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1. Introduction. Let us start by fixing some notation:

e p and ¢ denote primes = 1 mod 4;

e h(d) denotes the class number (in the usual sense) of the quadratic
number field with discriminant d;

e O, and O, denote the rings of integers in Q(,/p) and Q(,/q);

e ¢, and ¢, denote the fundamental units of Q(,/p) and Q(,/q ), respec-
tively;

e [a/p] denotes the quadratic residue symbol in a quadratic number field;
recall that it takes values +1 and is defined for ideals pt2«a by [a/p] =
aVP=1/2 mod p.

Given primes p = ¢ = 1 mod 4 with (p/q) = +1, we have pO, = pp’
and ¢Op, = qq’; the symbol [e,/q] does not depend on the choice of q, so
we can simply denote it by (g,/¢). Scholz’s reciprocity law then says that
we always have (e,/q) = (g4/p) (for details, see [5-7]). Scholz’s reciprocity
law was first proved by Schonemann [13], and then rediscovered by Scholz
[11] (Scholz mentioned his reciprocity law and the connection to the parity
of the class number of Q(,/p,/q) in a letter to Hasse from Aug. 25, 1928;
see [10]). In [12], Scholz found that in fact (¢,/q) = (¢4/p) = (p/q)4(q/D)a,
and showed that these residue symbols are connected to the structure of the

2-class group of Q(\/pq).

2. Hilbert’s supplementary laws. To extend these results we have to
recall the notions of primary and hyper-primary integers (see Hecke [3]).

LEMMA 1. Let K be a number field with ring of integers O, and let
a € Ok be an element with odd norm. Then the following assertions are
equivalent:
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(1) a > 0 is totally positive and oo = €2 mod 4 for some & € Of;
(2) the extension K(\/a)/K is unramified at all primes above 200.

If the conditions of Lemma 1 are satisfied, we say that « is primary.

LEMMA 2. Assume that 20 = [{*---[57; then the following assertions
are equivalent:

1) « is primary, and o = €2 mod (26t for all j;
J
(2) every prime above 2 splits in the extension K(\/a)/K.

If the conditions of Lemma 2 are satisfied, we say that « is hyper-primary.
Observe that the conditions in (1) are equivalent to o = ¢2 mod 4l - - - ..
Also note « is allowed to be a square in Lemmas 1 and 2.

Our next result is related to the First Supplementary Law of quadratic
reciprocity for fields with odd class number; it was stated and proved in a
special case by Hilbert ([4]), and proved in full generality by Furtwéngler.
Nowadays, this result is almost forgotten; for a proof of Hilbert’s Supple-
mentary Laws (for arbitrary number fields) based on class field theory, see
[9]; Hecke [3, Thm. 171] gives a proof based on his theory of Gauss sums and
theta functions over algebraic number fields.

THEOREM 1 (Hilbert’s First Supplementary Law). Let a be an ideal of
odd norm in some number field k with odd class number h, and let (-/-)
denote the quadratic residue symbol in Oy. Then the following assertions are
equivalent:

(1) (e/a) =+1 for all units e € O},
(2) a" = () for some primary a € O,.

Hilbert calls an ideal a with odd norm primary if condition (1) above is
satisfied, i.e., if (¢/a) = +1 for all units € in k. Hilbert’s Second Supplemen-
tary Law can be given the following form:

THEOREM 2 (Hilbert’s Second Supplementary Law). Let a be a primary
ideal of odd norm in some number field k with odd class number h. Then the
following assertions are equivalent:

(1) (AMa) = +1 for all X € Ok whose prime divisors consist only of
primes above 2;
(2) a" = () for some primary a € O,.

Hilbert calls ideals satisfying condition (1) above hyper-primary. A proof
of a generalization of Theorem 2 to arbitrary number fields can be found in
[3, Thm. 175]. Now we can state

THEOREM 3. Let p = q = 1 mod 4 be primes with (p/q) = +1. Then
pOq = pp’ and qO, = qq’ split. The class numbers h(p) and h(q) are odd,
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and there exist elements 1 € O, and o € O, such that p"P) = (1) and
qh(q) = (0). Then the following assertions are equivalent:

(1) (ep/a) = +1;
(2) o can be chosen primary;
(3) h(pg) =0 mod 4.

Proof. Genus theory (see e.g. [7, Chap. 2|) implies that h(p) = h(q) =
1 mod 2. The equivalence (1)< (2) is a special case of Hilbert’s First Supple-
mentary Law for fields with odd class number ([4]); observe, however, that
Hilbert stated and proved this law only for a very narrow class of fields—the
general statement was proved only by Furtwéngler. The equivalence (1)< (3)
is due to Scholz [12].

It is not hard to prove these statements directly using class field theory;
below we will do this in an analogous situation. m

Observe that part (3) of Theorem 3 is symmetric in p and ¢, which
immediately implies Scholz’s reciprocity law (¢,/q) = (¢4/p). Note that we
can state this reciprocity law in the following form:

COROLLARY 1. Let p and q satisfy the assumptions of Theorem 3. If
the ideals above q in Q(\/p) are primary, then so are the ideals above p in

Q(va)-

In the next section we will prove an analogous result connected to Hil-
bert’s Second Supplementary Law of Quadratic Reciprocity.

3. A supplement to Scholz’s reciprocity law. Assume that p =g =
1 mod 8 are primes. Then 2 splits in Q(,/p) and Q(,/q), and we can write
20, = I and 20, = mm’. Now pick elements \,, \, such that (") = ()\))
and m"(9) = (Ag). Since both fields have units with independent signatures,
we may assume that Ap, A, > 0. The quadratic residue symbol [\, /q], where
qO, = qq’, does not depend on the choice of A\, or g, so we may denote it by

(Ap/a)-
THEOREM 4. Let p = q¢ = 1 mod 8 be primes with (p/q) = +1, and

assume that (e,/q) = (e4/p) = +1. Then the following assertions are equiv-
alent:

(1) (Ap/q) = +1;

(2) o can be chosen hyper-primary;

(3) the ideal classes generated by the ideals above 2 in F = Q(\/pq) are
fourth powers in CI1(F).

Proof. Let F' = Q(\/pq); then F| = F(,/p) is an unramified quadratic
extension; since ¢ is primary, the extension F'(\/0)/F is unramified, and it
is easily checked that it is the unique cyclic quartic unramified extension
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of F. Since 2 splits completely in Q(,/p, \/q)/Q, it will split completely in
F(\/0)/Q if and only if 2 splits completely in Q(,/p, /0 ), which happens if
and only if g is hyper-primary. On the other hand, the decomposition law
in unramified abelian extensions shows that the prime ideals above 2 split
completely in F(,/0)/F if and only if their ideal classes are fourth powers
in CI(F'). This proves that (2)<(3).

The equivalence (1)<(2) is a special case of the Second Supplementary
Law of Hilbert’s Quadratic Reciprocity Law in number fields with odd class
number. Here is a direct argument using class field theory.

Consider the quadratic extension K = F'(,/0) of F. Then g is hyper-
primary if and only if the prime [ (and, therefore, also its conjugate ') above
2 splits in K/F. Since K is the unique quadratic subextension of the ray
class field modulo q over F, which has degree 2h(p), the prime [ will split
in K/F if and only if ["P) = (),) for some \, = £? mod q. This shows that
(1)<(2). =

The symmetry of p and ¢ in the third statement of Theorem 4 then
implies

COROLLARY 2. We have (\p/q) = (A\g/p)-

While the proof of Theorem 4 required class field theory, the actual reci-
procity law in Corollary 2 can be proved with elementary means. We will
now give a proof a la Brandler [1]. To this end, write A\, = (a + b,/p)/2; then
a? — pb? = 2%, where u = h(p) + 2 = 2m + 1 is odd. From a? — 2% = pb® we
find that a4 2mv2 = 132 and a — 2™V/2 = Wéﬁ’Q, where ol = p for some
totally positive my = 1 mod 2. Moreover 33’ = b and 2a = 732 + /3.

Now (w8 + '/ )? = ma(n 3% + w87 + 2y,/p) = 2ma . Standard argu-
ments then show that [ma/02] = (A\/q), where 20, = ¢.

The quadratic reciprocity law in Z[v/2] shows that [ma/0s] = [02/ma],
and this implies the following elementary form of the supplement to Scholz’s

4. Additional remarks. We close this article with a few remarks and
questions.

REMARK 1. Since p = ¢ = 1 mod 8, we can also write p = N7j and
q = Ny} for elements 73, 05 € Z[v/—2] with 75 = 05 = 1 mod 2. Then [8,
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Under the assumptions of Theorem 4, this means that

()-()-[21-F

REMARK 2. Hilbert’s Supplementary Law as we have stated it applies to
all (quadratic) fields with odd class number, not just the fields with prime
discriminant. Here we give an example that shows what to expect in this
more general situation.

Consider primes p = ¢ = 3 mod 4 and primes r = 1 mod 4 with (pg/r) =
+1. Let €, denote the fundamental unit in & = Q(,/pg ). Then the prime
ideals v and ¢/ above r in k satisfy t*(?9) = () for some primary g if and
only if (epq/r) = +1. Since pepq is a square in k, we have (epq/r) = (p/7).

Assume now that o can be chosen primary, and consider the dihedral
extension L/Q with L = Q(\/p,/q,/0). Clearly p is primary if and only
if L/Q(y/pqr) is cyclic and unramified. It is then easy to show that the
quadratic extensions of Q(y/r) different from Q(,/pg, /7 ) can be generated
by a primary element a with prime ideal factorization (pq)™"") for a suitable
choice of prime ideals p and q above p and ¢, respectively. Note that if pq is
primary, then pq’ is not, since qq’ = (¢) is not primary (we have either ¢ < 0
or ¢ =3 mod 4).

The upshot of this discussion is: if p is primary, then exactly one of the
ideals pq and pq’ is primary, say the first one, and then Hilbert’s Supplemen-
tary Law shows that (e,/pq) := [e,/pq] = +1. Conversely, if pq is primary,
then (g,/pq) = (epq/r) = +1. We have shown:

PROPOSITION 1. Let p = q = 3mod 4 and r = 1 mod 4 be primes with
(pg/r) = +1. Then the following assertions are equivalent:

(1) (epg/r) = +1;

(2) (p/r) =+1

(3) the ideal v in Q(\/pq) above r is primary;

(4) h(pgr) =0 mod 4;

(5) there is a unique primary ideal a (up to conjugation) of norm pq in
Q(/7), and (e,/pq) := [er/a] = +1.

Note that (e,/pq) is not well defined if (p/r) = —1 since in this case we
do not have a canonical way to single out the prime ideals above p and ¢ in
Q(Vr).

As an example, consider the case p = 3, ¢ = 7, r = 37; then the elements
of norm 21 in the ring of integers in Q(\/ﬁ) are +13+2+/37 (these elements
are not primary: the element —13 + 21/37 = 1 mod 4 is not totally positive)
and (11 £+/37)/2. It is easy to check that 3 = (11 4+ /37)/2 is primary;
now &, = 6++/37, and [¢,/8] = (—=5/21) = +1 as claimed, whereas [¢,/(13+
2V/37)] = —1.
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REMARK 3. Above we have seen that, under suitable assumptions, the
ideal class generated by a prime above 2 in Q(,/pq ) is a fourth power in the
class group if and only if [r2/02] = +1, where 72, 02 € Z[/2] are elements
= 1 mod 2 with norms p and g, respectively. Does an analogous statement
hold with 2 replaced by an odd prime ¢ # p, ¢7

REMARK 4. Budden, Eisenmenger & Kish 2] have generalized Scholz’s
reciprocity law to higher powers; can the reciprocity law (\,/q) = (A\y/p)
proved above also be generalized in this direction?
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