \in \Sigma\left(S^{\prime}\right)$ as well. Hence the above implies that

$$
\Sigma\left(S^{\prime}\right)=\Sigma_{k}(S)
$$

As $\Sigma\left(S^{\prime}\right)$ is periodic, it follows that $\Sigma_{k}(S)$ is periodic, and since $\sigma(S)=$ $\sigma\left(S^{\prime}\right) \in \Sigma\left(S^{\prime}\right)$, it follows that $\sigma(S) \in \Sigma_{k}(S)$, completing the proof as remarked earlier.

Acknowledgments. We thank the referee for his helpful suggestions, and for pointing out an inaccuracy in the original lower bound examples.

References

[1] A. Bialostocki and P. Dierker, On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math. 110 (1992), 1-8.
[2] A. Bialostocki, P. Dierker, D. Grynkiewicz and M. Lotspeich, On some developments of the Erdős-Ginzburg-Ziv Theorem II, Acta Arith. 110 (2003), 173-184.
[3] F. Chen and S. Savchev, Long n-zero-free sequences in finite cyclic groups, Discrete Math., to appear.
[4] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32.
[5] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10F (1961), 41-43.
[6] P. Erdős and R. L. Graham, Old and New Results in Combinatorial Number Theory, Monograph. L'Enseign. Math. 28, Univ. de Genève, Geneva, 1980.
[7] C. Flores and O. Ordaz, On sequences with zero sum in abelian group, in: Volumen de homenaje al Dr. Rodolfo A. Ricabarra, Vol. Homenaje 1, Univ. Nac. del Sur, Baha Blanca, 1995, 99-106.
[8] W. Gao, An addition theorem for finite cyclic groups, Discrete Math. 163 (1997), 257-265.
[9] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, Expo. Math. 24 (2006), 337-369.
[10] W. Gao, A. Panigrahi and R. Thangadurai, On the structure of p-zero-sum free sequences and its application to a variant of Erdős-Ginzburg-Ziv theorem, Proc. Indian Acad. Sci. Math. Sci. 115 (2003), 67-77.
[11] W. Gao and R. Thangadurai, A variant of Kemnitz conjecture, J. Combin. Theory Ser. A 107 (2004), 69-70.
[12] W. D. Gao, R. Thangadurai and J. Zhuang, Addition theorems on the cyclic groups of order pl, Discrete Math., to appear.
[13] D. Grynkiewicz, On a partition analog of the Cauchy-Davenport theorem, Acta Math. Hungar. 107 (2005), 161-174.
[14] -, On a conjecture of Hamidoune for subsequence sums, Integers 5 (2005), no. 2, A7, 11 pp . (electronic).
[15] T. Yuster and B. Peterson, A generalization of an addition theorem for solvable groups, Canad. J. Math. 3 (1984), 529-536.

Departamento de Matemática Aplicada IV Departamento de Matemáticas
Universitat Politècnica de Catalunya y Centro ISYS
Campus Nord, Edifici C3 Facultad de Ciencias
C. Jordi Girona, 1-3

08034 Barcelona, Spain
E-mail: diambri@hotmail.com
Departamento de Matemáticas Puras y Aplicadas
Universidad Simón Bolivar
Ap. 89000
Caracas 1080-A, Venezuela
E-mail: mtvarela@usb.ve

[^0]: 2000 Mathematics Subject Classification: Primary 11B75.
 Key words and phrases: abelian group, Erdős-Ginzburg-Ziv theorem, zero-sum sequence.

 Research of D. J. Grynkiewicz supported in part by the National Science Foundation, as an MPS-DRF postdoctoral fellow, under grant DMS-0502193.

 Research of O. Ordaz supported in part by CRIPTOSUM CDCH project.

