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Determinants of knots and Diophantine equationsby
A. Stoimenow (Kyoto)

1. Introdu
tion. The problem of solving an equation P (x1, . . . , xn) = 0for some polynomial P ∈ Z[x1, . . . , xn] in integers xi is one of the mostfundamental in the whole mathemati
s. A general theory is developed onlyfor P of small degree, having few variables, or of a spe
ial type, like quadrati
forms [Z℄, the Fermat equation [W℄, ellipti
 
urves [Hu℄ or Waring's 
lass ofproblems [Ho℄. See e.g. [Sm℄.The aim of this paper is to give an appli
ation of the theory of knots[Ka1℄ to Diophantine equations, by means of a knot-theoreti
 obstru
tion tothe solvability of 
ertain types of su
h equations. Of 
entral importan
e willbe the work of Kau�man [Ka2℄, Murasugi [Mu1℄, and the following theoremon the signature σ(K) and determinant det(K) of a knot K.Theorem 1.1. There is no knot K with det(K) = 1 and σ(K) ≡ 4
(mod8).Theorem 1.1 is a 
onsequen
e of a signature theorem for even unimodularquadrati
 forms. A brief proof will be given in the next se
tion. This theo-rem will be used to show the non-solvability of 
ertain Diophantine equations
P (x1, . . . , xn, k, l) = ±1 in non-negative integers xi. Inter alia, we 
an as-so
iate to any diagram D of a knot K whose 
anoni
al genus g(D) satis�es
2g(D) = σ(K) ≡ 6 (mod8), a polynomial PD su
h that any solution of
PD = ±1 
ontains at least three integers of a given sign. Moreover the num-ber of variables of PD is equal to the number of 
rossings of D, and hen
e
an be arbitrarily augmented. The simplest type of su
h a polynomial PD isthe elementary symmetri
 polynomial of se
ond highest degree. We have inparti
ular:2000 Mathemati
s Subje
t Classi�
ation: 11D72, 57M27, 11D41, 11B37, 11D79,15A63.Key words and phrases: knots, signature, determinant, Jones polynomial, Diophantineequation, quadrati
 form.Resear
h supported by 21st Century COE Program.[363℄ 
© Instytut Matematy
zny PAN, 2007



364 A. StoimenowTheorem 1.2. Let σn−1,n be the elementary symmetri
 polynomial ofdegree n−1 in n variables and n ≡ 7 (mod8). Then any solution of σn−1,n =
−1 in odd integers 
ontains at least three negative (and three positive) ones.The polynomials we will 
onsider are of some spe
ial types, but theyarise from the parti
ular families of knots we study, and one 
an build manymore. The non-negativity 
ondition on the xi in PD 
an be removed by suit-able substitutions (and also by appropriate modi�
ation of the knots under
onsideration), yielding polynomials of even degree in all but two of theirvariables. By substitutions one also obtains many low degree polynomials.In other 
ases, in
luding examples of 
ubi
 
urves [Ma℄, one 
an show thatthe signs of 
ontinued fra
tions related to integer solutions satisfy 
ertain
ongruen
es. One 
an also obtain results about linear re
urrent sequen
es.It is unlikely that (and un
lear how) one 
an study a given parti
ularequation by su
h a pro
edure. The statements that one obtains with ourapproa
h, however, may well go beyond the s
ope of state-of-the-art methods(using the apparatus from algebrai
 geometry). It is at least unlikely thatour results 
an be re
overed by known methods in su
h a dire
t way.A
knowledgements. The work in this paper was mostly 
arried outduring a stay at MPI Bonn. I would like to thank B. Poonen, V. Protsakand D. Zagier for some helpful remarks and dis
ussions. Most of all, however,I wish to thank F. Hirzebru
h, who pointed out Theorem 1.1 to me, andwithout whose support this work would not have been possible.2. Knots, signature and determinant2.1. Relation to Seifert forms. A knot (resp. n-
omponent link) is an
S1 (resp. n 
opies of it), oriented or not, smoothly embedded in R3. Weneed some basi
 fa
ts about knots, whi
h are explained in detail for examplein [Ro℄.Knots and links are represented by diagrams, plane 
urves with transverseself-interse
tions, 
alled 
rossings, at ea
h of whi
h an over- and underpassingstrand is distinguished. A diagram is 
alled 
onne
ted if its plane 
urve is
onne
ted. A link is split if it has a diagram whi
h is not 
onne
ted; otherwiseit is non-split. (A knot is always non-split.)Every oriented knot or link L bounds a 
ompa
t surfa
e S embeddedin R3, so that the orientation of L = ∂S mat
hes the one indu
ed from S.Su
h a surfa
e S is 
alled a Seifert surfa
e of L. The minimal genus, resp. themaximal Euler 
hara
teristi
 of all Seifert surfa
es of L is 
alled the genus
g(L), resp. the Euler 
hara
teristi
 χ(L) of L. From ea
h diagram D of Lone 
an obtain a Seifert surfa
e S(D) of L by means of an algorithm dueto Seifert. We 
all the genus g(S(D)) = g(D), resp. the Euler 
hara
teristi
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χ(S(D)) = χ(D) of S(D) the 
anoni
al genus, resp. the 
anoni
al Euler
hara
teristi
 of D.Ea
h Seifert surfa
e of L gives rise to a Seifert matrix. Here it is enoughto understand that this is a square matrix with integer entries. A knot K hasmany Seifert surfa
es, and ea
h Seifert surfa
e de�nes many Seifert matri
es.Still there are invariants of K derived from the Seifert matrix.The results that follow will be obtained by extensively using propertiesof the signature and determinant of knots and links. These invariants havebeen around for a long time in knot theory (see, e.g., [H, Ro℄). Originallythey were de�ned in terms of Seifert matri
es. More pre
isely, det(K) is theorder of the homology group of the double 
over of S3 bran
hed over the knot(or link), and obtained its name from its expression as the determinant of aSeifert matrix (whi
h is a representation matrix for this homology group),and σ(K) is the signature of the symmetri
 pairing given by the Seifertmatrix.The de�nition of signature and determinant by means of Seifert matri
esleads to Theorem 1.1.Proof of Theorem 1.1. Consider the Seifert form of K given by A + AT ,where A is a Seifert matrix of K. Then det(K) = det(A + AT ) = ±1, and
A + AT has only even entries on the diagonal.For any bilinear form S over Zn the map

x 7→ S(x, x) mod 2is linear, and if S mod 2 is non-degenerate (⇔ det(S) is odd), then
∃w : S(x, w) ≡ S(x, x) (mod2)for all x ∈ Zn. We have the following theorem on the norm of w and thesignature σ(S) of S (see [HNK, Theorem 3.10℄).Theorem 2.1. If det(S) = ±1, then S(w, w) ≡ σ(S) (mod8) for anysu
h w.If S = A + AT has only even entries on the diagonal, then S(x, x) ≡ 0

(mod2), and thus we 
an 
hoose w = 0. Then the theorem shows σ(K) =
σ(S) ≡ 0 (mod8).On
e Theorem 1.1 is proved, the Seifert form, however, will no longerbe of interest to us for studying the determinant and signature. It will bemore 
onvenient to follow other approa
hes to these two invariants, usingproperties of their behaviour under 
ertain knot diagrammati
 operations.2.2. The determinant via state model and braiding sequen
es. For thedeterminant we follow an approa
h whi
h was developed from the Kau�manstate model [Ka2℄ for the Jones polynomial [J1℄. It uses the property that
det(K) = |∆K(−1)| = |VK(−1)| = |〈D〉(

√
i)|, where ∆ is the Alexander



366 A. Stoimenowpolynomial, V is the Jones polynomial, 〈D〉 is the Kau�man bra
ket of somediagram D of K, and√
i is a primitive 8th root of unity (see [J2, (12.3)℄). Thestate model allows one to give a 
ombinatorial de�nition of the determinantof alternating diagrams.A diagram is alternating if ea
h strand exiting a 
rossing from aboveenters the next 
rossing from below and vi
e versa. A 
onne
ted alternat-ing diagram D 
an be identi�ed (up to mirror image, whi
h preserves thedeterminant) with its plane 
urve D̂ ⊂ R2. Then ea
h of the n 
rossings(self-interse
tions) of D̂ 
an be spli
ed in two ways(1) → or ,giving 2n states, and det(D) is the number of states whose resulting 
ol-le
tion of disjoint 
ir
les has only one 
omponent, i.e., is one single 
ir
le(�mono
y
li
 state� [Kr℄).From this the de�nition of det(D) 
an be extended to arbitrary diagramsusing the approa
h of braiding sequen
es [St2℄ (whi
h was originally intro-du
ed for the study of Vassiliev invariants, but serves equally well also forany parti
ular value of ∆(t), not only t = −1).Number the 
rossings of a diagram D by c1, . . . , cn. To ea
h ci one assignsan odd integer variable xi. Then de�ne D(x1, . . . , xn) to be the diagramobtained from D by repla
ing ea
h 
rossing ci in D by a tangle, 
alleda twist below, of |xi| 
rossings like(2)(for xi = ±5). To �x the signs, we demand that when orienting D, the
rossings in this tangle have sign sgn(xi), where the sign (or writhe) of a
rossing is de�ned by(3) sgn

( )
= −1 and sgn

( )
= 1.(We use here the fa
t that D is a knot diagram, and then any of the two ori-entations atta
hes the same sign to ea
h 
rossing.) Then D = D(x1, . . . , xn)for xi = sgn(ci).The above tangle repla
ement is 
alled braiding. When D is oriented,then for |xi| > 1 we 
all the twist of (2) parallel or reverse (antiparallel),depending on whether both strands enter from the same left/right side, orfrom both. (If xi = ±1, we 
an 
onsider a single 
rossing as either a parallelor an antiparallel twist.) We a
tually have two ways of braiding, dependingon whether in the oriented diagram the twist be
omes parallel or reverse.For example, for xi = 3:
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(4) →

parallel
or reverse

.

The 
hoi
e between the two braidings is (for now) irrelevant, but shouldbe kept �xed for ea
h 
rossing ci of D, independently of xi. We 
all a twistparallel or antiparallel a

ording to its braiding, and positive or negativea

ording to the sign of its 
rossings.On properly adjusting the signs of the xi, D(x1, . . . , xn) be
omes alter-nating, and we have already de�ned det(D(x1, . . . , xn)). It is easy to see thatthe map
(x1, . . . , xn) 7→ det(D(x1, . . . , xn))for xi signed this way is a (�braiding�) polynomial P , linear in all variables.De�ne then det(D(x1, . . . , xn)) for arbitrarily signed xi to be |P̃ (x1, . . . , xn)|,where P̃ is the unique extension of P to (2Z + 1)×n. This pro
edure inparti
ular allows 
al
ulating the determinant det(D) for arbitrary D.The determinant is an invariant of the underlying knot K, so its 
al
u-lation does not depend on the 
hoi
e of the diagram D, and hen
e we set

det(K) := det(D) for some diagram D of K. The advantage of using thismethod to determine det(K) is to remember that det(D) behaves (up tosign) linearly in all xi.Another important feature of the determinant is that it is odd if andonly if the link is a knot, i.e. has only one 
omponent. More generally, themultipli
ity of 2 in det(L) is at least (but not always equal to) n−1 for an n-
omponent link L. (This 
an be seen from the identity det(L) = ±∆L(−1).)Kau�man's model for the determinant was subsequently put into a ni
elanguage by Krebes [Kr℄, who showed how to 
al
ulate the determinant ofarbores
ent knots (in the Conway [Co℄ sense), by showing that the �ratio�of the determinants of both 
losures of a 2-string (i.e. 4-end) tangle behavesadditively under Conway's tangle sum operation. This method will be sub-sequently used, but we repeat below only a part of the formalism we need;see [Kr℄ for more details.2.3. Cal
ulating the signature. The signature σ is a Z-valued invariantof knots and links. We know that σ(L) has opposite parity to the number of
omponents of the link L whenever ∆L(−1) 6= 0. This in parti
ular alwayshappens for L being a knot (remember that ∆L(−1) is always odd in this
ase), so that σ takes only even values on knots. Most of the early work onthe signature was done by Murasugi [Mu1℄, who showed several propertiesof this invariant.



368 A. StoimenowConsider three links with diagrams di�ering just at one 
rossing:
(5)

L+ L
−

L0

.

Then
σ(L+) − σ(L−) ∈ {0, 1, 2},(6)
σ(L±) − σ(L0) ∈ {−1, 0, 1}.(7)(Note: In the �rst property one 
an also have {0,−1,−2} instead of {0, 1, 2},sin
e other authors, like Murasugi, take σ to be with opposite sign. Thus (6)not only de�nes a property, but also spe
i�es our sign 
onvention for σ.)Further, Murasugi found the following important relation between σ(K)and det(K) for a knot K:(8) σ(K) ≡ 0 (mod4) ⇔ det(K) ≡ 1 (mod4),

σ(K) ≡ 2 (mod4) ⇔ det(K) ≡ 3 (mod4).These 
onditions, together with the initial value σ(©) = 0 for the unknot,and the additivity of σ under split union (denoted by �⊔�) and 
onne
tedsum (denoted by �#�),
σ(L1#L2) = σ(L1 ⊔ L2) = σ(L1) + σ(L2),allow one to 
al
ulate σ for very many links. In parti
ular, if we have asequen
e of knots

K0 → K1 → · · · → Knsu
h that Kn is the unknot and Ki di�ers from Ki−1 only by a 
rossing
hange, then (6) and (8) allow 
al
ulating σ(Ki) indu
tively from σ(Ki+1)if det(Ki) is known.From this the following property is evident for knots, whi
h also holdsfor links: σ(!L) = −σ(L), where !L is the mirror image of L.We will need the following operation (see also [Mu2℄).Definition 2.1. A band-
onne
ting (or plumbing of an annulus) is theoperation(9) ↔ .(Note that this always 
hanges the number of 
omponents.)Lemma 2.1. If a link L1 is obtained from a link L by band-
onne
ting ,then |σ(L) − σ(L1)| ≤ 1.
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t that L1 is obtained from L by smoothing outa 
rossing (repla
ement of L± by L0 in (5)), when redrawing the l.h.s. of (9)as .2.4. Tangle notation and families of links. Some formulas for σ will bene
essary, in parti
ular those for both rational knots and links. We willdes
ribe them in some detail, sin
e it will be important for what follows.Conway [Co℄ introdu
ed a notation for knot and link diagrams. Hereit su�
es to 
onsider Conway notations whi
h 
onsist of a set of integers,to whi
h two binary operations, named by Conway �sum� and �produ
t�,are applied, with various parenthesizations. Figure 1 shows how to obtaina diagram of a knot or link from its Conway notation. The diagram is the
losure of the tangle with the same notation. The 
onvention in 
omposingthe tangles is that a Conway notation with no negative integers gives analternating diagram. The �produ
t� (whi
h is not asso
iative!) is assumedto be left-asso
iative, so that abc is understood to stand for (ab)c. We willoften omit the produ
t sign, but sometimes write it �· � for 
larity. Diagramsand their links des
ribable in su
h a way are 
alled arbores
ent or Conway-algebrai
. For more details see [Ad, �2.3℄.A rational knot or link is one with a rational diagram. Su
h a diagramis spe
i�ed by a Conway notation that 
ontains only a produ
t with noparentheses, i.e. is a sequen
e of integers.Let the 
ontinued (or iterated) fra
tion [[s1, . . . , sm]] for integers si bede�ned indu
tively by [[s]] = s and
[[s1, s2, . . . ]] = s1 −

1

[[s2, . . . ]]
.The rational knot or link S(p, q) in S
hubert's [Sb℄ notation has the Conwaynotation(10) (−1)n−1cn · (−1)n−2cn−1 · . . . · −c2 · c1,when the ci are 
hosen so that(11) [[c1, . . . , cn]] =

p

q
.Without loss of generality one 
an assume that (p, q) = 1, |q| < |p|, and that(exa
tly) one of p and q is even. (If both are odd, we repla
e q by q ± |p|,the sign being determined by the 
ondition |q| < |p|.) Note that S(−p,−q)is the same knot or link as S(p, q), while S(−p, q) = S(p,−q) is its mirrorimage. S(p, q) is a knot for p odd and a 2-
omponent link for p even.Then we 
an 
hoose all ci in (11) to be even (and non-zero). It is knownthat, with this 
hoi
e of ci, their number n = 1−χ(S(p, q)) is equal to twi
ethe genus of S(p, q) or twi
e the genus plus one, depending on whether S(p, q)



370 A. Stoimenowis a knot (i.e. p is odd and n even) or a 2-
omponent link (p even, n odd). Theprimitive tangles in Figure 1 also spe
ify a mirroring 
onvention. When nand all ci in the Conway notation are even, then the writhe, a

ording to (3),of the 
rossings 
orresponding to the entry (−1)i−1ci in (10) is sgn(ci).P Q P Q P
±∞ 0 4 sum P, Q produ
t PQ 
losure PFig. 1. Conway's primitive tangles and tangle operationsTheorem 2.2. When ci in (10) are even (and non-zero), we have

σ(S(p, q)) =

1−χ(S(p,q))∑

i=1

sgn(ci).This formula follows from [HNK, p. 71℄. Later, however, we will be able togive a brief independent proof. The formula will allow us to give statementson the distribution of signs in 
ontinued fra
tions related to integer pointson some 
ubi
 
urves.In the 
ase of links (p even), the inter
hange q ↔ q ± |p| 
orresponds toreversing the orientation of one of the 
omponents. For example, the Conwaynotation �2 − 2 2 � with [[2, 2, 2]] = 4/3 
orresponds to the positive (2, 4)-torus link with parallel orientation and signature σ = sgn(2) + sgn(2) +
sgn(2) = 3, while the Conway notation �4 � with [[4]] = 4/1 
orrespondsto the positive (2, 4)-torus link with reverse orientation and signature σ =
sgn(4) = 1.For the purpose of 
al
ulating with 
ontinued fra
tions, it will be helpfulto extend the operations �+ � and �1/· � to Q∪ {∞} by 1/0 = ∞, 1/∞ = 0,
k + ∞ = ∞ for any k ∈ Q. The reader may think of ∞ as the fra
tion 1/0,to whi
h one applies the usual rules of fra
tion arithmeti
 and redu
ing. Inparti
ular redu
ing tells that −1/0 = 1/0 so that for us −∞ = ∞. Thismay appear strange at �rst glan
e, but has a natural interpretation in therational tangle 
ontext.Rational knots with Conway notation n 2 (with n 6= 0), or S
hubertnotation S(p, 2) (p odd) are 
alled twist knots.Montesinos knots/links (see e.g. [LT℄) are generalizations of rationalknots/links and spe
ial types of arbores
ent knots/links. They are denotedby M(p1/q1, . . . , pl/ql; n), where (pi, qi) = 1 and |pi| > qi. (Note: thereis a variety of 
onventions for the notation in the literature; mostly theydi�er from ours in signs.) Here pi/qi are 
ontinued fra
tions of rationaltangles cni,i . . . c1,i with [[c1,i,−c2,i, c3,i, . . . , (−1)ni−1cni,i]] = pi/qi. Then
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M(p1/q1, . . . , pl/ql; n) 
orresponds to the Conway notation(12) (cn1,1 . . . c1,1), (cn2,2 . . . c1,2), . . . , (cnl,l . . . c1,l), n0.Note that for this to be a knot, at most one pi 
an be even. If l ≤ 2, thenthe Montesinos knot or link is a rational knot/link.The de�ning 
onvention is that all qi > 0, and if pi < 0, then the tangleis 
omposed so as to give a non-alternating sum with a tangle with pi±1 > 0.This de�nes the diagram up to mirror image, whi
h is �xed by the 
hoi
e ofmirroring the primitive tangles in Figure 1. A typi
al example is shown inFigure 2.

Fig. 2. The Montesinos knot M(11/3,−4, 5/2; 4) with Conway notation (213,−4, 22, 40)A pretzel knot/link is a spe
ial type of Montesinos knot/link, where all
qi = 1 (or equivalently all ni = 1 in (12)).A(n oriented) knot/link is 
alled positive if it has a positive diagram.A positive diagram is one in whi
h all 
rossings have sign 1, a

ording to (3).See for example [N, St1℄. Murasugi also proves spe
ial formulas for σ ofalternating links L (see e.g. p. 437 of [Ka3℄), whi
h in 
ase L is positive andnon-split show σ(L) = 1 − χ(L), with χ(L) being the Euler 
hara
teristi
of L. In parti
ular, for the pretzel knot or link (x1, . . . , xl) with all xi oddand positive, we have σ = l − 1.3. Knot adja
en
y. Before we start applying Theorem 1.1 to moregeneral types of polynomials, we �rst 
onsider the one variable 
ase, whi
hhas some appli
ations to knot theory and should help in understanding themulti-variable 
ases dis
ussed later.The original hope was to apply Theorem 1.1 to unknotting numbers.Although this has failed so far, the theorem has some appli
ations to themore general 
on
ept of knot distan
e; see [DS, Mr, Ask℄. (The unknottingnumber is the knot distan
e to the trivial knot.)Definition 3.1. Two knots K1 and K2 have distan
e n if they 
an beinter
onverted by n, but not fewer, 
rossing 
hanges. The knots are 
alledadja
ent if they have distan
e 1.



372 A. StoimenowRe
all that when 
onsidering a braiding at a parti
ular 
rossing ci of anoriented knot diagram D, we have in fa
t the two options of a parallel andan antiparallel braiding. In �2.2 we have intentionally abused the orientationwhen des
ribing how to 
al
ulate the determinant. It behaves polynomially,independently of whi
h parti
ular 
hoi
e of braiding is made at any 
ross-ing ci (as long as this 
hoi
e is kept �xed for di�erent xi).However, now there is an important di�eren
e between the two braidings.In both 
ases the determinants form (up to sign) an arithmeti
 progression
a1 + 2a2xi, but in the 
ase of the antiparallel braiding a2 
omes from thedeterminant of the link obtained by smoothing out ci as in (5), while forthe parallel braiding the other spli
ing (in the sense of (1)), yielding againa knot, must be applied. Thus a2 is even in the antiparallel and odd in theparallel 
ase, and we haveLemma 3.1. If at c1 in D a parallel braiding is done, then

σ(D(x1 + 2, x2, . . . , xn)) − σ(D(x1, x2, . . . , xn)) = 2ex
ept exa
tly for one value of x1 ∈ 2Z + 1 (where the di�eren
e is 0).If at c1 in D an antiparallel braiding is done, then
σ(D(x1 + 2, x2, . . . , xn)) − σ(D(x1, x2, . . . , xn)) = 0ex
ept exa
tly for one value of x1 ∈ 2Z + 1 (where the di�eren
e is 2) if
det(D(x1 + 2, x2, . . . , xn)) 6= det(D(x1, x2, . . . , xn)),and without any ex
eption otherwise.This lemma will play a 
entral role in all the 
onsiderations to follow,and will often be used without expli
it referen
e.Proof. Use (8) and (6). Note that for knots σ is even, so 1 
annot o

uron the r.h.s. of (6). The ex
eptional value of x1 o

urs when the arithmeti
progression of the determinants 
hanges sign.An appli
ation of this lemma and of Theorem 1.1 yields a 
onditionobstru
ting 
ertain knots to be adja
ent.Theorem 3.1. Let K1,2 be knots with det(K1) > det(K2). Assume oneof the following three 
onditions is satis�ed :(a) σ(K1) = σ(K2) ≡ 4 (mod8), det(K1) ≡ 1 (mod det(K1)− det(K2)),(b) σ(K1) = σ(K2) ± 2, there is a k ∈ N with det(K1) = k(det(K1) −

det(K2)) + 1 and σ(K1) ≡ ±2k + 4 (mod8) (the 
hoi
e of + or − inthe two �±� options being the same),(
) σ(K1) = σ(K2) ± 2, there is a k ∈ N with det(K1) = k(det(K1) −
det(K2)) − 1 and σ(K1) ≡ ±2(k − 1) + 4 (mod8) (again with thesame 
hoi
e of signs).Then K1 
annot be obtained from K2 by one 
rossing 
hange.
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ular the following spe
ial 
ase of (a).Corollary 3.1. If σ(K) ≡ 4 (mod8), then K 
annot be turned by one
rossing 
hange into a knot K ′ with det(K ′) = det(K) ± 4.Proof of Theorem 3.1. This is an appli
ation of the lemma with K1,2represented by diagrams D(±1, x2, . . . , xn) for �xed x2, . . . , xn. Then 
on-sider the sequen
e D(x1) = D(x1, x2, . . . , xn) for odd x1. The 
onditions areadjusted so that for suitable x1 we get det(D(x1)) = 1 and σ(D(x1)) ≡ 4
(mod8), giving a 
ontradi
tion to Theorem 1.1. Note that among the twobraidings in (4) at most one may produ
e a determinant 1 knot. In 
ase (a)this is the antiparallel braiding, and in 
ases (b) and (
) the parallel one. In
ase (b) a determinant 1 knot is realized (when su

essively in
reasing |xi|by 2) just before the non-swit
h of the signature (in Lemma 3.1), and in (
)just after it.Example 3.1. The simplest example is the pair of the trefoil and the�gure-8-knot. We have thus an easy proof that they have distan
e two. Notethat, similarly to rational knots of unknotting number 1 [KM℄, pairs of dis-tan
e 1 rational knots 
an be des
ribed by applying the Culler�Gordon�Lue
ke�Shalen theorem about 
y
li
 surgeries [CGLS℄, as done in [Mr℄. Thissettles the distan
e 1 problem for many low 
rossing knots. However, 
om-pared to that heavy tool, our proof in this spe
ial 
ase is almost elemen-tary.Example 3.2. If a knot K1 of determinant 13 has σ = 0, like 63 (in thestandard Rolfsen [Ro, appendix℄ notation), then by one 
rossing 
hange it
annot be turned into any knot K2 of determinant 7 or 11. If σ(K1) = 4, likefor K1 = 73, then the same statement holds for (knots K2 of) determinant 9.In the same way the distan
e from 75 to 815 and !85 is not 1, partially solvingtwo of the open entries in the table of [DS℄.Example 3.3. If a knot has σ = 0 and determinant 41, like 1017, thenit 
annot be turned into a knot of determinant 27 by one 
rossing 
hange.The arguments applied 
an also be used to show a similar non-existen
eresult for links.Corollary 3.2. There is no 2-
omponent link L with det(L) = 2 and
σ(L) ≡ ±3 (mod8).Proof. Conne
t the two 
omponents of su
h a link L by a half-twistedband, obtaining a knot K. By adding further (possibly reverse) twists to theband, one obtains a family of knots with determinants ±(4k + 1). Thus thisfamily 
ontains a knot K ′ with determinant 1. However, σ(K ′) = σ(L)±1 6≡
0 (mod8), a 
ontradi
tion.



374 A. StoimenowFinally, we remark that Lemma 3.1 
an be used to show Theorem 2.2.Proof of Theorem 2.2. Consider the diagram of the rational link withConway notation of even integers ci. For all ci positive, the diagram, andhen
e the rational link, is positive. Then by [N℄ it is spe
ial alternating, andwe have the 
laim from the result σ = 1 − χ of [Mu1℄. Changing the signof some ci 
orresponds to undoing positive/
reating negative reverse twistsat the same 
rossing. Lemma 3.1 implies that σ 
hanges at most on
e undersu
h a sequen
e of operations, and then by −2. This shows the formula with�=� repla
ed by �≥�. The reverse inequality follows by applying the sameargument on the mirror images.4. Diophantine equations. Now we are going to apply the previous
onsiderations to Diophantine equations. One simple series of examples 
on-
ern the se
ond highest elementary symmetri
 polynomial.4.1. Pretzel knots and elementary symmetri
 polynomials. Let(13) σp,q(x1, . . . , xq) =
[ q∏

i=1

(1 + txi)
]

tpbe the elementary symmetri
 polynomial of degree p in q variables (here�[polynomial]monomial� denotes the 
oe�
ient of �monomial� in �polynomial�).We will be 
on
erned with the equation σl−1,l = ±1, be
ause it turns outthat σl−1,l is the determinant of pretzel knots and links. We shall derive thisrelationship expli
itly here, in order to give an idea how Krebes's methodworks. At a later stage we will 
ontent ourselves just with presenting theformulas for the determinants of the knots we 
onsider.Proposition 4.1. σl−1,l(x1, . . . , xl) is the determinant of the (x1, . . . , xl)pretzel knot (or link).Proof. Krebes's invariant Kr(T ) for a tangle T lies in the spa
e Φ =
Z × Z/[(p, q) ∼ (−p,−q)]. We write p/q for (p, q) ∈ Φ. Indeed, p/q 
an bethought of as a �fra
tion�, apart from the more restri
tive rule of redu
tion,sin
e Φ is equipped with a binary operation ⊕ given by

(p, q) ⊕ (r, s) = (ps + qr, qs),whi
h is as the usual fra
tion addition (and will be named so below; thoughe.g. 1/3 ⊕ 1/3 = 6/9 6= 2/3).Krebes's invariant is de�ned by Kr(T ) = det(T )/det(T̂ ), where T and T̂are the two 
losures of T :
T = T T = T .



Determinants of knots and Diophantine equations 375A

ordingly these 
losures are 
alled the denominator and numerator 
losure.The latter is the (standard) 
losure shown in Figure 1. Take
Ti =





xi half-twists.
(A negative number of half-twists means half-twists of opposite sign. We
an, however, �rst 
onsider just xi > 0, in whi
h 
ase the pretzel tangle
(x1, . . . , xl) is alternating; the 
orre
tness of the formula for arbitrary xithen follows from the above braiding sequen
e arguments.) We have Kr(Ti) =
1/xi. Now Kr is �additive�:

Kr((Ti0, Tj0)) = Kr(Ti) ⊕ Kr(Tj),where �,� is Conway's tangle sum operator, and ⊕ is the above �fra
tion�addition in Φ. By iterating this rule, we obtain
Kr(T10, . . . , Tl0) =

σl−1,l(x1, . . . , xl)

σl,l(x1, . . . , xl)
.The numerator on the right is the determinant of the 
losure of the (x1, . . . , xl)pretzel tangle that gives the pretzel knot/link, and we are done.Clearly at most one of the xi 
an be even in a solution of the equation

σl−1,l = ±1. We start with a statement for the 
ase when all xi are odd,whi
h has a parti
ularly 
losed form.Theorem 4.1. If l ≡ 5 (mod8), then the equation σl−1,l(x1, . . . , xl) = 1has no solutions in odd xi with at most one of them being of opposite sign tothe others. The same holds if l ≡ 7 (mod8) for the equation σl−1,l(x1, . . . , xl)
= −1, this time at most two of the xi being allowed to have opposite sign tothe others.Remark 4.1. Note that in fa
t the se
ond part of the statement impliesthe �rst (set xl = 1, xl−1 = −1). Also, the solutions xi = ±(−1)i (with thesame 
hoi
e of ± for all i = 1, . . . , l) show that the number of negative xi
annot be further restri
ted at least for l = 5, 7.Proof. For l and xi odd and positive the pretzel knot (x1, . . . , xl) hassignature l− 1, and the twists 
orresponding to the xi are antiparallel. Thus
hanging the sign of some xi redu
es σ at most by two by Lemma 3.1.In the 
ase that one xi is even, the twists 
orresponding to the odd
xi are parallel, and the ones 
orresponding to the even ones among the
xi are parallel or antiparallel, depending on the parity of l. This time the
ongruen
e restri
tion we obtain is not on the number of variables but ontheir sum.



376 A. StoimenowTheorem 4.2. Let l ∈ N, and x0 be even and x1, . . . , xl be odd integers.Then any solution of σl,l+1(x0, x1, . . . , xl) = ±1 with ∑l
i=1 xi ≡ l+2 (mod8)for l even, or ∑l

i=0 xi ≡ l+2 (mod8) for l odd 
ontains at least three negativeintegers.Proof. Let l be even and all xi > 0. Then the signature of the (x0, x1,

. . . , xl)-pretzel link is σ =
∑l

i=1(xi − 1) by the formula for σ of alternatinglinks (see end of �2.4). The twists 
orresponding to xi for i > 0 are parallel,and positive for xi > 0. Therefore, if we let xi de
rease su

essively by 2,
σ de
reases every time by 2, ex
ept on
e. The twists 
orresponding to x0are antiparallel and negative for x0 > 0. Therefore, if we let x0 de
reasesu

essively by 2, σ in
reases at most on
e, by 2, and remains 
onstantotherwise. Thus if at most two of the xi (0 ≤ i ≤ l) are negative, we have

l∑

i=1

(xi − 1) ≤ σ ≤
l∑

i=1

(xi − 1) + 4,so that σ remains non-divisible by 8.Similarly let l be odd. If all xi > 0, the signature of the (x0, x1, . . . , xl)-pretzel link is σ =
∑l

i=0(xi − 1) + 1. Now the twists 
orresponding to any
xi, 0 ≤ i ≤ l, are parallel, and the 
rossings are positive for xi > 0. Thenthe same argument applies.4.2.Montesinos knots and iterated fra
tions. In many situations in whi
hwe 
an address the problem P (x1, . . . , xl) = ±1, we 
an also say somethingabout the more general equation

q1 · . . . · qkP (p1/q1, . . . , pk/qk, xk+1, . . . , xl) = ±1,where (pi, qi) = 1 and 1 ≤ k ≤ l.This situation o

urs on the knot side when repla
ing twist( tangle)sby rational tangles. Sometimes, it is still possible to 
ontrol σ after thisrepla
ement, whi
h then depends on the signs of the (unique) non-zero evenintegers, expressing pi/qi as 
ontinued fra
tions, or some slight modi�
ationthereof, if both pi and qi are odd. We give some appli
ations in the simplestsituation, when repla
ing the twist tangles of the pretzel knots by rationaltangles and obtaining Montesinos knots.Let us 
onsider M(p1/q1, . . . , pl/ql; n), where pi, qi are all odd ex
ept p1,whi
h should be even, and l is odd (the pi need not be positive).Proposition 4.2. Let σ = σ(M(p1/q1, . . . , pl/ql; 2k)) ≡ 4, 6 (mod8) besu
h that l and all pi, qi are odd ex
ept p1. Then(14) l∑

i=1

pi

∏

i6=j

qj + 2m
l∏

j=1

qj 6= ±1for m ≤ k. The same property holds for m ≥ k if σ ≡ 2, 4 (mod8).



Determinants of knots and Diophantine equations 377Proof. The l.h.s. in (14) is the determinant of M(p1/q1, . . . , pl/ql; 2m).If we had equality in (14), then M(p1/q1, . . . , pl/ql; 2m) would have deter-minant 1. However, the twists 
orresponding to 2k are reverse, and so (byLemma 3.1)
σ(M(p1/q1, . . . , pl/ql; 2m))−σ(M(p1/q1, . . . , pl/ql; 2k)) ∈ {0, 2 sgn(m−k)},and σ(M(p1/q1, . . . , pl/ql; 2m)) 6≡ 0 (mod8), a 
ontradi
tion.If we write
(15) p1

q1
= [[a1,1, . . . , an1,1]],

p2

|p2| − q2
= [[a1,2, . . . , an2,2]],

p3

|p3| − q3
= [[a1,3, . . . , an3,3]], . . . ,

pl

|pl| − ql

= [[a1,l, . . . , anl,l]],with all ai,j even and non-zero (note that n1 is odd, while all the other niare even), then using Lemma 2.1 we have(16) σ(M(p1/q1, . . . , pl/ql; 2k)) = −
n1∑

i=1

sgn(a1,i) +
l∑

i=2

ni∑

j=1

sgn(ai,j) ± 1,be
ause by plumbing an annulus (9) the twists of 2k 
an be made trivial,and one obtains the 
onne
ted sum of l − 1 rational knots and one rationallink, S(p1, q1), the latter being mirrored opposite to the de�ning (mirror-ing) 
onvention for its notation. Thus the 
ondition on the signature 
an berewritten as(17) −
n1∑

j=1

sgn(a1,j) +
l∑

i=2

ni∑

j=1

sgn(ai,j) ≡ ±3 (mod8).Proposition 4.3. Let pi, qi and l be odd ex
ept p1. If for the ai,j in (15)we have (17), then (14) holds for any m ∈ Z.Similar statements hold if l is even. Then the formulas be
ome even more
oherent. First, �p1/q1 = [[. . . ]]� must be repla
ed by � p1

|p1|−q1
= [[. . . ]]� in(15). (This 
orresponds to reversing the orientation of one of the 
ompo-nents of the rational link.) Moreover, the formula (16) requires the sign of∑n1

j=1 sgn(a1,j) to be reversed, as in the alternating diagram the sign of the
rossings in the p1/q1 tangle is altered. So we obtain:Proposition 4.4. Let pi, qi be odd ex
ept p1, and l be even. Write
pi

|pi| − qi

= [[a1,i, . . . , ani,i]]for i = 1, . . . , l (with ni even ex
ept n1, all ai,j 6= 0 and even). If(18) l∑

i=1

ni∑

j=1

sgn(ai,j) ≡ ±3 (mod8),
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l∑

i=1

pi

∏

i6=j

qj 6≡ ±1
(
mod2

l∏

j=1

qj

)
.Here is an example to the last proposition showing how the signature
an be applied to dedu
e properties of 
ontinued fra
tions related to integerpoints on spe
ial types of 
ubi
 
urves [Ma℄.Example 4.1. Consider M(2x3/3, y2/5, x/7,−15/11; 0) for x, y odd.The determinant is the 
ubi
 
urve C(x, y) = 770x3 + 231y2 + 165x− 1575.If for some odd integers x, y > 0 we have

770x3 + 231y2 + 165x − 1575 ≡ ±1 (mod2310),and we write
2x3

2x3 − 3
= [[a1,1, . . . , an1,1]],

y2

y2 − 5
= [[a1,2, . . . , an2,2]],

x

x − 7
= [[a1,3, . . . , an3,3]],then be
ause of −15

15−11 = [[−4,−4]] we have ∑
i<4,j sgn(ai,j) ≡ 1, 3 (mod8).Similar 
onsiderations 
an also be made if p1 and l are both odd, onlythat in this 
ase a ni
e formula for the signature as (16) is a priori la
king, asthe 2k twists have parallel orientation, and the plumbing 
annot be applied.Another version with the role of the produ
t n of denominators (above

n = 1155) and the value of the 
ubi
 
urve C(x, y) swapped 
an be obtainedby 
onsidering tangles of the form Mn, where M is a Montesinos tangle and
n is a primitive Conway tangle with n even. This time we obtain statementsfor the solutions of C(x, y) | (n ± 1)/2.4.3. More general equations. Pretzel and Montesinos knots are spe
ialtypes of knots, and thus the method 
an be applied in more generality. Inparti
ular, by the 
al
ulus of Krebes [Kr℄ one 
an very easily 
al
ulate thedeterminant for arbores
ent knots in terms of their Conway notation. Wedemonstrate by a few exemplary statements how to pro
eed, giving someappli
ations to polynomials involving various 
ombinations of σl−1,l's. (Eventhe restri
tion to 
onsider arbores
ent knots is not ne
essary, but 
hosen forsimpli
ity.)Theorem 4.3. Let k, l ∈ N be integers with k − l ≡ 2 (mod4). Set

σn,2k = σn,2k(a1, . . . , a2k) and σm,2l = σm,2l(b1, . . . , b2l).Then
(19) σ2k−1,2kσ2l−1,2l

+[σ2k,2k + (2m + 1)σ2k−1,2k][σ2l,2l + (2n + 1)σ2l−1,2l] = ±1



Determinants of knots and Diophantine equations 379has no solutions in odd positive integers a1, . . . , a2k, b1, . . . , b2l and m, n∈Z.The same statement holds for odd positive integers a1, . . . , a2k and odd neg-ative integers b1, . . . , b2l if the 
ondition k − l ≡ 2 (mod4) is repla
ed by
k + l ≡ 3 (mod4).Proof. Consider the arbores
ent knot

K = ((a1, . . . , a2k) 2m + 1) (2n + 1 (b1, . . . , b2l))(see Figure 3(a), where the example for k = 3, l = 1, a1 = a3 = a5 = b2 = 5,
a2 = a4 = a6 = b1 = 3, m = −2 and n = −3 is shown). By plumbing twobands, the twists 
orresponding to the 2m + 1 and 2n + 1 
an be trivialized,and one obtains a 3-
omponent link L, whi
h is the 
onne
ted sum of twopretzel links (a1, . . . , a2k) and (b1, . . . , b2l) of opposite sign, oriented so thatthe twists of the ai and bj are antiparallel. We have σ(L) = 2(k − l) ≡ 4
(mod8), and thus (as plumbing of an annulus 
hanges σ at most by ±1)
σ(K) ≡ 2, 4, 6 (mod8).

(a) (b)Fig. 3The determinant of K is found to be (up to sign) the l.h.s. of (19) by the
al
ulus of Krebes. The + sign between the two produ
ts needs to be takenbe
ause we 
ompose the tangles (a1, . . . , a2k) 2m+1 and 2n+1 (b1, . . . , b2l),so that for a proper sign 
hoi
e of m and n the diagram is alternating. Theformula then follows for arbitrarily signed m and n, be
ause the determinantbehaves polynomially in m and n.Taking the bj to be negative means that we now 
onsider a knot K asabove, but this time L is the 
onne
ted sum of two positive (or two negative)pretzel links, and thus σ(L) = ±(2k − 1 + 2l − 1) = ±2(k + l − 1). By thenew 
ongruen
e imposed, again σ(L) ≡ 4 (mod8), and the same argumentapplies.Remark 4.2. It should be noted that in this theorem the assumptionthat all ai and bj are positive/negative is essential. For example, ai = bi =
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(−1)i gives a solution (whi
h 
orresponds to unknotting the knot). Thus inparti
ular the theorem 
annot be proved by 
ongruen
es.Another result is shown in similar way by 
onsidering rational instead ofpretzel tangles.Definition 4.1. De�ne Pi, Qi ∈ Z[x1, . . . , xi] by (Pi, Qi) = 1 and

[[x1, . . . , xi]] =
Pi(x1, . . . , xi)

Qi(x1, . . . , xi)
.Alternatively, Pi and Qi are de�ned re
ursively by

P1(a1) = a1, Q1(a1) = 1,

Pn(a1, . . . , an) = a1Pn−1(a2, . . . , an) − Qn−1(a2, . . . , an),

Qn(a1, . . . , an) = Pn−1(a2, . . . , an).Proposition 4.5. Let a1, . . . , a2m, b1, . . . , b2n be non-zero even integerswith
2m∑

i=2

sgn(ai) ≡
2n∑

i=2

sgn(bi) (mod8).Let l≡5 (mod8), and write Pm =P2m(a1, . . . , a2m), Qm = Q2m(a1, . . . , a2m),
Pn =P2n(b1, . . . , b2n), Qn = Q2n(b1, . . . , b2n), and σp,l = σp,l(x1, . . . , xl), with
σp,l as in (13). Then

[Pmσl−1,l + Qm · (σl,l + σl−1,l)]Pn + QmQnσl−1,l = ±1has no solutions in odd integers x1, . . . , xl all positive or all negative, and
ai, bj as above.Proof. This time we 
onsider the knot

K = ((x1, . . . , xl)(−a2m a2m−1 . . . −a2 a1 + 1))(−b2n b2n−1 . . . −b2 b1)(see Figure 3(b), where the example for l = 5, all xi = 3 for 1 ≤ i ≤ 5,
m = 2, n = 1, a1 = a2 = a3 = −2, a4 = 4, b1 = 6 and b2 = −2 is shown).Again by plumbing two annuli, K 
an be turned into the 
onne
ted sum ofthe rational links L1 = −a2m a2m−1 . . . −a2 and L2 = −b2n b2n−1 . . . −b2with the pretzel knot (x1, . . . , xl). From the signature formula for rationalknots (see �2) we have

σ(L1#L2) = −
2m∑

i=2

sgn(ai) +
2n∑

i=2

sgn(bi) ≡ 0 (mod8),and the pretzel knot has signature ±(l − 1) ≡ 4 (mod8) (the sign a

ordingto whether all xi are positive or negative). The rest of the argument is thesame as before.Remark 4.3. It is 
lear that the 
onditions of the theorem 
an be re-laxed. For example, it may be of interest to have more than two variables to
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tion we 
an allowone of the xi to have a di�erent sign from the others, as long as σl−1,l > 0.If at most one xi has a di�erent sign, then the pretzel has σ = ±(l − 1) or
σ = ±(l− 3), depending on |σl−1,l| mod 4. But σl−1,l ≡ 1 (mod4) for odd xiand l ≡ 5 (mod8), and thus σ = ±(l − 1) is equivalent to the 
ondition onthe sign of σl−1,l.We 
an also generalize Theorem 4.1 as follows. Let g(D) be the (
anoni-
al) genus of D (see �2.1).Theorem 4.4. To any diagram D of a knot K with 2g(D) = σ(K) ≡ 6
(mod8) we 
an asso
iate a polynomial PD in n = c(D) variables su
h thatany solution of PD(x1, . . . , xn) = ±1 in odd integers 
ontains at least threenegative ones.Proof. Let PD be the braiding polynomial of the determinant on D withantiparallel twists, the xi parametrized to be positive on positive twists.Then 
learly 2g(D) = σ(K) and the invarian
e of g(D) under antiparalleltwists implies that σ 
annot in
rease anymore under positive twists, whileit de
reases at most on
e under negative twists at the same 
rossing.The polynomials PD for the maximal generators of genus g 
onsideredin [SV℄ 
ontain all the other polynomials as spe
ial 
ases, i.e. by spe
ializingvalues of some xi. However, these values are not always positive, so that thestatement for the maximal generators does not imply it for all other genera-tors. Moreover, we know from [SV℄ that the number of maximal generatorsgrows at least like 400g, so that there is a large wealth of polynomials towhi
h the theorem applies.4.4. Linear re
urrent sequen
es. Su
h sequen
es are the subje
t of inten-sive study. General results on properties like the number of realizations of agiven integer [SS℄ require appli
ation of deep results in algebrai
 geometry[Ev, Fa℄, and are still far from being optimal.Linear re
urrent sequen
es 
an be made to enter our pi
ture in a wayexplained in [St3℄ by 
onsidering determinants of rational knots whose Con-way notation 
ontains iterative patterns. The following theorem is 
ertainlynot the most general possible, but 
hosen so that its proof indi
ates how one
an pro
eed in other 
ases. (Setting i = 0 spe
ializes it to statements of thesort of Theorem 1.2.)Theorem 4.5. Let l > 0 be odd , x1, . . . , xl be odd integers , and write σ̂ =
σl,l(x1, . . . , xl) and σ = σl−1,l(x1, . . . , xl). Fix two non-zero even integers a1and a2. De�ne a linear re
urrent sequen
e {qi} for i ≥ 0 by

q0 = 4σ̂ + 11σ, q1 = q0(1 + a1a2) + 4a2σ, qi+2 = (2 + a1a2)qi+1 − qi.



382 A. StoimenowAssume now that |qi| = 1 for some i. Let
σi = i · (sgn(a2) − sgn(a1)) + l + 1.Then if σi ≡ 6 (mod8), at least three of the xk are negative. If σi ≡ 4

(mod8), at least two of the xk are negative.Proof. Consider the rational knot Ki with notation 4−4−a1 −a2 −a1

−a2 . . . −a1 −a2, with the subsequen
e (−a1 −a2) repeated i times. Sin
eall numbers are even, the twists in ea
h group are reverse. (They 
orrespondto a Hopf plumbing of Ki.) In the group of �−4� we repla
e one 
rossingby a �ipped (−x1, . . . ,−xl) pretzel tangle, so that the twists 
ounted by the
−xl are reverse. The Conway notation then be
omes

4 · ((−x1, . . . ,−xl) · −3) · −a1 . . . − a2.Figure 4 shows the example for l = 3, xk = 3 (k = 1, 2, 3), a1 = −2, a2 = 2and i = 1.

Fig. 4Call the arbores
ent knot thus obtained Ki. Then det(Ki) = qi. To seethis, �rst note that Ki 
orresponds to the iterated fra
tion [[a2,−a1, . . . ,
a2,−a1, 4, 4]]. Then det(Ki) is given by the numerator of

[[
a2,−a1, . . . , a2,−a1,

11

4
+

σ̂

σ

]]
.Now one veri�es the �rst three values for qi, and uses an argument as inthe proof of Theorem 7.4 in [St3℄ to establish the re
urren
e. (Unlike there,only three initial values are ne
essary, sin
e the eigenvalues of the matrixappear only in powers 0 and ±i, but not ±2i.) Now, if all xi are positive,one 
an still turn the diagram of Ki into an alternating one, by a variantof the tangle isotopy that makes the rational tangle 
losing to Ki alternat-ing. Then one sees that σi = −σ(Ki), and the rest of the argument is asbefore.
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an obtain statements about deeper (in length) re
urren
es byadding sequen
es under tangle 
omposition, or by in
orporating more it-erative subsequen
es.5. Problems. It would be interesting to see to what extent the abovemethod 
an �nd appli
ations to number theory, in parti
ular to 
ubi
 
urves.We have presented just a part of the situations in whi
h it 
an be applied;there are several possibilities for extension. One 
an e.g. also 
onsider non-arbores
ent knots, or 2-
omponent links, applying Corollary 3.2 (in whi
h
ase only one variable of the polynomial 
an be made to take either signs,as only two 
onse
utive values of the signature are ex
luded). On the otherhand, a 
ombination with number-theoreti
 work may be desirable.We 
on
lude with two more spe
i�
 problems.5.1. Determinants of signature 4 knots. One 
an ask whether ±1 plays aspe
ial role in Theorem 1.1 and 
annot be repla
ed by another integer. Thisis important at least be
ause it 
ould lead to another series of results of theabove type.The question whether ea
h pair (d, s) ∈ (2N + 1) × 2N satisfying theMurasugi 
ondition (8) o

urs as (det(K), σ(K)) for some knot K was 
on-sidered by Shinohara in [Sh℄ and observed to have a positive solution if s 6≡ 4
(mod8) or s ≡ 4 (mod8) and d ≡ 5 (mod8). While a general positive answerseems natural and likely, Theorem 1.1 shows the di�
ulty of the 
ase s ≡ 4
(mod8). One 
annot obtain it by twisting arguments if twists are performedat only one pla
e in the diagram, as in the proof of Theorem 3.1. Here isa point where knot theory fails and more sophisti
ated number theory may�nd its appli
ation.Question 5.1. Let S ⊂ 1 + 4N be given by

S := {det(K) : σ(K) = 4}.Is S = 5 + 4N?Remark 5.1. Note that for any other value of σ ≡ 4 (mod8) the problemis equivalent be
ause of 
onne
ted sums with knots like 10124 (the (3, 5)-torusknot) and their mirror images. Also the question for prime examples 
anbe settled by the �KT grabber� method of [Bl℄, on
e (possibly 
omposite)examples are found.We summarize some simple properties of S.Proposition 5.1. S has the following properties.1) If p = 4l + 1 and 4k + 3 | p with k ≥ 0, then p ∈ S.2) If p ∈ S, then (4k + 1)p ∈ S for ea
h k ≥ 0.



384 A. Stoimenow3) S 
ontains the value range of σl−1,l with l ≡ 5 (mod8) on odd positivearguments.4) 1 6∈ S.5) S 
ontains (besides further spe
i�
 values) all integers p = 4l+1 with
1 < p < 2209.6) S 
ontains in�nitely many arithmeti
 progressions , for example 5+8k,
5 + 12k, 9 + 12k (k ≥ 0).Proof. 1) Consider 
onne
ted sums of two positive twist knots.2) Consider 
onne
ted sum with a non-positive twist knot.3) Consider the (generalized) pretzel knots (x1, . . . , xl).4) This is Theorem 1.1.5) This is the out
ome of a 
omputer experiment, 
ompiling the deter-minants of the knots of [HT℄ with σ ≡ 4 (mod8).6) This is obtained by 
he
king what determinant 
hanges o

ur underthe 
hange of a 
rossing in a σ = 4 knot diagram, and then applying theiterated twist argument as in Theorem 3.1. For example, 5+12k 
omes fromthe sequen
e 51, 75, 97, . . . .5.2. Arithmeti
 progressions. One 
an obtain more arithmeti
 progres-sions 
ontained in S by the methods of �3. If a knot K1 with σ ≡ 4 (mod8)turns into a knot K2 by one 
rossing 
hange, then S 
ontains an arithmeti
progression a1 + a2k for k ∈ N, where

(a1, a2) =





(det(K1) mod |det(K1) − det(K2)|, |det(K1) − det(K2)|)
if σ(K1) = σ(K2),

(det(K1), det(K1) + det(K2)) if σ(K1) 6= σ(K2).One has a priori no reason to expe
t any parti
ular feature of the pairs
(a1, a2) so obtained, ex
ept that a1 6= 1 (and 4 | a2). However, examinationof a large number of knots reveals striking regularities in the distributionof su
h pairs. Consider only pairs representing maximal progressions, i.e. if
a2 | a′2, then {a′1 + a′2k} ⊂ {a1 + a2k} with a1 = a′1 mod a2, and 
all su
hpairs (a1, a2) maximal. Then experiments suggest in parti
ular the followingproperties of maximal pairs (a1, a2).

• a1 is never a perfe
t square ex
ept in 12k + 9, i.e. a1 = 9, a2 = 12.
• a2/4 is always a prime.
• For �xed a2 6= 8 there are exa
tly (a2/4 + 1)/2 di�erent values of a1with (a1, a2) being a pair.
• a1 = 5, i.e. a2k + 5 is a progression, if and only if a2/4 6≡ ±1 (mod5).I have no explanation for these phenomena.



Determinants of knots and Diophantine equations 385The table below summarizes the values of a1 I found for small a2.
a2 a18 512 5, 920 5, 13, 1728 5, 13, 17, 2144 13, 17, 21, 29, 33, 4152 5, 13, 21, 33, 37, 41, 4568 5, 17, 29, 37, 41, 45, 57, 61, 65

Using these series, a small 
al
ulation, and Proposition 5.1, we haveCorollary 5.1. If p ≡ 1 (mod4) with p 6∈ S, then all prime divisors of
p are of the form 24k + 1 and are not smaller than 33049.One 
an do mu
h better if one uses the full list of progressions (notonly those given in the above table). Applying the resulting larger numberof 
ongruen
e 
onditions, a sear
h through the primes up to 4 · 109 failedto �nd one violating all of them. (Thus in parti
ular S 
ontains all num-bers p = 4l + 1 ≥ 5 up to this limit.) However, Diri
hlet tea
hes that forany number of 
ongruen
e 
lasses there exist primes outside these 
lasses,and in fa
t they are in�nitely many, so that su
h a pro
edure 
an never beexhaustive.
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