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1. Introduction. Let F(G) denote the free abelian monoid over the set
G with monoid operation written multiplicatively and given by concatena-
tion, i.e., F(G) consists of all finite sequences over G modulo the equivalence
relation allowing terms to be permuted. Despite possible confusion, the ele-
ments of F(G) will be referred to simply as sequences, and if indeed order
or being infinite are needed in a sequence, it will be explicitly stated when
the sequence is first introduced.

Now let G be an abelian group of order m ≥ 2. The Erdős–Ginzburg–
Ziv theorem states that every sequence in G of length 2m − 1 contains
an m-term subsequence with zero sum [5]. There have been many related
inverse theorems describing the structure of the sequences S in G with length
|S| = m + k, 1 ≤ k ≤ m− 2, not having any m-term subsequence with zero
sum. For cyclic groups of order m, the structure of S has been described by
several authors: when k = m − 2, by Yuster and Peterson in [15], and by
Bialostocki and Dierker in [1]; when k = m− 3, by Flores and Ordaz in [7];
when m − ⌊m/4⌋ − 2 ≤ k ≤ m − 2, by Bialostocki, Dierker, Grynkiewicz,
and Lotspeich in [2] (using a related result of Gao from [8]); and when
k ≥ ⌈(m − 1)/2⌉, by Chen and Savchev in [3].

1.1. Terminology. For S ∈ F(G), we let |S| be the length of S, and
employ standard multiplicative monoid notation; in particular, ST denotes
the concatenation of S and T , and S′ |S indicates that S′ is a subsequence
of S, in which case SS′−1 denotes the subsequence of S obtained by deleting
all terms from S′. Let σ(S) denote the sum of the terms of S, unless S is
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the empty sequence, in which case σ(S) := 0. Let

Σn(S) = {σ(S′) : S′ |S and |S′| = n},

Σ≤t(S) =

t
⋃

n=1

Σn(S), Σ≥t(S) =

|S|
⋃

n=t

Σn(S), Σ(S) = Σ≤|S|(S).

For x ∈ G, let νx(S) be the multiplicity of x in S, and let h(S) =
maxx∈G{νx(S)}.

A subset A of the abelian group G is periodic if A is a union of H-cosets
for some nontrivial subgroup H ≤ G. We will often write Ha for H if the
index of H in G is a. If B is another subset of G, then the sumset A + B is
{a+b : a ∈ A, b ∈ B}. We will often identify a singleton set with its element
for notational simplicity.

A sequence S is squarefree if h(S) ≤ 1, in which case S can be considered
as a set. An n-setpartition of a sequence S is a sequence of n nonempty,
squarefree subsequences, say A = A1, . . . , An, such that S = A1 · · ·An. Note
that we do not use multiplicative notation for the terms of a setpartition
in order to distinguish the setpartition, A1, . . . , An, from the sequence it
partitions/factorizes, A1 · · ·An.

Finally, the Davenport constant of G, denoted D(G), is the least integer
n such that every sequence from G of length n contains a nonempty sub-
sequence whose terms sum to zero. A simple argument (see [6]) shows that
D(G) ≤ |G|.

1.2. Results. We have the following open problem:

Problem 1 ([10, 12]). For an abelian group G of order m ≥ 2 and a

positive integer k, determine the exact value or a bound of

h(G, k) = min{h(S) : S ∈ F(G) with |S| = |G| + k and 0 6∈ Σ|G|(S)}.

There are a few results pertaining to this problem. When G is cyclic of
order m, we have h(G, k) ≥ k + 1 provided m − ⌊m/4⌋ − 2 ≤ k ≤ m − 2
(see [8]); h(G, k) ≥ k +1 provided m is prime with 1 ≤ k ≤ m− 2 (see [11]);
h(G, m − 2) = m − 1 (see [1] or [15]); and h(G, m − 3) = m − 1 (see [7]).

The main results in this paper confirm the following two conjectures.

Conjecture 1.1 ([9, Conjecture 6.9], [12]). Let G be a cyclic group of

order m ≥ 2, and p the smallest prime divisor of m. Let S ∈ F(G \ 0) with

|S| = m. If h = h(S) ≥ m/p − 1, then Σ≤h(S) = Σ(S).

Conjecture 1.1 was verified for cyclic groups of prime power order in
[12]. The following example shows that we cannot hope, in general, for the
equality of the conjecture to hold for smaller h. Indeed, the equality fails
for h ≤ m/p − 2 and m composite when m/p 6= 0, 1 mod h, and, if p = 2,
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m/p 6= −1 mod h. In particular, it does not hold when h = m/p − 2 for
composite m > 10.

Let G = Z/mZ with m composite, let p be the smallest prime divisor
of m, and let H ≤ G be the subgroup of index m/p. Let h ≤ m/p − 2
be a positive integer such that m/p 6= 0, 1 mod h, and, if p = 2, such that
m/p 6= −1 mod h as well. Hence, in particular, h > 1. Let

t =

⌈

m + h

ph

⌉

=
m + h + ph − α

ph
, where 0 < α ≤ ph.

Thus

(1) ((t − 1)p − 1)h < m = ((t − 1)p − 1)h + α ≤ (tp − 1)h,

whence 1 < h ≤ m/p− 2 implies that 2 ≤ t ≤ m/p. Let A = H ∪ (1 + H) ∪
· · · ∪ ((t − 1) + H), and let W be the sequence consisting of all elements of
A\0, each with multiplicity h. Note that, in view of (1) and 2 ≤ t ≤ m/p, we
have |W | = (tp−1)h ≥ m. Hence let S be a subsequence of W with |S| = m
which contains some element y ∈ (t−1)+H with multiplicity min{α, h}, as
well as all the (t−1)p−1 elements from (H \0)∪(1+H)∪· · ·∪((t−2)+H),
each with multiplicity h, which is possible since m = ((t − 1)p − 1)h + α.
Note that S contains exactly α elements from (t − 1) + H. Since t ≥ 2, it
follows that h(S) = h. Note that (1) implies that

(2)
m

p
= (t − 1)h −

h − α

p
.

Hence h − α ≡ 0 mod p. We proceed to show, in two cases depending on
the value of α, that Σ≤h(S) 6= Σ(S), so S does not satisfy the conclusion
of Conjecture 1.1 for h ≤ m/p − 2, under the assumed restrictions on m/p
modulo h.

Suppose first that α < h. Then h−α ≡ 0 mod p implies that α ≤ h− p.
Hence (1) yields m/p ≤ (t−1)h−1, whence h ≤ m/p−2 forces t ≥ 3. Thus
let x ∈ 1 + H and x′ ∈ (t − 2) + H be distinct elements. Note that

αy + (h − α)x′ + x ∈ Σ(S) ∩ ((t − 2)h + α + 1 + H).

Thus if (t − 2)h + α + 1 < m/p, then

αy + (h − α)x′ + x /∈ Σ≤h(S) ⊆ {0, 1, . . . , α(t − 1) + (h − α)(t − 2)} + H,

whence Σ(S) 6= Σ≤h(S), as desired. Therefore by (2) we can assume that

(t − 2)h + α + 1 ≥
m

p
= (t − 1)h −

h − α

p
,

whence α ≤ h − p implies that p ≤ 2. Thus p = 2 and α = h − p = h − 2
(else the previous arguments yield p < 2), whence m/p = (t − 1)h − 1
in view of (2). Consequently, m/p ≡ −1 mod h and p = 2, contradicting
the assumptions on h.
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Next suppose that α ≥ h. If α = h, then (2) implies that m/p ≡ 0 mod h,
which is not the case. Hence α > h. Since t ≥ 2 and α > h, let x ∈ 1 + H
with x |S and x 6= y. Observe that hy +x ∈ Σ(S)∩ ((t−1)h+1+H). Thus
if

(3) (t − 1)h + 1 <
m

p
,

then hy + x /∈ Σ≤h(S), whence Σ(S) 6= Σ≤h(S), as desired. However, if
α > h + p, then (2) implies

(t − 1)h + 1 =
m + h − α

p
+ 1 <

m

p
,

whence (3) holds and Σ(S) 6= Σ≤h(S). Therefore we may instead assume
α ≤ h + p and that (3) does not hold. Thus (2) and α ≥ h imply that

(t − 1)h ≤
m

p
≤ (t − 1)h + 1,

whence m/p ≡ 0 or 1 mod h, contradicting the assumptions on h, and com-
pleting the example.

Conjecture 1.2 ([9, Conjecture 7.6], [12]). Let G be a cyclic group of

order m ≥ 2, and p the smallest prime divisor of m. Let k be an integer

such that k ≥ m/p − 1, and let S ∈ F(G) with |S| = m + k. If 0 6∈ Σm(S),
then h(S) ≥ k + 1.

Conjecture 1.2 was verified for cyclic groups of prime power order in
[12]. The following example shows we cannot hope, in general, for the bound
h(S) ≥ k + 1 of Conjecture 1.2 to be true for smaller k. Indeed, the bound
fails whenever

(4)
m − d

(t − 1)d
> k ≥

m + 1

td − 2

for integers t, d ≥ 2 with d |m. In particular, taking d = p and t = 2, we
see that for k = m/p − 2 and m ≥ 27 composite and odd, the bound of
Conjecture 1.2 does not hold. Thus, though it appears the bound on k for
p = 2 could be improved, in all other cases it is tight.

Let G = Z/mZ, let H ≤ G be the subgroup of index m/d, let W be the
sequence consisting of all elements of H ∪ (1 + H)∪ · · · ∪ ((t− 1) + H), each
with multiplicity k, and let W ′ be the subsequence consisting of all elements
of (1 + H)∪ · · · ∪ ((t− 1) + H), each with multiplicity k. Assume (4) holds.
Hence t ≤ m/d − 1 and

|W | = tdk ≥ m + 2k + 1,(5)

|W ′| = (t − 1)dk < m − d.(6)

Note that Σ≤k(W ) ⊆ {0, 1, . . . , k(t − 1)} + H. Furthermore, (4) implies
that k(t − 1) < m/d − 1. We proceed to define a subsequence S |W with
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|S| = m + k and σ(S) ∈ {k(t − 1) + 1, k(t − 1) + 2, . . . , m/d − 1} + H,
which is disjoint from Σ≤k(W ) and thus also from Σk(S). Note that such a
subsequence will have h(S) ≤ h(W ) ≤ k and σ(S) /∈ Σk(S) = Σ|S|−m(S).
Moreover, in view of the basic correspondence σ(S) − Σ|S|−m(S) = Σm(S),
the latter conclusion will imply 0 /∈ Σm(S), as desired. Thus it remains to
construct S.

Let σ(W ) ≡ α mod (m/d) with 0 ≤ α ≤ m/d − 1. If α ≥ k(t − 1) + 1,
then in view of (5) and (6) we can find a subsequence S |W of length m + k
obtained by removing an appropriate number of terms all contained in H;
hence σ(S)+H = σ(W )+H = α+H ⊆ {k(t−1)+1, . . . , m/d−1}+H and
|S| = m + k, yielding a subsequence with the desired properties. Therefore
we may assume α ≤ k(t − 1). Hence ⌈(α + 1)/(t − 1)⌉ ≤ k + 1 ≤ kd. In
this case, we can remove ⌈(α + 1)/(t − 1)⌉ − 1 terms from W contained in
(t − 1) + H, and one appropriately chosen additional term contained in
(1 + H) ∪ · · · ∪ ((t − 1) + H), to obtain a subsequence S′ |W with σ(S′) ∈
m/d − 1 + H. In view of (5) and ⌈(α + 1)/(t − 1)⌉ ≤ k + 1, it follows that
|S′| ≥ m + k. Thus, as in the previous case, we can remove an appropriate
number of terms from S′ all contained in H to get a subsequence S |S′

with |S| = m + k and σ(S) + H = σ(S′) + H ′ = m/d − 1 + H, yielding a
subsequence with the desired properties.

Conjecture 1.1 will follow from case (i) with t = 0 of the theorem below,
which is our first main result.

Theorem 1.1. Let G be an abelian group of order m ≥ 2, let p be the

smallest prime divisor of m, let q be the smallest prime divisor of m/p (if
m is composite), let S ∈ F(G \ 0), and let h ≥ h(S) and t ≥ 0 be integers.

If |S| ≥ m + t, then any one of the following conditions implies that Σ(S)
is periodic with

Σ≥t+1(S) ∩ Σ≤h+t(S) = Σ(S).

(i) h + t ≥ m/p − 1,
(ii) Σ(S) 6= G and m = pq,
(iii) Σ(S) 6= G and h + t ≥ m/pq + q − 3.

We will then use Theorem 1.1 to derive the following theorem, which
provides a mild generalization of Conjecture 1.2.

Theorem 1.2. Let G be an abelian group G of order m, let S ∈ F(G),
and let p be the smallest prime divisor of m. If |S| ≥ m+max{h(S), m/p−1},
then 0 ∈ Σm(S) and Σm(S) is periodic.

Let G be an abelian group of order m, and let p be the smallest prime
divisor of m. From Theorem 1.2 it follows that h(G, k) ≥ k + 1 for every G
with |G| = m and k ≥ m/p − 1.
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1.3. Tools. We will need the following result that gives simple necessary
and sufficient conditions for the existence of an n-setpartition, and in the
case of existence, shows that an n-setpartition may always be found with
constituent cardinalities of as near equal a size as possible [2], [14].

Proposition 1.3. Let n be a positive integer. A sequence S has an

n-setpartition A = A1, . . . , An if and only if |S| ≥ n and h(S) ≤ n. Fur-

thermore, if S has an n-setpartition, then S has an n-setpartition B =
B1, . . . , Bn with | |Bi| − |Bj| | ≤ 1 for all i and j.

We will also make use of the following classical lower bound for sumsets
in a prime order group [4].

Cauchy–Davenport Theorem (CDT). If A1, . . . , An ⊆ Z/pZ are

nonempty with p prime, then

∣

∣

∣

n
∑

i=1

Ai

∣

∣

∣
≥ min

{

p,
n

∑

i=1

|Ai| − n + 1
}

.

Finally, we will need the following partition analog of CDT, which will
be our main tool for proving Theorem 1.1 [13], [14].

Theorem 1.4. Let G be an abelian group of order m ≥ 2, let S ∈ F(G),
let S′ |S, let P = P1, . . . , Pn be an n-setpartition of S′, and let p be the

smallest prime divisor of m. If n ≥ min{m/p−1, (|S′| − n + 1)/p−1}, then

either :

(i) there is an n-setpartition A = A1, . . . , An of a subsequence S′′ of S
with |S′| = |S′′|,

∑n
i=1

Pi ⊆
∑n

i=1
Ai, and

∣

∣

∣

n
∑

i=1

Ai

∣

∣

∣
≥ min{m, |S′| − n + 1},

(ii) there is a proper , nontrivial subgroup Ha of index a, a coset α + Ha

such that all but e terms of S are from α + Ha, where

e ≤ min

{

a − 2,

⌊

|S′| − n

|Ha|

⌋

− 1

}

,

and an n-setpartition B=B1, . . . , Bn of a subsequence S′′
0 ∈F(α+Ha)

with S′′
0 |S, |S′′

0 | ≤ n + |Ha| − 1, and
∑n

i=1
Bi = nα + Ha.

2. Proof of Theorem 1.1. We proceed with the proof of all three parts
simultaneously. In what follows, we will often make use of the fact that the
function f(a) = M/a+a for M, a > 0 (and usually M will be of the form m
or m/x) is maximized at a boundary value of a. Thus for example, if a |m,
then m/a + a ≤ m/p + p. We begin by showing all three cases imply the
following claim. Note this completes the case of |G| prime.
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Claim 1. Either the conclusion of Theorem 1.1 is true, or there exists

a proper , nontrivial subgroup Ha of index a such that Σ(Sa) = Ha and all

but e ≤ a − 2 terms of S are from Ha, where Sa is the subsequence of S
consisting of all terms from Ha.

Proof. First suppose (i) holds. Observe that Σh+t(S0h−1) = Σ≥t+1(S)∩
Σ≤h+t(S). Since h ≥ h(S) and |S| ≥ m + t ≥ t + 1, Proposition 1.3 yields
an (h + t)-setpartition P of S0h−1. Since h + t ≥ m/p − 1, we can apply
Theorem 1.4 to P . If (i) of Theorem 1.4 holds, then

|Σh+t(S0h−1)| ≥ min{m, (|S| + h − 1) − (h + t) + 1} = m = |G|.

Hence Σ(S) ⊆ G = Σh+t(S0h−1) = Σ≥t+1(S) ∩ Σ≤h+t(S) ⊆ Σ(S) holds
trivially. So we may assume that (ii) of Theorem 1.4 holds. Consequently,
all but e ≤ a − 2 terms of S0h−1 are from α + Ha, where Ha is a proper,
nontrivial subgroup of index a.

Suppose that 0 /∈ α + Ha. As there are only e ≤ a − 2 terms of S0h−1

outside α + Ha, it follows that h − 1 ≤ a − 2. Since h ≥ h(S), |S| ≥ m + t,
and e ≤ a − 2, it follows that

m + t + h − 1 ≤ |S0h−1| ≤ |Ha|h + e

≤
m

a
h + a − 2 ≤

m

a
(a − 1) + a − 2.

Thus h + t ≤ a − m/a − 1 ≤ m/p − 3, contradicting (i). So we may assume
0 ∈ α+Ha, whence without loss of generality α = 0. Furthermore, since (ii)
of Theorem 1.4 holds for S0h−1, it follows that Σh+t(Sa0

h−1) = Ha, where
Sa is the subsequence of terms of S from Ha. As ν0(Sa0

h−1) = h− 1 < h+ t
and all terms of Sa0

h−1 are from Ha, it follows that Σ(Sa) = Ha, yielding
the claim. So we may assume either (ii) or (iii) holds, whence Σ(S) 6= G.

Note that Σ|S|(S0|S|−1) = Σ(S). In view of Proposition 1.3, S0|S|−1 has
an |S|-setpartition P . Since |S| ≥ m+t ≥ m, we can apply Theorem 1.4 to P .

If (i) of Theorem 1.4 holds, then |Σ(S)| = |Σ|S|(S0|S|−1)| ≥ min{m, 2|S| −
1 − |S| + 1} = m, whence Σ(S) = G, a contradiction. Therefore we can
assume that (ii) of Theorem 1.4 holds. Thus there exists a proper, nontrivial
subgroup Ha of index a, and α ∈ G, such that all but e ≤ a − 2 terms of
S0|S|−1 are from α + Ha. Since ν0(S0|S|−1) = |S| − 1 ≥ m − 1 > a − 2,
it follows that 0 ∈ α + Ha, whence we can assume α = 0. Furthermore,
Σ(Sa) = Ha as before, completing the proof of the claim.

Assume Ha is chosen to satisfy Claim 1 with minimal cardinality. Note
that |Sa| = |S| − e ≥ m − e. Since Σ(Sa) = Ha, it follows that Σ(S) =
Ha + Σ(0SS−1

a ), whence Σ(S) is periodic. Consequently, it suffices to show
Σ≥t+1(S) ∩ Σ≤h+t(S) = Σ(S).
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If h ≤ a, then

m ≤ |S| ≤

(

m

a
−1

)

h+e ≤

(

m

a
−1

)

h+a−2 ≤

(

m

a
−1

)

a+a−2 = m−2,

a contradiction. Therefore we can assume h ≥ a + 1.
Note that |S| ≥ m+ t ≥ m/2+ t ≥ m/a+a−2+ t ≥ m/a+ t+ e. Hence

|Sa| ≥ m/a + t. As Σ(Sa) = Ha, it follows by a simple greedy algorithm
that there exists a subsequence R of Sa with |R| = m/a and Σ(R) = Ha.
Since |Sa| ≥ m/a + t, there exists a subsequence Ta |SaR

−1 with |Ta| = t.
Thus every term of Σ(S) can be expressed as a sum of all t terms from Ta,
at most m/a terms of R (and at least one), and at most e ≤ a−2 terms not
in Ha, whence Σ(S) = Σ≥t+1(S)∩Σ≤m/a+t+a−2(S). Consequently, we may
assume

(7) h ≤
m

a
+ a − 3,

else the proof is complete.
Let S′

a = SaT
−1
a . If |S′

a| ≤ h−1, then h−1 ≥ |SaT
−1
a | ≥ m−e ≥ m−a+2.

Thus (7) implies that

m ≤
m

a
+ 2a − 6 ≤ 2 + 2

m

2
− 6 = m − 4,

a contradiction. Therefore we can assume |S′
a| ≥ h. As h(S) ≤ h, Proposition

1.3 yields an h-setpartition A = A1, . . . , Ah of S′
a with | |Ai| − |Aj | | ≤ 1 for

all i and j. Assume without loss of generality that |A1| ≥ · · · ≥ |Ah|. Let
⌊(m − a + 2)/h⌋ = (m − a + 2 − ǫ)/h. Then, since |S′

a| = |S| − e − t ≥
m − a + 2, it follows that

(8) |Ai| ≥
m − a + 2 − ǫ

h
for all i,

(9) |Ai| ≥
m − a + 2 − ǫ

h
+ 1 >

m − a + 2

h
for all i ≤ ǫ.

Let x be minimal such that
∑x

i=1
|Ai| ≥ m/a (it exists since |S′

a| =
|Sa| − t ≥ m/a). We proceed to show that

(10) x ≤
mh/a

m − a + 2
+ 1.

If x ≤ ǫ, then (9) implies that

x ≤

⌈

mh/a

m − a + 2

⌉

≤
mh/a

m − a + 2
+ 1,

yielding (10). If x > ǫ then by (8) and (9),

(11) x ≤

⌈

(m/a − ǫ)h

m − a + 2 − ǫ

⌉

≤
(m/a − ǫ)h

m − a + 2 − ǫ
+ 1.
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If (10) is false, then comparing with (11) yields m < m/a + a − 2 ≤ m − 1,
a contradiction. Consequently, (10) always holds.

Suppose h − e < x. It follows from (10) and e ≤ a − 2 that

(12)

(

1 −
m/a

m − a + 2

)

h ≤ a − 2.

If m/a
m−a+2

> 1

2
, then 2 ≤ a ≤ m/2 would imply that m ≤ 2m/a+a−3 ≤ m−1,

a contradiction. Therefore m/a
m−a+2

≤ 1

2
, which combined with (12) yields

(13) a − 2 ≥
1

2
h.

In view of h − e < x, e ≤ a − 2, and h ≥ a + 1, it follows that

a + 1 ≤ h ≤ x − 1 + e ≤ x + a − 3,

implying x ≥ 4. Thus (10) and (13) imply that

3m − 3a + 6 = 3(m − a + 2) ≤
m

a
(2a − 4) = 2m − 4

m

a
,

so that

(14) m ≤ 3a − 4
m

a
− 6.

If a ≤ m/3, then (14) yields m ≤ 3m/3−4 ·3−6 = m−18, a contradiction.
Therefore we may assume that a = m/2, whence |Ha| = 2. Thus Sa has
exactly one distinct term equal to the generator of Ha. Consequently, in
view of h(S) ≤ h and e ≤ a − 2,

m ≤ |S| = |Sa| + e ≤ |Sa| + a − 2 = |Sa| +
m

2
− 2 ≤ h +

m

2
− 2.

Hence h ≥ m/2 + 2 = m/a + a, contradicting (7). So we may assume
h − e ≥ x.

Let S′′
a = A1 · · ·Ax · · ·Ah−e. In view of the definition of x, and since

h−e ≥ x, it follows that |S′′
a | ≥ m/a. Let B be the (h−e+ t)-setpartition of

S′′
aTa0

h−e−1 defined by adding a zero to each Ai with i > 1, and including
each term of Ta as a singleton set.

Suppose |Ha| is prime. Applying CDT to B, it follows that there are at
least

|S′′
a | + t + (h − e − 1) − (h − e + t) + 1 = |S′′

a | ≥ m/a

elements in the sumset of B, whence the sumset is Ha. Thus every element
of Σ(S) can be expressed as a sum of at most h − e + t, and at least

h − e + t − ν0(S
′′
aTa0

h−e−1) = t + 1,

terms from S′′
aTa, and at most e terms not in Ha. Hence Σ≥t+1(S)∩Σ≤h+t(S)

= Σ(S), as desired. So we can assume |Ha| = m/a is not prime. Since



316 D. J. Grynkiewicz et al.

0 < Ha < G, it follows that m has at least three prime factors, which
completes the proof of (ii). Consequently, since

m

p
− 1 =

m

2p
+

m

2p
− 1 ≥

m

2p
+

m

pq
+ q − 3,

both (i) and (iii) imply

(15) h + t ≥
m

pq
+ q − 3.

Suppose h− e + t ≤ m/ap′ − 2, where p′ is the smallest prime divisor of
m/a. Then e ≤ a − 2 implies that

(16) h + t ≤
m

ap′
+ a − 4.

If a = p, then p′ = q, whence (16) implies that h + t ≤ m/pq + p − 4 ≤
m/pq + q − 4. Otherwise, since |Ha| is composite, it follows that q ≤ a ≤
m/pq, whence, in view of p ≤ p′ and (16),

h + t ≤
m

ap′
+ a − 4 ≤

m

ap
+ a − 4 ≤

m

qp
+ q − 4.

In both cases we contradict (15). So we may assume that

(17) h − e + t ≥
m

ap′
− 1.

Thus we can apply Theorem 1.4 with S′ = S′′
aTa0

h−e−1, S = Sa0
h−e−1,

n = h − e + t, G = Ha, and P = B.
Suppose (i) of Theorem 1.4 holds. Then there exists S′′ |Sa0

h−e−1 of
length |S′′

a |+ t + h− e− 1 with an (h− e+ t)-setpartition whose sumset has
cardinality at least

min

{

m

a
, |S′′

a | + t + (h − e − 1) − (h − e + t) + 1

}

= min

{

m

a
, |S′′

a |

}

=
m

a
.

Hence Σ≥h−e+t−t′(S
′′) ∩ Σ≤h−e+t(S

′′) = Ha, where

t′ = ν0(S
′′) ≤ ν0(Sa0

h−e−1) = h − e − 1.

Consequently, h−e+t−t′ ≥ t+1. Thus every term of Σ(S) can be expressed
as a sum of at most h−e+ t terms from S′′ (and at least h−e+ t− t′ ≥ t+1
terms), and at most e terms not in Ha. Hence Σ(S) = Σ≥t+1(S)∩Σ≤h+t(S),
as desired. So we can assume (ii) of Theorem 1.4 holds, whence there exists
a proper, nontrivial subgroup Hka of index k in Ha, and β ∈ Ha, such that
all but e′ ≤ k − 2 terms of Sa0

h−e−1 are from β + Hka.
Suppose 0 /∈ β + Hka. Since there are only e′ ≤ k − 2 terms of Sa0

h−e−1

outside of Hka, it follows that h − e − 1 ≤ k − 2. Thus, in view of (17) and
e ≤ a − 2, and 2 ≤ a, k ≤ m/2, it follows that

(18) m − 1 ≤ m +
m

ap′
− 2 ≤ m + t + h − e − 1 ≤ |S0h−e−1|

≤ |Hka|h + e′ + e ≤
m

ka
(k + e − 1) + k − 2 + e
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≤
m

ka
(k + a − 3) + k + a − 4 =

(

m

a
+ a

)

+

(

m

k
+ k

)

− 3
m

ka
− 4

≤

(

m

2
+ 2

)

+

(

m

2
+ 2

)

− 3
m

ka
− 4 = m − 3

m

ka
≤ m − 3,

a contradiction. So we may assume 0 ∈ β + Hka, whence without loss of
generality β = 0.

Consequently, all but at most k− 2+a− 2 ≤ ka− 4 terms of S are from
the same nontrivial subgroup Hka < Ha. Furthermore, since (ii) of Theorem
1.4 holds for Sa0

h−e−1, it follows that Σh−e+t(Ska0
h−e−1) = Hka, where

Ska is the subsequence of terms of Sa from Hka. Hence, as ν0(Sa0
h−e−1) =

h − e − 1 < h − e + t, it follows that Σ(Ska) = Hka. Thus Hka contradicts
the minimality of Ha, completing the proof of both (i) and (iii).

3. Proof of Theorem 1.2. Since |S| ≥ m + m/p − 1, let |S| = m + k
with k ≥ m/p − 1. Note that

Σm(S) = σ(S) − Σ|S|−m(S) = σ(S) − Σk(S).

Thus it suffices to show that σ(S) ∈ Σk(S), and that Σk(S) is periodic.
By translation we may assume 0 is the term with greatest multiplicity

h = h(S) in S. Since by hypothesis h = h(S) ≤ |S|−m = k, let t = k−h ≥ 0
and S′ = S0−h. Note that |S′| = m + k − h = m + t, and h(S′) ≤ h(S) = h.
Since h + t = k ≥ m/p − 1, it follows that S′ satisfies (i) of Theorem 1.1,
whence

Σ≥t+1(S
′) ∩ Σ≤h+t(S

′) = Σ≥t+1(S
′) ∩ Σ≤k(S

′) = Σ(S′),

and Σ(S′) is periodic.
Thus for every z ∈ Σ(S′) = Σ≥t+1(S

′) ∩ Σ≤k(S
′), there exists a subse-

quence Tz of S′ with sum z such that

k − h + 1 = t + 1 ≤ |Tz| ≤ k.

Since |SS′−1| = h, adding an appropriate number of zeros to Tz yields a
k-term subsequence whose sum is z. Consequently, Σ(S′) ⊆ Σk(S). Since
S′ = S0−h, it follows that Σk(S) \ 0 ⊆ Σ(S′). However, as |S′| = m + t ≥
m = |G| ≥ D(G), it follows that 0 ∈ Σ(S′) as well. Hence the above implies
that

Σ(S′) = Σk(S).

As Σ(S′) is periodic, it follows that Σk(S) is periodic, and since σ(S) =
σ(S′) ∈ Σ(S′), it follows that σ(S) ∈ Σk(S), completing the proof as re-
marked earlier.
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