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Determinants of knots and Diophantine equations
by

A. StomMENOW (Kyoto)

1. Introduction. The problem of solving an equation P(z1,...,x,) =0
for some polynomial P € Z[xy,...,2,] in integers x; is one of the most
fundamental in the whole mathematics. A general theory is developed only
for P of small degree, having few variables, or of a special type, like quadratic
forms [Z], the Fermat equation [W], elliptic curves [Hu| or Waring’s class of
problems [Ho|. See e.g. [Sm].

The aim of this paper is to give an application of the theory of knots
[Kal] to Diophantine equations, by means of a knot-theoretic obstruction to
the solvability of certain types of such equations. Of central importance will
be the work of Kauffman [Ka2|, Murasugi [Mul|, and the following theorem
on the signature o(K) and determinant det(K) of a knot K.

THEOREM 1.1. There is no knot K with det(K) = 1 and o(K) = 4
(mod38).

Theorem 1.1 is a consequence of a signature theorem for even unimodular
quadratic forms. A brief proof will be given in the next section. This theo-
rem will be used to show the non-solvability of certain Diophantine equations
P(zxy1,...,2n,k,1) = £1 in non-negative integers x;. Inter alia, we can as-
sociate to any diagram D of a knot K whose canonical genus g(D) satisfies
2g(D) = o(K) = 6 (mod8), a polynomial Pp such that any solution of
Pp = %1 contains at least three integers of a given sign. Moreover the num-
ber of variables of Pp is equal to the number of crossings of D, and hence
can be arbitrarily augmented. The simplest type of such a polynomial Pp is
the elementary symmetric polynomial of second highest degree. We have in
particular:
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THEOREM 1.2. Let 0y,—1,, be the elementary symmetric polynomial of
degree n—1 in n variables and n = 7 (mod8). Then any solution of oy_1,, =
—1 in odd integers contains at least three negative (and three positive) ones.

The polynomials we will consider are of some special types, but they
arise from the particular families of knots we study, and one can build many
more. The non-negativity condition on the z; in Pp can be removed by suit-
able substitutions (and also by appropriate modification of the knots under
consideration), yielding polynomials of even degree in all but two of their
variables. By substitutions one also obtains many low degree polynomials.
In other cases, including examples of cubic curves [Ma], one can show that
the signs of continued fractions related to integer solutions satisfy certain
congruences. One can also obtain results about linear recurrent sequences.

It is unlikely that (and unclear how) one can study a given particular
equation by such a procedure. The statements that one obtains with our
approach, however, may well go beyond the scope of state-of-the-art methods
(using the apparatus from algebraic geometry). It is at least unlikely that
our results can be recovered by known methods in such a direct way.

Acknowledgements. The work in this paper was mostly carried out
during a stay at MPI Bonn. I would like to thank B. Poonen, V. Protsak
and D. Zagier for some helpful remarks and discussions. Most of all, however,
I wish to thank F. Hirzebruch, who pointed out Theorem 1.1 to me, and
without whose support this work would not have been possible.

2. Knots, signature and determinant

2.1. Relation to Seifert forms. A knot (resp. n-component link) is an
S' (resp. n copies of it), oriented or not, smoothly embedded in R3. We
need some basic facts about knots, which are explained in detail for example
in [Ro].

Knots and links are represented by diagrams, plane curves with transverse
self-intersections, called crossings, at each of which an over- and underpassing
strand is distinguished. A diagram is called connected if its plane curve is
connected. A link is split if it has a diagram which is not connected; otherwise
it is non-split. (A knot is always non-split.)

Every oriented knot or link L bounds a compact surface S embedded
in R3, so that the orientation of L = 9 matches the one induced from S.
Such a surface S is called a Seifert surface of L. The minimal genus, resp. the
maximal Euler characteristic of all Seifert surfaces of L is called the genus
g(L), resp. the Euler characteristic x(L) of L. From each diagram D of L
one can obtain a Seifert surface S(D) of L by means of an algorithm due
to Seifert. We call the genus g(S(D)) = ¢g(D), resp. the Euler characteristic
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X(S(D)) = x(D) of S(D) the canonical genus, resp. the canonical Euler
characteristic of D.

Each Seifert surface of L gives rise to a Seifert matriz. Here it is enough
to understand that this is a square matrix with integer entries. A knot K has
many Seifert surfaces, and each Seifert surface defines many Seifert matrices.
Still there are invariants of K derived from the Seifert matrix.

The results that follow will be obtained by extensively using properties
of the signature and determinant of knots and links. These invariants have
been around for a long time in knot theory (see, e.g., [H, Ro|). Originally
they were defined in terms of Seifert matrices. More precisely, det(K) is the
order of the homology group of the double cover of S branched over the knot
(or link), and obtained its name from its expression as the determinant of a
Seifert matrix (which is a representation matrix for this homology group),
and o(K) is the signature of the symmetric pairing given by the Seifert
matrix.

The definition of signature and determinant by means of Seifert matrices
leads to Theorem 1.1.

Proof of Theorem 1.1. Consider the Seifert form of K given by A + AT,
where A is a Seifert matrix of K. Then det(K) = det(A + AT) = £1, and
A+ AT has only even entries on the diagonal.

For any bilinear form S over Z™ the map

x — S(z,z) mod 2
is linear, and if S mod 2 is non-degenerate (< det(S) is odd), then
Jw : S(z,w) = S(x,z) (mod2)

for all z € Z™. We have the following theorem on the norm of w and the
signature o(5) of S (see [HNK, Theorem 3.10]).

THEOREM 2.1. If det(S) = %1, then S(w,w) = o(S) (mod8) for any
such w.

If S = A+ AT has only even entries on the diagonal, then S(x,z) =0

(mod 2), and thus we can choose w = 0. Then the theorem shows o (K

o(S) =0 (mod8). =

Once Theorem 1.1 is proved, the Seifert form, however, will no longer
be of interest to us for studying the determinant and signature. It will be
more convenient to follow other approaches to these two invariants, using
properties of their behaviour under certain knot diagrammatic operations.

2.2. The determinant via state model and braiding sequences. For the
determinant we follow an approach which was developed from the Kauffman
state model |Ka2| for the Jones polynomial [J1]. It uses the property that
det(K) = |Ag(=1)| = |Vk(=1)| = |{(D)(+/7)|, where A is the Alexander
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polynomial, V' is the Jones polynomial, (D) is the Kauffman bracket of some
diagram D of K, and \/i is a primitive 8th root of unity (see [J2, (12.3)]). The
state model allows one to give a combinatorial definition of the determinant
of alternating diagrams.

A diagram is alternating if each strand exiting a crossing from above
enters the next crossing from below and vice versa. A connected alternat-
ing diagram D can be identified (up to mirror image, which preserves the
determinant) with its plane curve D C R2. Then each of the n crossings
(self-intersections) of D can be spliced in two ways

W + - e

giving 2" states, and det(D) is the number of states whose resulting col-
lection of disjoint circles has only one component, i.e., is one single circle
(“monocyclic state” [Kr]).

From this the definition of det(D) can be extended to arbitrary diagrams
using the approach of braiding sequences [St2] (which was originally intro-
duced for the study of Vassiliev invariants, but serves equally well also for
any particular value of A(t), not only ¢t = —1).

Number the crossings of a diagram D by cy, ..., ¢,. To each ¢; one assigns
an odd integer variable x;. Then define D(z1,...,x,) to be the diagram

obtained from D by replacing each crossing c; X in D by a tangle, called

a twist below, of |x;| crossings like

@) XOOXXX

(for x; = £5). To fix the signs, we demand that when orienting D, the
crossings in this tangle have sign sgn(x;), where the sign (or writhe) of a
crossing is defined by

(3) sgn (X) =—1 and sgn (X) =1.

(We use here the fact that D is a knot diagram, and then any of the two ori-
entations attaches the same sign to each crossing.) Then D = D(zy,...,xy)
for z; = sgn(¢;).

The above tangle replacement is called braiding. When D is oriented,
then for |x;] > 1 we call the twist of (2) parallel or reverse (antiparallel),
depending on whether both strands enter from the same left /right side, or
from both. (If z; = £1, we can consider a single crossing as either a parallel
or an antiparallel twist.) We actually have two ways of braiding, depending
on whether in the oriented diagram the twist becomes parallel or reverse.
For example, for z; = 3:
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parallel
\ reverse
™A //(a\\ NN
(4) /\ - & LA
N ~-=
>\

The choice between the two braidings is (for now) irrelevant, but should
be kept fixed for each crossing ¢; of D, independently of x;. We call a twist
parallel or antiparallel according to its braiding, and positive or negative
according to the sign of its crossings.

On properly adjusting the signs of the z;, D(x1,...,x,) becomes alter-
nating, and we have already defined det(D(x1,...,x,)). It is easy to see that
the map

(x1,...,2p) — det(D(z1,...,2,))

for x; signed this way is a (“braiding”) polynomial P, linear in all variables.
Define then det(D(z1, . . ., xy,)) for arbitrarily signed z; to be [P(z1, . .., 2],
where P is the unique extension of P to (2Z 4 1)*™. This procedure in
particular allows calculating the determinant det(D) for arbitrary D.

The determinant is an invariant of the underlying knot K, so its calcu-
lation does not depend on the choice of the diagram D, and hence we set
det(K) := det(D) for some diagram D of K. The advantage of using this
method to determine det(K) is to remember that det(D) behaves (up to
sign) linearly in all x;.

Another important feature of the determinant is that it is odd if and
only if the link is a knot, i.e. has only one component. More generally, the
multiplicity of 2 in det(L) is at least (but not always equal to) n—1 for an n-
component link L. (This can be seen from the identity det(L) = £A(—1).)

Kauffman’s model for the determinant was subsequently put into a nice
language by Krebes [Kr|, who showed how to calculate the determinant of
arborescent knots (in the Conway [Co| sense), by showing that the “ratio”
of the determinants of both closures of a 2-string (i.e. 4-end) tangle behaves
additively under Conway’s tangle sum operation. This method will be sub-
sequently used, but we repeat below only a part of the formalism we need;
see [Kr| for more details.

2.3. Cualculating the signature. The signature o is a Z-valued invariant
of knots and links. We know that o(L) has opposite parity to the number of
components of the link L whenever Ar(—1) # 0. This in particular always
happens for L being a knot (remember that Ap(—1) is always odd in this
case), so that o takes only even values on knots. Most of the early work on
the signature was done by Murasugi [Mul], who showed several properties
of this invariant.
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Consider three links with diagrams differing just at one crossing;:

. KX
L L- Lo

Then
(6) U(L-i-) - U(L—) € {07 L, 2}a
(7) J(Li) - J(LO) € {_1’0’ 1}'

(Note: In the first property one can also have {0, —1, —2} instead of {0, 1,2},
since other authors, like Murasugi, take o to be with opposite sign. Thus (6)
not only defines a property, but also specifies our sign convention for o.)

Further, Murasugi found the following important relation between o(K)
and det(K) for a knot K:

(8) o(K) E(Q) (mod4) & det(K) =

1
0(K) =2 (mod4) & det(K) =3 (mod4).
These conditions, together with the initial value o(()) = 0 for the unknot,

and the additivity of o under split union (denoted by “L/") and connected
sum (denoted by “#”),

J(Ll#Lg) = O’(Ll (] LQ) = J(Ll) + U(LQ),

allow one to calculate o for very many links. In particular, if we have a
sequence of knots

Ky— K — - — K,
such that K, is the unknot and K; differs from K;_; only by a crossing
change, then (6) and (8) allow calculating o(K;) inductively from o(K;;1)
if det(K;) is known.
From this the following property is evident for knots, which also holds
for links: o(!L) = —o(L), where !L is the mirror image of L.
We will need the following operation (see also [Mu2]).

DEFINITION 2.1. A band-connecting (or plumbing of an annulus) is the
operation

) - =

(Note that this always changes the number of components.)

LEMMA 2.1. If a link Ly is obtained from a link L by band-connecting,
then |o(L) —o(L1)| < 1.
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Proof. Use (7) and the fact that L; is obtained from L by smoothing out
a crossing (replacement of Ly by Lg in (5)), when redrawing the Lh.s. of (9)

2.4. Tangle notation and families of links. Some formulas for o will be
necessary, in particular those for both rational knots and links. We will
describe them in some detail, since it will be important for what follows.

Conway [Co| introduced a notation for knot and link diagrams. Here
it suffices to consider Conway notations which consist of a set of integers,
to which two binary operations, named by Conway “sum” and “product”,
are applied, with various parenthesizations. Figure 1 shows how to obtain
a diagram of a knot or link from its Conway notation. The diagram is the
closure of the tangle with the same notation. The convention in composing
the tangles is that a Conway notation with no negative integers gives an
alternating diagram. The “product” (which is not associative!) is assumed
to be left-associative, so that abc is understood to stand for (ab)c. We will
often omit the product sign, but sometimes write it “-” for clarity. Diagrams
and their links describable in such a way are called arborescent or Conway-
algebraic. For more details see [Ad, §2.3].

A rational knot or link is one with a rational diagram. Such a diagram
is specified by a Conway notation that contains only a product with no
parentheses, i.e. is a sequence of integers.

Let the continued (or iterated) fraction [[s1,...,sp]] for integers s; be
defined inductively by [[s]] = s and

1
[[81,82,...“ S1 [[82,.. H

The rational knot or link S(p, ¢) in Schubert’s [Sb| notation has the Conway
notation

(10) (-1)" e, - (D" %cpq - o - —c2 - o,
when the ¢; are chosen so that
(11) l[c1, .., cnl] = g.

Without loss of generality one can assume that (p,q) =1, |¢| < |p|, and that
(exactly) one of p and ¢ is even. (If both are odd, we replace ¢ by ¢ £ |p|,
the sign being determined by the condition |¢| < |p|.) Note that S(—p, —q)
is the same knot or link as S(p, q), while S(—p,q) = S(p, —q) is its mirror
image. S(p, q) is a knot for p odd and a 2-component link for p even.

Then we can choose all ¢; in (11) to be even (and non-zero). It is known
that, with this choice of ¢;, their number n = 1 — x(S(p, ¢)) is equal to twice
the genus of S(p, q) or twice the genus plus one, depending on whether S(p, q)
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is a knot (i.e. pis odd and n even) or a 2-component link (p even, n odd). The
primitive tangles in Figure 1 also specify a mirroring convention. When n
and all ¢; in the Conway notation are even, then the writhe, according to (3),
of the crossings corresponding to the entry (—1)*1¢; in (10) is sgn(c;).

) (o0 J2IE I [

+o0 0 4 sum P, Q product PQ closure P
Fig. 1. Conway’s primitive tangles and tangle operations

THEOREM 2.2. When ¢; in (10) are even (and non-zero), we have
1=x(5(p.))
o(S(p.q))= >, sen(c).
=1

This formula follows from [HNK, p. 71]. Later, however, we will be able to
give a brief independent proof. The formula will allow us to give statements
on the distribution of signs in continued fractions related to integer points
on some cubic curves.

In the case of links (p even), the interchange q < g & |p| corresponds to
reversing the orientation of one of the components. For example, the Conway
notation “2 — 2 2” with [[2,2,2]] = 4/3 corresponds to the positive (2,4)-
torus link with parallel orientation and signature o = sgn(2) + sgn(2) +
sgn(2) = 3, while the Conway notation “4” with [[4]] = 4/1 corresponds
to the positive (2,4)-torus link with reverse orientation and signature o =
sgn(4) = 1.

For the purpose of calculating with continued fractions, it will be helpful
to extend the operations “+” and “1/-” to QU {oo} by 1/0 = o0, 1/00 = 0,
k + 0o = oo for any k € Q. The reader may think of co as the fraction 1/0,
to which one applies the usual rules of fraction arithmetic and reducing. In
particular reducing tells that —1/0 = 1/0 so that for us —oco = oo. This
may appear strange at first glance, but has a natural interpretation in the
rational tangle context.

Rational knots with Conway notation n2 (with n # 0), or Schubert
notation S(p,2) (p odd) are called twist knots.

Montesinos knots/links (see e.g. |LT|) are generalizations of rational
knots/links and special types of arborescent knots/links. They are denoted
by M(pi/qi,-..,pt/q;n), where (pi,q;) = 1 and |p;| > ¢;. (Note: there
is a variety of conventions for the notation in the literature; mostly they
differ from ours in signs.) Here p;/q; are continued fractions of rational
tangles Cngyi---Cli with [[CLZ‘, —C2,i5 C3is -+ + s (—1)””‘_107%72']] = p,-/qi. Then
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M(p1/q1,-.-,pi/q;n) corresponds to the Conway notation

(12) (Cnl,l N 0171), (Cn2’2 e 01’2), ceey (Cnl,l N Cl,l)7 n0.

Note that for this to be a knot, at most one p; can be even. If [ < 2, then
the Montesinos knot or link is a rational knot /link.

The defining convention is that all ¢; > 0, and if p; < 0, then the tangle
is composed so as to give a non-alternating sum with a tangle with p;+; > 0.
This defines the diagram up to mirror image, which is fixed by the choice of
mirroring the primitive tangles in Figure 1. A typical example is shown in

L e

~—"

Fig. 2. The Montesinos knot M(11/3, —4,5/2;4) with Conway notation (213, —4, 22, 40)

A pretzel knot/link is a special type of Montesinos knot/link, where all
¢i = 1 (or equivalently all n; = 1 in (12)).

A(n oriented) knot/link is called positive if it has a positive diagram.
A positive diagram is one in which all crossings have sign 1, according to (3).
See for example [N, St1]. Murasugi also proves special formulas for o of
alternating links L (see e.g. p. 437 of [Ka3|), which in case L is positive and
non-split show o(L) = 1 — x(L), with x(L) being the Euler characteristic
of L. In particular, for the pretzel knot or link (z1,...,x;) with all z; odd
and positive, we have o =1 — 1.

3. Knot adjacency. Before we start applying Theorem 1.1 to more
general types of polynomials, we first consider the one variable case, which
has some applications to knot theory and should help in understanding the
multi-variable cases discussed later.

The original hope was to apply Theorem 1.1 to unknotting numbers.
Although this has failed so far, the theorem has some applications to the
more general concept of knot distance; see |DS, Mr, Ask|. (The unknotting
number is the knot distance to the trivial knot.)

DEFINITION 3.1. Two knots K7 and Ko have distance n if they can be
interconverted by n, but not fewer, crossing changes. The knots are called
adjacent if they have distance 1.
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Recall that when considering a braiding at a particular crossing ¢; of an
oriented knot diagram D, we have in fact the two options of a parallel and
an antiparallel braiding. In §2.2 we have intentionally abused the orientation
when describing how to calculate the determinant. It behaves polynomially,
independently of which particular choice of braiding is made at any cross-
ing ¢; (as long as this choice is kept fixed for different x;).

However, now there is an important difference between the two braidings.
In both cases the determinants form (up to sign) an arithmetic progression
a1 + 2agx;, but in the case of the antiparallel braiding as comes from the
determinant of the link obtained by smoothing out ¢; as in (5), while for
the parallel braiding the other splicing (in the sense of (1)), yielding again
a knot, must be applied. Thus ay is even in the antiparallel and odd in the
parallel case, and we have

LEMMA 3.1. If at ¢c; in D a parallel braiding is done, then
o(D(x1 +2,x9,...,2,)) —o(D(x1,x2,...,2,)) =2
except exactly for one value of x1 € 27 + 1 (where the difference is 0).
If at c1 in D an antiparallel braiding is done, then
o(D(xy + 2,x9,...,2,)) —o(D(x1,22,...,2,)) =0
except exactly for one value of x1 € 27 + 1 (where the difference is 2) if
det(D(z1 + 2,22, ...,2,)) # det(D(x1, z2,...,24)),
and without any exception otherwise.
This lemma will play a central role in all the considerations to follow,
and will often be used without explicit reference.

Proof. Use (8) and (6). Note that for knots o is even, so 1 cannot occur
on the r.h.s. of (6). The exceptional value of x; occurs when the arithmetic
progression of the determinants changes sign. =

An application of this lemma and of Theorem 1.1 yields a condition
obstructing certain knots to be adjacent.

THEOREM 3.1. Let K12 be knots with det(Ky) > det(K2). Assume one
of the following three conditions is satisfied:
(a) o(K1) =0(K2) =4 (mod8), det(K;) =1 (mod det(K;) — det(K32)),
(b) o(K1) = 0(K2) £ 2, there is a k € N with det(K;) = k(det(K;) —
det(K32))+1 and (K1) = £2k + 4 (mod 8) (the choice of + or — in
the two “+” options being the same),
(c) o(K1) = o(K2) £2, there is a k € N with det(K;) = k(det(K;) —
det(K2)) — 1 and o(K;1) = £2(k — 1) + 4 (mod8) (again with the
same choice of signs).

Then K1 cannot be obtained from Ko by one crossing change.
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Note in particular the following special case of (a).

COROLLARY 3.1. Ifo(K) =4 (mod8), then K cannot be turned by one
crossing change into a knot K" with det(K') = det(K) £4. m

Proof of Theorem 5.1. This is an application of the lemma with K o
represented by diagrams D(+1,za,...,x,) for fixed xg,...,2,. Then con-
sider the sequence D(z1) = D(z1,x2,...,xy) for odd x1. The conditions are
adjusted so that for suitable z1 we get det(D(z1)) = 1 and o(D(z1)) = 4
(mod 8), giving a contradiction to Theorem 1.1. Note that among the two
braidings in (4) at most one may produce a determinant 1 knot. In case (a)
this is the antiparallel braiding, and in cases (b) and (c) the parallel one. In
case (b) a determinant 1 knot is realized (when successively increasing |z;|
by 2) just before the non-switch of the signature (in Lemma 3.1), and in (c)
just after it. m

ExXAMPLE 3.1. The simplest example is the pair of the trefoil and the
figure-8-knot. We have thus an easy proof that they have distance two. Note
that, similarly to rational knots of unknotting number 1 [KM], pairs of dis-
tance 1 rational knots can be described by applying the Culler—Gordon—
Luecke—Shalen theorem about cyclic surgeries [CGLS]|, as done in [Mr|. This
settles the distance 1 problem for many low crossing knots. However, com-
pared to that heavy tool, our proof in this special case is almost elemen-
tary.

EXAMPLE 3.2. If a knot K of determinant 13 has o = 0, like 63 (in the
standard Rolfsen [Ro, appendix| notation), then by one crossing change it
cannot be turned into any knot Ky of determinant 7 or 11. If o(K7;) = 4, like
for K1 = 73, then the same statement holds for (knots K of) determinant 9.
In the same way the distance from 75 to 815 and !85 is not 1, partially solving
two of the open entries in the table of [DS].

EXAMPLE 3.3. If a knot has ¢ = 0 and determinant 41, like 1017, then
it cannot be turned into a knot of determinant 27 by one crossing change.

The arguments applied can also be used to show a similar non-existence
result for links.

COROLLARY 3.2. There is no 2-component link L with det(L) = 2 and
o(L) = +3 (mod38).

Proof. Connect the two components of such a link L by a half-twisted
band, obtaining a knot K. By adding further (possibly reverse) twists to the
band, one obtains a family of knots with determinants +(4k + 1). Thus this
family contains a knot K’ with determinant 1. However, o(K') = o(L)+1 #
0 (mod8), a contradiction. m
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Finally, we remark that Lemma 3.1 can be used to show Theorem 2.2.

Proof of Theorem 2.2. Consider the diagram of the rational link with
Conway notation of even integers c¢;. For all ¢; positive, the diagram, and
hence the rational link, is positive. Then by [N] it is special alternating, and
we have the claim from the result o = 1 — x of [Mul]. Changing the sign
of some ¢; corresponds to undoing positive/creating negative reverse twists
at the same crossing. Lemma 3.1 implies that ¢ changes at most once under
such a sequence of operations, and then by —2. This shows the formula with

=" replaced by “>”. The reverse inequality follows by applying the same
argument on the mirror images. =

4. Diophantine equations. Now we are going to apply the previous
considerations to Diophantine equations. One simple series of examples con-
cern the second highest elementary symmetric polynomial.

4.1. Pretzel knots and elementary symmetric polynomaials. Let
q
(13) Opa(wrs e sag) = [[[(L+t2)]
=1
be the elementary symmetric polynomial of degree p in g variables (here
“[polynomial]onomial” denotes the coefficient of “monomial” in “polynomial”).
We will be concerned with the equation o;_1; = %1, because it turns out
that 07—y is the determinant of pretzel knots and links. We shall derive this
relationship explicitly here, in order to give an idea how Krebes’s method
works. At a later stage we will content ourselves just with presenting the
formulas for the determinants of the knots we consider.

PROPOSITION 4.1. 071 (21,...,2;) is the determinant of the (x1,. .., x;)
pretzel knot (or link).

Proof. Krebes’s invariant Kr(7T') for a tangle T lies in the space ¢ =
Z x Z/|(p,q) ~ (—p,—q)]. We write p/q for (p,q) € ®. Indeed, p/q can be
thought of as a “fraction”, apart from the more restrictive rule of reduction,
since @ is equipped with a binary operation & given by

(p,q) @ (r,s) = (ps +qr,qs),
which is as the usual fraction addition (and will be named so below; though
eg. 1/3®1/3=6/9 #2/3).
Krebes’s invariant is defined by Kr(T') = det(T)/det(T), where T and T
are the two closures of 7"

T - @d T - JI
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Accordingly these closures are called the denominator and numerator closure.
The latter is the (standard) closure shown in Figure 1. Take

AN
T, = § x; half-twists.

N

(A negative number of half-twists means half-twists of opposite sign. We
can, however, first consider just x; > 0, in which case the pretzel tangle
(z1,...,2;) is alternating; the correctness of the formula for arbitrary x;
then follows from the above braiding sequence arguments.) We have Kr(7;) =
1/z;. Now Kr is “additive”:

Kr((T:0,T;0)) = Kx(T;) @ Kx(T3),

where “)” is Conway’s tangle sum operator, and & is the above “fraction”
addition in @. By iterating this rule, we obtain
o—1(x1,...,x
Kr(T30,...,T0) = = L@, @),
o1, ..., 2)
The numerator on the right is the determinant of the closure of the (x1, ..., x;)

pretzel tangle that gives the pretzel knot/link, and we are done. m

Clearly at most one of the z; can be even in a solution of the equation
oj—1; = £1. We start with a statement for the case when all z; are odd,
which has a particularly closed form.

THEOREM 4.1. Ifl =5 (mod8), then the equation 011 (z1,...,2) =1
has no solutions in odd x; with at most one of them being of opposite sign to
the others. The same holds if | = 7 (mod 8) for the equation oy_1 (z1,...,2])
= —1, this time at most two of the x; being allowed to have opposite sign to
the others.

REMARK 4.1. Note that in fact the second part of the statement implies
the first (set 2; = 1, ;1 = —1). Also, the solutions z; = £(—1) (with the
same choice of + for all i = 1,...,1) show that the number of negative z;
cannot be further restricted at least for [ = 5,7.

Proof. For | and z; odd and positive the pretzel knot (z1,...,z;) has
signature [ — 1, and the twists corresponding to the z; are antiparallel. Thus
changing the sign of some x; reduces ¢ at most by two by Lemma 3.1. =

In the case that one z; is even, the twists corresponding to the odd
x; are parallel, and the ones corresponding to the even ones among the
x; are parallel or antiparallel, depending on the parity of [. This time the
congruence restriction we obtain is not on the number of variables but on
their sum.
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THEOREM 4.2. Letl € N, and xg be even and x1,...,xz; be odd integers.
Then any solution of oy 41(xo, 1, ..., 21) = £1 with 22:1 x; = 1+2 (mod8)
forl even, or Zi‘:o x; = 142 (mod 8) forl odd contains at least three negative
integers.

Proof. Let [ be even and all x; > 0. Then the signature of the (xq,x1,
..., xy)-pretzel link is o = Zizl(:pi — 1) by the formula for o of alternating
links (see end of §2.4). The twists corresponding to z; for ¢ > 0 are parallel,
and positive for x; > 0. Therefore, if we let x; decrease successively by 2,
o decreases every time by 2, except once. The twists corresponding to xzg
are antiparallel and negative for xy > 0. Therefore, if we let zg decrease
successively by 2, o increases at most once, by 2, and remains constant
otherwise. Thus if at most two of the z; (0 < i <) are negative, we have

l l
Z(Cl?i—l) <o< Z(:ci—l)—l-ll,
i=1 i=1
so that ¢ remains non-divisible by 8.

Similarly let [ be odd. If all x; > 0, the signature of the (z¢, z1,...,x;)-
pretzel link is ¢ = Zlizo(aci — 1) 4+ 1. Now the twists corresponding to any
xi, 0 < ¢ < [, are parallel, and the crossings are positive for x; > 0. Then
the same argument applies. m

4.2. Montesinos knots and iterated fractions. In many situations in which

we can address the problem P(z1,...,z;) = £1, we can also say something
about the more general equation
qr - ... Qkp(pl/(ha cee 7pk/Qk7xk+17 o 71.1) - ilv

where (p;,g;) =1and 1 <k <.

This situation occurs on the knot side when replacing twist( tangle)s
by rational tangles. Sometimes, it is still possible to control o after this
replacement, which then depends on the signs of the (unique) non-zero even
integers, expressing p;/¢; as continued fractions, or some slight modification
thereof, if both p; and ¢; are odd. We give some applications in the simplest
situation, when replacing the twist tangles of the pretzel knots by rational
tangles and obtaining Montesinos knots.

Let us consider M (p1/q1,...,pi/qi;n), where p;, g; are all odd except p1,
which should be even, and [ is odd (the p; need not be positive).

PROPOSITION 4.2. Let o = o(M(pi/qi,-..,pi/q;2k)) = 4,6 (mod8) be
such that | and all p;,q; are odd except py. Then

l l
(14) Soi[[a+em]]a#+1
i=1  i#j j=1
for m < k. The same property holds for m > k if 0 = 2,4 (mod8).



Determinants of knots and Diophantine equations 377

Proof. The Lh.s. in (14) is the determinant of M (p1/q1,--.,pi/q;2m).
If we had equality in (14), then M (p1/q1,--.,pi/q; 2m) would have deter-

minant 1. However, the twists corresponding to 2k are reverse, and so (by
Lemma 3.1)

o(M(pi/qi,--.,pi/q@;2m)) —o(M(p1/qu, - - ..o/ @i 2k)) € {0,2sgn(m — k) },
and o(M(p1/q1,---,pi/q;2m)) # 0 (mod8), a contradiction. =

If we write
P flarn . anll, e = [la12. - any 2]l,
(15) aQ |p2| — @2
ps3 D
— - [[a1,37-'-7an3,3“7 ey — - Hal,la-'-7anl,l“7
Ips| — g3 P —

with all a; ; even and non-zero (note that ny is odd, while all the other n;
are even), then using Lemma 2.1 we have

(16) U(M(pl/qla S 7pl/QZa2k ngn alz + Zzsgn GIZJ

=2 j=1
because by plumbing an annulus (9) the twists of 2k can be made trivial,
and one obtains the connected sum of [ — 1 rational knots and one rational
link, S(p1,q1), the latter being mirrored opposite to the defining (mirror-
ing) convention for its notation. Thus the condition on the signature can be
rewritten as

(17) —ngn aij)+ Zngn a;j) = £3 (mod8).
=2 j=1

PROPOSITION 4.3. Let p;,q; andl be odd except p1. If for the a; ; in (15)
we have (17), then (14) holds for any m € Z. n

Similar statements hold if [ is even. Then the formulas become even more
coherent. First, “p1/q1 = [[...]]” must be replaced by \m\ o = [[...]]” in
(15). (This corresponds to reversing the orientation of one of the compo-
nents of the rational link.) Moreover, the formula (16) requires the sign of
>_jLisgn(ay,;) to be reversed, as in the alternating diagram the sign of the
crossings in the p;/q; tangle is altered. So we obtain:

PROPOSITION 4.4. Let p;, q; be odd except p1, and | be even. Write
Di
pil — ¢
fori=1,...,1 (with n; even except ni, all a; j # 0 and even). If

I ng
(18) D) sen(ai;) = £3 (mod8),

i=1 j=1

= [[al,i, ey anm-]]
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then
l l
Zpinj Zz +1 (m0d2qu).
i=1  i#j j=1
Here is an example to the last proposition showing how the signature

can be applied to deduce properties of continued fractions related to integer
points on special types of cubic curves [Mal].

ExAMPLE 4.1. Consider M (223/3,y?/5,2/7,—15/11;0) for x,y odd.
The determinant is the cubic curve C(z,y) = 770z + 23132 + 1652 — 1575.
If for some odd integers z,y > 0 we have

7702 4 23192 + 1652 — 1575 = +£1 (mod 2310),

and we write

23 y?
m = [[al,la SRR anl,l]]v y2 5 = [[a1,2’ . van2,2“v
x
L o ol
then because of =12- = [[—4, —4]] we have > icajsen(a;;) =1,3 (mod8).

Similar considerations can also be made if p; and [ are both odd, only
that in this case a nice formula for the signature as (16) is a priori lacking, as
the 2k twists have parallel orientation, and the plumbing cannot be applied.

Another version with the role of the product n of denominators (above
n = 1155) and the value of the cubic curve C(z,y) swapped can be obtained
by considering tangles of the form Mn, where M is a Montesinos tangle and
n is a primitive Conway tangle with n even. This time we obtain statements
for the solutions of C(x,y)|(n+1)/2.

4.3. More general equations. Pretzel and Montesinos knots are special
types of knots, and thus the method can be applied in more generality. In
particular, by the calculus of Krebes [Kr| one can very easily calculate the
determinant for arborescent knots in terms of their Conway notation. We
demonstrate by a few exemplary statements how to proceed, giving some
applications to polynomials involving various combinations of 071 ;’s. (Even
the restriction to consider arborescent knots is not necessary, but chosen for
simplicity.)

THEOREM 4.3. Let k,l € N be integers with k — 1 = 2 (mod4). Set
Onok = Opak(al, ..., ao,) and opo = 0m2(be, ..., bay).
Then

(19)  oop—12k02—1,2
+oakok + (2m + 1)oog—1 28] [o2,2 + (2 + 1)og_1 21) = %1
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has no solutions in odd positive integers ay, ..., a%,b1,...,b9y and m,n€Z.
The same statement holds for odd positive integers aq, ..., as, and odd neg-
ative integers by, ..., by if the condition k — 1 = 2 (mod4) is replaced by
kE+1=3 (mod4).
Proof. Consider the arborescent knot
K= ((al,...,agk)Zm—i— 1) (27’L+ 1(1)1,...,[)21))

(see Figure 3(a), where the example for k = 3,1 =1,a1 = a3 = a5 = by =5,
az = ay = ag = by = 3, m = —2 and n = —3 is shown). By plumbing two
bands, the twists corresponding to the 2m + 1 and 2n 4 1 can be trivialized,
and one obtains a 3-component link L, which is the connected sum of two
pretzel links (aq,...,as) and (b1, ..., by) of opposite sign, oriented so that
the twists of the a; and b; are antiparallel. We have o(L) = 2(k — 1) = 4
(mod8), and thus (as plumbing of an annulus changes o at most by £1)
o(K)=2,4,6 (mod8).

Y7o
~~

)
J3
/
G
TN /S0
)

(b)

w(|)

)

(a
Fig. 3

The determinant of K is found to be (up to sign) the Lh.s. of (19) by the
calculus of Krebes. The + sign between the two products needs to be taken
because we compose the tangles (ai,...,a)2m+1 and 2n+1 (by,...,by),
so that for a proper sign choice of m and n the diagram is alternating. The
formula then follows for arbitrarily signed m and n, because the determinant
behaves polynomially in m and n.

Taking the b; to be negative means that we now consider a knot K as
above, but this time L is the connected sum of two positive (or two negative)
pretzel links, and thus o(L) = £(2k — 1420 — 1) = £2(k + [ — 1). By the
new congruence imposed, again o(L) = 4 (mod 8), and the same argument
applies. =

REMARK 4.2. It should be noted that in this theorem the assumption
that all a; and b; are positive/negative is essential. For example, a; = b; =



380 A. Stoimenow

(—1)* gives a solution (which corresponds to unknotting the knot). Thus in
particular the theorem cannot be proved by congruences.

Another result is shown in similar way by considering rational instead of
pretzel tangles.

DEFINITION 4.1. Define P;, Q; € Z[x1,...,2;] by (P;,Q;) =1 and
B(I’l, sty lil)
Qi(w1,...,z;)
Alternatively, P; and @Q; are defined recursively by
Pi(ar) = a1, Qifar) =1,

[[a:l, N ,IL’Z]] =

Py(a1,...,an) = a1Py_1(ag,...,an) — Qn-1(az,...,an),
Qnlai,...,an) = Pp_1(ag,...,an).
PROPOSITION 4.5. Let ay,...,Q2m,b1,...,ba, be non-zero even integers

with
2m 2n
Z sgn(a;) = Z sgn(b;) (modS8).
=2 =2

Let 1=5 (mod8), and write Py, = Pom (a1, ..., a2m), Qm = Qam(ai, ..., asm),
Pn:PQn(bl, e ,bgn), Qn = an(bl, ey bgn), and O'pJ = O'pJ(.’L‘l, e ,:L’l), with
opy as in (13). Then
(Prnoi—11+ Qm - (011 + 01-1,0)]Ppn + QumQnoj—1; = £1

has no solutions in odd integers x1,...,x; all positive or all negative, and
ai,bj as above.

Proof. This time we consider the knot

K = ((1‘1, c. ,xl)(—agm aom—1 --. —@2 a1 + 1))(—[)2” bop_1 ... —bs bl)
(see Figure 3(b), where the example for [ = 5, all z; = 3 for 1 < i < 5,
m=2n=1a =ay =a3 =—2, a4 =4, by =6 and by = —2 is shown).
Again by plumbing two annuli, K can be turned into the connected sum of
the rational links L1 = —agm aom—1 ... —a and Lo = —bg, b1 ... —ba
with the pretzel knot (x1,...,2;). From the signature formula for rational
knots (see §2) we have

o(Li#Ly) = ngn a; —i—ngn ) =0 (mod38),

and the pretzel knot has 51gnature +(l— 1) =4 (mod8) (the sign according
to whether all z; are positive or negative). The rest of the argument is the
same as before. =

REMARK 4.3. It is clear that the conditions of the theorem can be re-
laxed. For example, it may be of interest to have more than two variables to
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range over both positive and negative numbers. In this direction we can allow
one of the x; to have a different sign from the others, as long as o;_;; > 0.
If at most one x; has a different sign, then the pretzel has o = £(l — 1) or
o = £(l —3), depending on |o;_; ;| mod 4. But 0;_; ; = 1 (mod4) for odd z;
and [ =5 (mod8), and thus o = +(I — 1) is equivalent to the condition on
the sign of o;_1 .

We can also generalize Theorem 4.1 as follows. Let g(D) be the (canoni-
cal) genus of D (see §2.1).

THEOREM 4.4. To any diagram D of a knot K with 2g(D) = o(K) =6
(mod 8) we can associate a polynomial Pp in n = c¢(D) variables such that
any solution of Pp(x1,...,x,) = £1 in odd integers contains at least three
negative ones.

Proof. Let Pp be the braiding polynomial of the determinant on D with
antiparallel twists, the z; parametrized to be positive on positive twists.
Then clearly 2g(D) = o(K) and the invariance of g(D) under antiparallel
twists implies that ¢ cannot increase anymore under positive twists, while
it decreases at most once under negative twists at the same crossing. m

The polynomials Pp for the maximal generators of genus g considered
in [SV] contain all the other polynomials as special cases, i.e. by specializing
values of some z;. However, these values are not always positive, so that the
statement for the maximal generators does not imply it for all other genera-
tors. Moreover, we know from [SV]| that the number of maximal generators
grows at least like 4009, so that there is a large wealth of polynomials to
which the theorem applies.

4.4. Linear recurrent sequences. Such sequences are the subject of inten-
sive study. General results on properties like the number of realizations of a
given integer [SS]| require application of deep results in algebraic geometry
|[Ev, Fa], and are still far from being optimal.

Linear recurrent sequences can be made to enter our picture in a way
explained in [St3] by considering determinants of rational knots whose Con-
way notation contains iterative patterns. The following theorem is certainly
not the most general possible, but chosen so that its proof indicates how one
can proceed in other cases. (Setting i = 0 specializes it to statements of the
sort of Theorem 1.2.)

THEOREM 4.5. Letl > 0 be odd, x1,...,x; be odd integers, and write ¢ =
o(z,...,x) and @ = o1 (21, ..., 27). Fiz two non-zero even integers ay
and az. Define a linear recurrent sequence {q;} for i >0 by

qo =40 + 115, q1 = qo(1 + ara2) +4a20, git2 = (2+ a102)qi11 — G-
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Assume now that |q;| = 1 for some i. Let
o; =1 - (sgn(az) —sgn(ay)) +1+ 1.
Then if o; = 6 (mod8), at least three of the xy are negative. If o; = 4

(mod 8), at least two of the xy are negative.

Proof. Consider the rational knot K; with notation 4 —4 —a; —ag —ay
—ag ... —aj —ag, with the subsequence (—a; —ag) repeated i times. Since
all numbers are even, the twists in each group are reverse. (They correspond
to a Hopf plumbing of Kj;.) In the group of “—4” we replace one crossing

by a flipped (—z1,..., —x;) pretzel tangle, so that the twists counted by the
—ux; are reverse. The Conway notation then becomes
4. ((—xl,...,—xl)-—3)‘—a1...—a2.

Figure 4 shows the example for | =3, xp =3 (k= 1,2,3), a1 = —2, ag = 2
and i = 1.

Fig. 4

Call the arborescent knot thus obtained K;. Then det(K;) = ¢;. To see
this, first note that K; corresponds to the iterated fraction [[ag, —a1, ...,
ag, —a1,4,4]]. Then det(K;) is given by the numerator of

11 o
az, —ai,...,02,—a1, — + = | |.
4 [

Now one verifies the first three values for ¢;, and uses an argument as in
the proof of Theorem 7.4 in [St3] to establish the recurrence. (Unlike there,
only three initial values are necessary, since the eigenvalues of the matrix
appear only in powers 0 and +i, but not +2i.) Now, if all x; are positive,
one can still turn the diagram of K; into an alternating one, by a variant
of the tangle isotopy that makes the rational tangle closing to K; alternat-

ing. Then one sees that 0; = —o(K;), and the rest of the argument is as
before. m
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One can obtain statements about deeper (in length) recurrences by
adding sequences under tangle composition, or by incorporating more it-
erative subsequences.

5. Problems. It would be interesting to see to what extent the above
method can find applications to number theory, in particular to cubic curves.
We have presented just a part of the situations in which it can be applied;
there are several possibilities for extension. One can e.g. also consider non-
arborescent knots, or 2-component links, applying Corollary 3.2 (in which
case only one variable of the polynomial can be made to take either signs,
as only two consecutive values of the signature are excluded). On the other
hand, a combination with number-theoretic work may be desirable.

We conclude with two more specific problems.

5.1. Determinants of signature 4 knots. One can ask whether +1 plays a
special role in Theorem 1.1 and cannot be replaced by another integer. This
is important at least because it could lead to another series of results of the
above type.

The question whether each pair (d,s) € (2N + 1) x 2N satisfying the
Murasugi condition (8) occurs as (det(K),o(K)) for some knot K was con-
sidered by Shinohara in [Sh| and observed to have a positive solution if s # 4
(mod8) or s =4 (mod 8) and d = 5 (mod 8). While a general positive answer
seems natural and likely, Theorem 1.1 shows the difficulty of the case s = 4
(mod 8). One cannot obtain it by twisting arguments if twists are performed
at only one place in the diagram, as in the proof of Theorem 3.1. Here is
a point where knot theory fails and more sophisticated number theory may
find its application.

QUESTION 5.1. Let S C 1+ 4N be given by
S :={det(K) : o(K) = 4}.
Is S =5+ 4N?

REMARK 5.1. Note that for any other value of ¢ = 4 (mod 8) the problem
is equivalent because of connected sums with knots like 10124 (the (3, 5)-torus
knot) and their mirror images. Also the question for prime examples can
be settled by the “KT grabber” method of [Bl]|, once (possibly composite)
examples are found.

We summarize some simple properties of S.
PROPOSITION 5.1. S has the following properties.

1) If p=41+1 and 4k + 3 |p with k > 0, then p € S.
2) Ifpe S, then (4k + 1)p € S for each k > 0.
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3) S contains the value range of oy_1; with 1 =5 (mod8) on odd positive
arguments.

4) 1¢8.

5) S contains (besides further specific values) all integers p = 41+ 1 with
1 <p < 2209.

6) S contains infinitely many arithmetic progressions, for example 548k,
5+ 12k, 9+ 12k (k > 0).

Proof. 1) Consider connected sums of two positive twist knots.
2) Consider connected sum with a non-positive twist knot.

3) Consider the (generalized) pretzel knots (x1, ..., ;).

4) This is Theorem 1.1.

5) This is the outcome of a computer experiment, compiling the deter-
minants of the knots of [HT| with o = 4 (mod 8).

6) This is obtained by checking what determinant changes occur under
the change of a crossing in a ¢ = 4 knot diagram, and then applying the
iterated twist argument as in Theorem 3.1. For example, 5+ 12k comes from
the sequence 51,75,97,.... =

5.2. Arithmetic progressions. One can obtain more arithmetic progres-
sions contained in S by the methods of §3. If a knot K; with o =4 (mod 8)
turns into a knot K3 by one crossing change, then S contains an arithmetic
progression a1 + agk for k € N, where

(det(K7) mod |det(K7) — det(Ks)|, |det(K7) — det(K3)|)
(ahag) = if U(Kl) = U(KQ),
(det(K71),det(K7) + det(Ky)) if o(K1) # o(K2).

One has a priori no reason to expect any particular feature of the pairs
(a1, az2) so obtained, except that a; # 1 (and 4| az2). However, examination
of a large number of knots reveals striking regularities in the distribution
of such pairs. Consider only pairs representing mazimal progressions, i.e. if
as | ab, then {a} + abk} C {a1 + a2k} with a; = a} mod ag, and call such
pairs (a1, a2) mazimal. Then experiments suggest in particular the following
properties of maximal pairs (a1, az).

e a1 is never a perfect square except in 12k + 9, i.e. a1 =9, as = 12.

e as/4 is always a prime.

e For fixed ay # 8 there are exactly (a2/4 4+ 1)/2 different values of a;
with (a1, az) being a pair.

e a; =5, i.e. agk + 5 is a progression, if and only if az/4 # +1 (mod 5).

I have no explanation for these phenomena.
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The table below summarizes the values of a; I found for small as.

as ai
8 5

12 5,9

20 5,13, 17

28 5,13, 17, 21

44 13,17, 21, 29, 33, 41

52 5,13, 21, 33, 37, 41, 45

68 5,17, 29, 37, 41, 45, 57, 61, 65

Using these series, a small calculation, and Proposition 5.1, we have

COROLLARY 5.1. Ifp=1 (mod4) withp ¢ S, then all prime divisors of
p are of the form 24k + 1 and are not smaller than 33049. =

One can do much better if one uses the full list of progressions (not
only those given in the above table). Applying the resulting larger number
of congruence conditions, a search through the primes up to 4 - 10° failed
to find one violating all of them. (Thus in particular S contains all num-
bers p = 4l + 1 > 5 up to this limit.) However, Dirichlet teaches that for
any number of congruence classes there exist primes outside these classes,
and in fact they are infinitely many, so that such a procedure can never be

exhaustive.
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