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An effective Bertini theorem and the number of rational
points of a normal complete intersection over a finite field

by

ANTONIO CAFURE and GUILLERMO MATERA (Buenos Aires)

1. Introduction. Let [, be the finite field of ¢ elements and let E
be the algebraic closure of I,. We denote the n-dimensional projective and
affine spaces defined over F, and E, by P"(F,), P" := P"(F,), A"(F,) and
A™ = A" (E) respectively. Let V' be an affine or a projective variety defined
over F, (an F-variety for short). Counting or estimating the number |V (E,)|
of g-rational points of V is a classical problem. Here by a ¢-rational point of
V' we mean a point of V' with coordinates in [,.

In [19] (see also [15]), S. Lang and A. Weil establish a “prototype” estimate
on |V(I,)| for absolutely irreducible F,-varieties. They prove that for an
absolutely irreducible F-variety V' C P" of dimension 7 and degree 4,

(1) IVE) =pr] < (6 =16 =2)g" 2+ Cln,r,6)¢" ",

where p, == ¢" + ¢ '+ -+ ¢+ 1= |P'(F)| and C(n,r,d) is a constant
independent of g. We remark that [19] does not provide an explicit expression

for C(n,r,9).
From the point of view of practical applications, it is usually necessary
to provide explicit expressions of the constant C' := C(n,r,d) (see, e.g.,

[14], [16], [24], [2]). Further, particular families of varieties for which better
estimates hold are also of interest (see, e.g., [32], [33], |21], [25]).

S. Ghorpade and G. Lachaud ([10], [9]) show that one can take C' =
9-2%(sd+3)"*! in (1), provided that the variety V is defined by s equations
of degree at most d. The proof of this result relies on the Grothendieck—
Lefschetz trace formula and estimates of the Betti numbers of suitable spaces
of étale ¢-adic cohomology.
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W. Schmidt (|27], [28]) develops an alternative approach based on com-
binatorial arguments and an effective version of the first Bertini theorem in
order to obtain for the first time an explicit value of C for an absolutely ir-
reducible F;-hypersurface. The authors of this article [3] combine Schmidt’s
approach with tools of effective elimination theory and an improved effec-
tive version of the first Bertini theorem in order to prove that one can take
C = 56'3/3 in (1), provided that the regularity condition g > 2(r+1)42 holds.
The estimate (1) holds for hypersurfaces without any regularity condition.

These two are the best general estimates known. Nevertheless, in many
particular cases they are far from being sharp. In fact, in the presence of
better geometric conditions significant improvements can be obtained, as
shown by the work of P. Deligne |7], C. Hooley [13] and others. This article
is devoted to obtaining an estimate of type (1) for the number of g-rational
points of a normal complete-intersection F;-variety V' C P".

This case has already been considered in [10], [9]. The authors prove
that if V' C P" is a normal complete-intersection I;-variety of degree ¢ and
multidegree d := (di,...,dp—,), defined by n — r equations of maximum
degree d, then the following estimate holds:

2) |IV(E) = pe| <Vi(n—r+1,d)g" 2 +9-2"7"((n— r)d +3)" g ",

Here bj(n — r + 1,d) is the first primitive Betti number of a nonsingular
complete intersection curve in P "1 of multidegree d. As bj(n—7r+1,d) <
(6 —1)(6 — 2), with equality if and only if V' is a hypersurface, we conclude
that (2) improves (1) with C' = 9-2%(sd + 3)"*1.

Compared with the bound C < 56'3/3 obtained in [3] without using the
normality assumption, the bound C' < 9-2"7"((n — r)d + 3)"*! does not
seem to be good for low codimension varieties, in particular for hypersur-
faces, which are very common in practical situations (see, e.g., [14], [16], [24],
[2], [25]). Indeed, in the hypersurface case the bound for C' obtained in 3]
exponentially improves that of [10], [9]. In this direction, using methods of
elimination theory we derive a further estimate of type (2) better adapted
to low codimensional situations. Our main result is the following (cf. Theo-
rem 6.1 and Corollary 6.2 below):

THEOREM. Letq > 2(n—r)dd+1 and let V C P" be a normal complete-
intersection [ -variety of degree § and multidegree d, defined by polynomials
of maximum degree d. Then

3)  VE) —p] <Vi(n—r+1,d)g " +2(n - )26,

where by (n—r+1,d) denotes the first primitive Betti number of a nonsingular
complete-intersection curve in PP ™"t of multidegree d.

As previously mentioned, our estimate, although valid under the regu-
larity condition ¢ > 2(n — r)dd + 1, clearly improves (2) in the case of a
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hypersurface. In fact, for a hypersurface (2) becomes
[V (E)| = paot] < (6 —1)(6 — 2)g" %2 + 18(6 + 3)"T¢" 2.

Our estimate also improves (2) in cases of low dimension (such as 2r < n—1)
and low degree (such as d < 2(n—r)). Furthermore, we improve the (general)
estimate C' = 5613/3 of [3] and its regularity condition ¢ > 2(r 4 1)62.

The proof of our main result relies on arguments of elimination theory in
the spirit of [3] and an effective version of the second Bertini theorem. More
precisely, we express the variety V' under consideration as the disjoint union
of a suitable number, namely p,_1 := |P""}(F,)|, of 1-dimensional linear
sections of V' defined over ;. Since the dimension of the singular locus of V'
is at most r — 2, a generic 1-dimensional linear section of V' is a nonsingular
complete-intersection curve. A critical point is to obtain an upper bound on
the number of 1-dimensional singular linear sections of V' defined over [F,.
For this purpose, we establish the following effective version of the second
Bertini theorem (see Theorem 5.3):

THEOREM. Let V C P™ be a normal complete-intersection of dimension r
and degree 8, and let m : V. — P"~1 be a generic linear projection. Then there
exists a variety W C P! of degree at most 2(n — r)?(d — 1)2§ such that the
fiber m=(y) is a nonsingular curve of degree at most & for everyy ¢ W.

The number of g-rational points of V' lying in the nonsingular linear sec-
tions mentioned above is estimated using Deligne’s estimate (see Section 6),
while the g-rational points lying in the remaining linear sections are con-
trolled by means of elementary estimates and our effective second Bertini
theorem.

The paper is organized as follows. In Section 3 we exhibit an upper bound
on the number of ¢-rational points of an arbitrary projective variety defined
over [, which illustrates the kind of arguments of elimination theory we
use. Section 4 is devoted to obtaining an upper bound on the degree of the
genericity condition underlying the choice of linear varieties £, and L, _,_1
for which the central projection from £, _,_1 mapping V onto L, is a finite
morphism and the corresponding field extension is separable. In Section 5 we
obtain the effective version of the second Bertini theorem mentioned above,
which is applied in Section 6 to obtain (3). We finish by briefly commenting
on an application of (3) in the setting of cryptography.

2. Notions and notations. We use standard notions and notations of
commutative algebra and algebraic geometry as can be found in, e.g., [17],
1301, [22].

Let K be any of the fields F, or F,. We say that V' C P" (resp. V C A")
is a projective (resp. affine) K-variety if it is the set of all common zeros
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in E”H (resp. EI") of a family of homogeneous polynomials Fi,...,F,, €
K[Xo,...,Xy] (resp. of polynomials Fi,..., F, € K[Xi,...,X,]). In this
section, unless otherwise stated, all results referring to K-varieties in general
should be understood as valid for both projective and affine varieties.

For a K-variety V in the n-dimensional (affine or projective) space, we
denote by I(V) its defining ideal and by K[V] its coordinate ring. The di-
mension dim V' of a K-variety V is the (Krull) dimension of the ring K[V].
The degree deg V' of an irreducible K-variety V' is the maximum number of
points lying in the intersection of V' with a generic linear space L of codi-
mension dim V', for which V' N L is a finite set (a zero-dimensional variety).
More generally, if V = Vi U- - - UV is the decomposition of V into irreducible
K-components, we define the degree of V as degV := 37 , degV; (cf. [11]).

We say that V' has pure dimension r if every irreducible K-component of
V has dimension r. A K-variety V is absolutely irreducible if it is irreducible
as an E—Variety.

A K-variety V' of dimension r in an n-dimensional space is called an
(ideal-theoretic) complete intersection if its ideal I(V') over K can be gener-
ated by n—r polynomials. If V' is a complete intersection in P" of dimension r
and degree 0 and Fi,. .., F,,_, is a system of generators of I(V'), the degrees
di,...,dp—y depend only on V' and not on the system of generators. Arrang-
ing the d; in such a way that dy > -+ > dy—, we call d := (dy,...,dp—y)
the multidegree of the complete intersection V. In particular, it follows that
6 =[5 di-

An irreducible projective K-variety V is normal if for every x € V there
is an affine neighborhood U of = such that the affine coordinate ring K[U] is
integrally closed. Nonsingular varieties are normal, and when V is a curve,
normality and nonsingularity are equivalent conditions. We recall Serre’s
criterion for normality: A projective complete intersection V' is normal if and
only if V' is reqular in codimension 1. If V' is a normal complete-intersection
curve it is connected and so absolutely irreducible.

Let V and W be irreducible K-varieties of the same dimension and f :
V' — W be a regular dominant map. The degree of the field extension
Y (K(W)) € K(V) is called the degree of f. Suppose further that W is
normal and f is a finite morphism. We say that f is unramified at y € W if
the number of inverse images of y equals the degree of f.

An important tool for our estimates is the following Bézout inequality
(see [11] for the affine case and [5] for the projective case; see also [8], [34]):
if V and W are K-varieties, then

(4) deg(VNW) < degV degW.

We shall also make use of the following well-known identities relating the
degree of an affine K-variety V' C A", the degree of its projective closure
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(with respect to the projective Zariski K-topology) V' C P" and the degree
of the affine cone V of V (see, e.g., [4, Proposition 1.11]):

(5) degV = degV = deg V.

Finally, we have the following result concerning the behavior of the degree
under linear maps.

LEMMA 2.1. Let ¢ : V — W be a reqular linear map between K-varieties.

Then deg p(V') < deg V.

Proof. From (5) we see that it is enough to prove the statement for
affine varieties. But for affine varieties this is a well-known fact (see, e.g.,
[11, Lemma 2|). =

3. An elementary upper bound. Following the notations of the pre-
ceding section, P" and A" stand for P*(F,) and A"(E,) respectively. For a
given variety V', we denote by V () the set of g-rational points of V' and by
|V ()| its cardinality.

In this section we obtain an elementary upper bound on |V (IF,)|. Notice
that in some cases it is possible to determine the exact value of |V (E,)|. For
instance, the number of points p, of P"(F,) is given by p, = [P*(F)| =
"+ g+ L

For an affine variety V of dimension r and degree § we have the following
upper bound on the number of g-rational points of V' [3, Lemma 2.1]:

(6) [V (E)| < dq".

The corresponding upper bound for a projective hypersurface is classi-
cal ([28], [20]). Our next result extends this bound to arbitrary projective
varieties:

PROPOSITION 3.1. Let V' be a projective variety of dimension r and de-
gree 6. Then
V(&) < dp,.

Proof. The proof is by induction on 7. If r = 0 then it is clear that
|[V(F,)| < 6. Hence we may assume that r > 1. Suppose now that V is
irreducible. After a linear change of coordinates we may assume that the
hyperplane at infinity {Xo = 0} does not contain V.

Then Vg := VN {Xo = 1} is an affine r-dimensional variety with
projective closure V. Therefore, deg Vg = ¢ by (5) and thus (6) implies
|Vaﬁ(]Fq)| < 5q'r‘

On the other hand, by assumption, Vo :=V N{Xy =0} =V \ Vg isa
projective variety of dimension at most  — 1 and degree at most §. Then by
the induction hypothesis we have |V (E,)| < dpy—1.
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In conclusion,
V()| = [Vag ()| + Voo (Fy)| < 0¢" + 0pr—1 = dpr.

This completes the inductive step when V' is irreducible. Next, for an arbi-
trary projective variety V, let V= V3 U --- U V; be its decomposition into
irreducible projective varieties. Then dimV; < r and 6 = ;| d;, where
0; :=degV; for 1 < i < s. Therefore

V(E) <D IViE) <Y dipr < dpr.
=1

i=1
This finishes the proof of the proposition. =

A somewhat different proof is given in [10, Proposition 12.1] (see also
[18, Proposition 2.3]). Nevertheless, we have included our proof because it
illustrates the kind of arguments of elimination theory we use. We also ob-
serve that in the case of an [,-hypersurface H C P" of degree § < ¢ + 1
we have the upper bound |H(F,)| < §¢" ! + p,—2 due to J.-P. Serre [29].
Unfortunately, the hypersurfaces we consider in the next sections are not in
general defined over [, and thus Serre’s bound cannot be applied.

4. On the existence of good linear projections. In this section we
establish some results which are crucial to obtaining our effective version of
the second Bertini theorem of Section 5.

Let V' C P" be an absolutely irreducible complete-intersection F,-variety
of dimension 7 and degree d. Let Fi,..., F,—, € F,[Xo, ..., X,] be homoge-
neous polynomials which form a regular sequence and generate the ideal of
the variety V. We denote by d; the degree of F; for 1 < ¢ < n —r, and we
set d := maxj<i;<n—r dz

Since V has pure dimension r, for a generic choice of linear varieties L,
and £, _,_1 of P" of dimension r and n — r — 1 respectively, we have

ﬁr N £n—r—l = q)a VN £n—r—l = @

Furthermore, V is mapped onto £, by the central projection 7, from £,,_,_1,
and finitely many points of V' lie over any point of £, under this projection.

Finally, if Yy, . .., Y, are linear forms on E[Xo, ..., Xp] whose zero set defines
the linear variety £, _,_1, and 7, is defined by
V=L e (Yo(z):-- Y (2)),

then 7, is a finite morphism. Our first result yields a suitable choice for the
linear variety L,_,_1:

LEMMA 4.1. There exist indices 0 < 441 < -+ < ip < 1 iuch that,
if we define Y := X, forr+1<j <mn, then Yii1,...,Y, are F-linearly
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independent and U = {x € V : (0F;/0Y,1j)1<ij<n—r(2) # 0} is a nonempty
Zariski open subset of V.

Proof. Since V' is absolutely irreducible, from, e.g., [28, Chapter 6, Corol-
lary 6.C|, we conclude that there exist linear forms Yy, ..., Y, € E[Xo, ooy X0
such that F, (Yo, . .., ;) — F,(V)is an algebraic separable field extension. Fur-
ther, these linear forms can be chosen in such a way that the projection mapping
7 V. — P" defined by m(x) := (Yo(x) : - -+ : Y.(2)) is a finite morphism, as
asserted above. For the sake of the argument, fix arbitrarily such linear forms
and denote by A\ € E(TH)X(”H) the matrix whose rows are the coefficients of
these forms.

From, e.g., [31, I1.6.3, Theorem 4|, we see that there exists y € P" such
that 7, 1(y) is an unramified fiber of ,, i.e., the number of inverse images of
y equals the degree of the field extension F,(Yy,...,Y;) — F,(V). Fix arbi-
trarily = € 7, !(y). The unramifiedness of 7, at x means that the differential
dymy 2 T,V — T,P" between the tangent spaces is injective (see |6, §5, 5.2|).
This in turns means that the following (n+1) % (n+1) matrix is nonsingular:

)\070 . )\O,n
Ar.0 .. ANn
DT(x) — B )
@ )
OF,_r OFp_r
9Xo () 09X, (z)

Considering the Laplace expansion of the determinant of D, (z), we con-
clude that there exist two disjoint sets of indices 0 < ig < i1 < - < i <n
and 0 < 4,41 < --- < 7, < n such that both the square Jacobian matrices
(0Yi/0Xi;)o<ij<r and ((0F;/0X;,,;)())1<i j<n—r are nonsingular.

From the mnonsingularity of (9Y;/0X;,)o<ij<r We conclude that the
linear forms Yo,...,Y,, X; ,,...,X;, are E—linearly independent. Fur-
thermore, defining Y; := X;; for r +1 < j < n, we see that the matrix
((OF;/0Yr45)(x))1<i,j<n—r is nonsingular, which implies that U := {x € V :
(0F;/0Yr4j)1<ij<n—r(z) # 0} is a nonempty Zariski open subset of V. w

From now on we fix linear forms Y,;1,...,Y, satisfying the statement
of Lemma 4.1. Our next result yields an upper bound on the degree of the
genericity condition underlying the choice of the linear variety L,. Before
stating it, we introduce some notations. Let A := (A; j)o<i<r0<j<n be a
matrix of indeterminates and let A(j) denote the ith row of A for 0 <7 <.
Set X := (Xo,...,X,) and Y := (Yp,...,Y;) = AX.
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PROPOSITION 4.2. There exists a nonzero polynomial A € E[/l] of de-
gree at most 26 + 1 in each group of variables AW for 0 < i < r with the
following property. For any X\ € E(T‘H)(”H) with A(X\) # 0, the linear forms
(Yo, ..., Y,) := AX satisfy the following conditions:

(i) the map m, : V. — P" defined by Yy, ...,Y, is a finite morphism,
(ii) F,(Yo,...,Y,) — F,(V) is a separable field extension,
(i) if Yy41,...,Ys denote the linear forms of Lemma 4.1, then Yy, ..., Y,
are E-lmearly independent.

Proof. Let A7Y be a vector of n+1 new indeterminates and let ?T_H =
ACtD X Let Py e F[A, ATV Yy, ..., Y,41] be the Chow form of V (cf.
[26], [12]). It is a well-known fact that Py is an irreducible polynomial
in F, A, Alr+1) YO,... Yr+1] which is separable in each of the variables
Yo, . Yr+1 and homogeneous in 170, .. .,377"4_1 and in each group of vari-
ables A(i) for 0 < i < r+ 1. Furthermore, Py satisfies the following degree
estimates:

o degf/PV = degf/r_'_lpv = 5,
o deg Py <dfor 0<i<r+1.

Considering the expansion of Py in powers of 37r+1, let 21 €k A, A(TH)]
be the nonzero polynomial which arises as the coefficient of the monomial

v) 1 in Py, and let Ay € Fy[4, ACFD Yo, ..., Y;] be the coefficient of a mono-

T

mial Y,ff_l, with jo not divisible by the characterlstlc of ;. Let Ay, Ay € F[4]

be nonzero coefficients of A1 and Ag, respectively, where we consider A1 as
an element of F,[A][A1)] and Ay as an element of F[A][ATHD, Yy, ..., Y,].
The above estimates imply that both A; and A» have degree at most 4 in
each group of variables A for 0 < i <+ 1.

Let A € F,"+D(+1) he any point for which A;(\) # 0 and Aa(\) # 0,
and define the 7 + 1 linear forms (Yp,...,Y;) := AX. Since A;(X, AC+D)
and 112()\,/1(”1),1/0, ...,Y;) are nonzero polynomials, we deduce the ex-
istence of IF_}I—linearly independent vectors wg,...,w, € Fq"“ such that
Py (A w;, Yo, ..., Y, YGH) € E[Yo, oo Y DN/TH] is a nonzero, monic (up to
elements of E) and separable polynomial, for every 0 < j < n.

If we define ¢; := w;X for 0 < j < n, it turns out that the polynomial
Py (A wj,Yo,...,Y;, {;) yields an integral dependence equation for the coor-
dinate function induced by ¢; in the ring extension F,[Yp,...,Y,] — F[V].
On the other hand, Py (X, wj, Yy, ..., Y, {;) also yields a separable equation
for ¢; in the field extension F,(Yp,...,Y;) < E,(V). Since F,[¢y, {1, ..., 0] =
F,[Xo, ..., Xy], we conclude that conditions (i) and (ii) are satisfied.

Finally, to prove (iii), let A3 € F,[A] be the nonzero determinant of the

matrix defined by the vectors of the coefficients of the linear forms 370, R %
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Yri1,--., Y, where Y, i1,...,Y, are the linear forms of the statement of
Lemma 4.1. It is clear that if A3(\) # 0 and we define (Yp,...,Y;) := AX,
then condition (iii) will be satisfied. Observe that deg ) A3 <1 for 0<i<r.

Define A := A1 A3As; our previous arguments show that A satisfies the
requirements of the statement of the proposition. =

From Lemma 4.1 and Proposition 4.2 we deduce the main result of this
section:

COROLLARY 4.3. Let ¢ > 2(n —r)dd + 1. Then there exist linear forms
Yo,.... Y, € B[ Xo, ..., Xy satisfying the following conditions:

(i) the map m, : V — P" defined by Yy, ...,Y, is a finite morphism,
(i) the map w1 : V.\U — P! defined by Yy,...,Y,_1 is a finite
morphism, B
iii) (Yo, ...,Y,) — E(V) is a separable field extension
(i) B q p )
iv) E(Yo,...,Y,—1) — E/(C) is a separable field extension for every ab-
q q
solutely irreducible component C of V' \U, _
v) the linear forms Yy,..., Y., Y,11,..., Y, are F,-linearly independent.
q

Proof. From Proposition 4.2 it follows that there exists a nonzero poly-
nomial A € E[A] of degree at most 26 + 1 in each group of variables A® for
0 < i <7+ 1 such that, for every A € E(T‘H)(”H) with A(\) # 0, defining
(Yo, ..., Y,) := AX, we see that conditions (i), (iii) and (v) are satisfied.

Let V' \U = ;- C; be the decomposition of V' \ U into absolutely
irreducible components. We have dimC; = r — 1 for 1 < j < s. From the
proof of Proposition 4.2 we conclude that for 1 < j < s there exists a nonzero
polynomial AU) e F,[A] of degree at most 2degC; in each group of variables
A® such that for every A € F,+D+D) with AU)()) # 0, the linear forms
(Yo, ..., Y;) := XX satisfy conditions (ii) and (iv) for C;.

Since 3°7_, degC;j = deg(V \U) < (n—r)(d — 1)d, we conclude that the
polynomial A* := A-A(M ... A®) has degree at most 26+1+2(n—r)(d—1)§ <
2(n —7r)dd 4+ 1 in each group of variables A@and for every \ € E(TH)("H)
with A*(\)#0, the linear forms (Yp,...,Y;):=AX satisfy conditions (i)—(v).

Let a® € F,[A®] be a nonzero coefficient of A*, considering A* as a
polynomial in F,[A@][AM ... AM)]. By (6) it follows that a(®) has at most
(2(n — r)d6 + 1)¢g" zeros in Fyt1. Since ¢ > 2(n — r)dé + 1, we conclude
that there exists A(9) e E"1 such that A*(AO AM A0 s a nonzero
polynomial. Arguing in a similar way, we successively deduce the existence
of X\ ...\ ¢ E' 1 such that A*(X) # 0 for X := (A0 X")), The
linear forms (Yp,...,Y;) := AX satisfy the conditions of the corollary. =

We remark that, from the proof of Corollary 4.3, we deduce that there
exist linear forms Yy, ...,Y, € F,[X] such that the map 7, : V — P" defined
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by Yp,...,Y, is a finite morphism for ¢ > ¢ — 1. This is also proved in [18,
Proposition 2.3].

5. An effective second Bertini theorem. This section is devoted to
establishing an effective version of the second Bertini theorem suitable for
our requirements. The second Bertini theorem (see, e.g., |31, 11.6.2, The-
orem 2|) asserts that, given a dominant morphism of irreducible varieties
f Vi — V5 defined over a field of characteristic zero with V; nonsingular,
there exists a dense open set U of V5 such that the fiber f~!(y) is nonsingular
for every y € U. Our effective version holds without any restriction on the
characteristic of the ground field and gives an upper bound on the degree of
the subvariety of points of V5 defining singular fibers. An effective version of
a weak form of the Bertini theorem is given in [1]. Nevertheless, the bound
given there is exponentially higher than ours and therefore is not suitable
for our purposes.

Let notations and assumptions be as in Section 4. Assume that ¢ >
2(n—r)dd+1, and let Yy, ..., Y, € F[Xy,...,X,] be linear forms satisfying
conditions (i)—(v) of Corollary 4.3. Consider the linear mappings m, : V —
P" and 7.1 : V — P! defined by 7.(z) := (Yo(z) : --- : Y.(x)) and
mr—1(x) := (Yo(x) : -+ : Yp_1(x)). Then 7, is a well-defined finite morphism,
71 is well-defined outside (the 0-dimensional subvariety) 7, *(0: ---: 0 : 1),
and the choice of the linear forms Yy, ..., Y,_1 implies that 7r7111 (y) is a pure
dimensional curve on V for every y € P"~!. We shall prove that there exists
a proper subvariety W of P"~! such that 7rr__11(y) is nonsingular for every
y ¢ W, and we shall provide an upper bound for the degree of W.

For a given z € V and y := m,_1(x) € P""!, we denote by 7,V and
TyIE’””_1 the respective tangent spaces. Further, we denote by d,m.—1 : T,V
— TyIP”"_1 the differential of m,_; at z and for any y € P"! we set Vy
= W_El(y). We start with the following lemma, which yields a sufficient
condition for the nonsingularity of the fiber V.

LEMMA 5.1. Let y be a point of P"~! such that for any point x € Vy the
following conditions are satisfied:

(i) = is a regular point of V,
(ii) dypmr—1 is surjective.
Then Vy is a nonsingular curve.

Proof. Let x be an arbitrary point of V. Since the composite of 1.V} —
T,V with d,m,_1 is the zero map, the tangent space TV, is contained in the
kernel of d,m,.—1. By the surjectivity of d,m,.—1 the dimension of the image
of d,m_1 equals r — 1. Hence

dim T, V, < dimKerd,m,_1 = dim T,V — dimTyIP”"_l =1,
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where the last equality follows from the fact that x is a nonsingular point
of V. Since Vj is of pure dimension 1, we conclude that dim7,V, = 1 and
therefore x is regular point of V. This shows that V, is nonsingular. =

Next we give a sufficient condition for the surjectivity of d,m._1.

LEMMA 5.2. LetU = {IL’ ev.: det(aﬂ/(‘)l/,,ﬂ)lgi,jgn_r(x) 75 O} be the
nonempty Zariski open subset of V of Lemma 4.1. Then d,m,_1 s surjective
for everyx e U\ 771 (0:---:0:1).

Proof. Let x be an arbitrary point of Y. Then x is a regular point
of V', which implies that T,V has dimension r. Therefore, from the iden-
tity dimKerd,m,—1 = r — dimImd,m_1, we conclude that the surjectivity

of dym._1 is equivalent to the condition dimKerd,m._1 = 1. Suppose
without loss of generality that Yy(x) # 0. Then we may assume that we are
in an affine situation, and m,_; is locally defined by m,_1(x) := (Yi(x),

..., Y,_1(x)). Now Ker d,m,_1 is the affine linear space defined by the equa-
tions Y1, (OF3/0Y)(@)(Y; — Yj(w)) = 0 (1 < i < n—1), Yy — Yilx) = 0
(_1 < k < r —1). From the definition of i we see that these equations are

[F;-linearly independent, which proves that Ker d,m,_; has dimension 1. This
completes the proof. m

Now we are ready to state our effective version of the second Bertini
theorem.

THEOREM 5.3. There exists a proper subvariety W C P™™1 of degree at
most 2(n—r)2(d—1)28 such that the fiber V,, is a nonsingular curve of degree
at most & for everyy ¢ W.

Proof. Let Z be the proper closed subset of V' consisting of the points

of V where d,m,_1 is not surjective, and let Viez and Viine denote the sets of
regular and singular points of V', respectively. Then Z can be expressed as

Z = (Z N Vieg) U(Z N Viing) = Z N Vieg U (Z N Vising ),
where Z M V;ee denotes the Zariski closure of Z N Viee. From Lemma 5.2 we
conclude that Z C V \ U, i.e.,
Z C {.%' ev: Fl(:r;) =-...= Fn_r(ac) = det(aFi/8E+j)1§i7an_r(.%’)ZO}.
Since V' is a normal variety, the set of singular points Vsne has codimension

at least two in V.

CLAM 1. There exists a closed subset Zgnge C V' of codimension two
in'V and degree bounded by (n — r)2(d — 1)%5 such that Ving C Zsing-

Proof of Claim 1. The Jacobian matrix (0F;/0X;)1<i<n—r 1<j<n+1 has
N, = (Z:ln) maximal minors Mi,...,My,. If x € V is a regular point, at
least one of these minors is not zero at x. As a consequence we may choose

Y,---,YN, € F, such that Zj\f:rl viMj(z) # 0. Setting G = Y77, M,
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from the Jacobian criterion we see that Viing, C VN{G = 0} C V. Moreover,
the absolute irreducibility of V' implies that V N {G = 0} is an equidimen-
sional projective variety of dimension r — 1.

Consider now the decomposition V N{G = 0} = |J;_, C; into absolutely
irreducible components. Since Viing has dimension at most r — 2, it follows
that C;NV;eg is nonempty for 1 < ¢ < s. Hence, arguing as above, we conclude
that there exist x; € Vieg NC; for 1 <4 < s and 71,...,7n, € [, such that no
x; is a zero of the polynomial H := Z;V:rl 7;Mj. Observe that both G and
H have degree at most (n —r)(d —1).

We define Zgyg := VN {G = 0, H = 0}. By construction, Viing C Zsing
C V and Zgp, is an equidimensional projective variety of dimension r — 2.
Furthermore, from the Bézout inequality (4) we conclude that deg Zging <
ddeg Gdeg H < (n — r)%(d — 1)24. This finishes the proof of our claim.

CLAIM 2. There exists a proper closed subset Zyeg C V' of degree bounded
by (n —1)%(d — 1)20 such that Z N Vieg C Zyeg and mp—1(Zreg) is a proper
closed subset of PT 1,

Proof of Claim 2. We consider separately the cases dim Z N Vieg =7 — 1
and dim Z N Vieg <7 — 1.

First, suppose that Z N Vg has dimension 7 — 1. Let Z N Vieg = U:f:l D;
be the decomposition into absolutely irreducible components. We are going
to prove that the image of each D; under m,._; is a proper closed subset
of P"~!. For components having dimension less than 7 — 1 this is clear, hence
we only have to deal with components of dimension r — 1.

Assume that there exists an irreducible component D; of Z N Ve of
dimension r — 1 for which 7,_1(D;) = P"~!. Since D; ¢ Z € V\U, and V \U
has dimension r — 1, it follows that D; is an absolutely irreducible component
of V\U, and Corollary 4.3 implies that the field extension F,(Yp,...,Y,_1) —
F,(D;) is separable. Applying, e.g., [31, I1.6.2, Lemma 2|, we conclude that
there exists a nonempty Zariski open subset O; C D; such that d,m._1 is
surjective for every x € O;, contrary to D; C Z. This shows that m,_1(D;)
is a proper closed subset of P" ! for every 1 < i < t.

Let M(z) denote the Jacobian matrix of Fy,..., F,,_,,Yy,...,Y,_1 with
respect to the variables Xo,..., X,, evaluated at . A point x € Ve be-
longs to Z if and only if M(x) does not have full rank n. If x € Ve is a
point for which d,m,_; is surjective (for instance, x can be chosen in the
nonempty open set U of Lemma 5.2), the matrix M (z) has full rank n, and
hence it has at least one nonzero n x n minor. Denoting by MM, ... M(®+1)
the maximal minors of M, we define the polynomial G = Z?;l n; M (@),
where 71, ...,M,4+1 are elements of F, such that é(:c) # 0. It follows that
Vn {é = 0} is an equidimensional projective variety of dimension r — 1.
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Furthermore, by our characterization of the points of Z N Vie, we easily
conclude that Z N Viee C VN {G=0}and so ZN Viee CV N {G=0}.

Let V N {G = 0} = Uf;l & be the decomposition into absolutely ir-
reducible components. As before, given that dim Vi, < 7 — 2 and that
each & has dimension r — 1, the intersection & N Vg is nonempty for each
1 < i < t. Assume that &;,...,&» are all the components contained in
Z N Vieg for certain t” < t'. This means that for ¢” +1 <4 < ¢’ there exists
a point z; € & N (Vieg \ Z). Hence, arguing as for Claim 1 we conclude that
there exist 71, ...,Mn+1 € E such that no z; is a root of the polynomial
H = Y1 M,

We consider the variety Zeg := V N {é =0,H = 0}. By construction,
Z N Vieg C Zreg C V and Zeg is a projective variety of dimension r — 1.
Furthermore, Z,¢; can be expressed as Zyeg = Uf;l & UZ with dim Z <r-—2
and dimm,_1(&) < r—2 for 1 < i < t”, which proves that 7,_1(Zyeg)
is strictly contained in P"~!. Finally, from the Bézout inequality (4) we
conclude that deg Z;e, < 6 deg G deg H < (n—r)%(d—1)24. This finishes the
proof of our claim in the case dim Z N Vieg =17 — 1.

The analysis of the case dim Z N Vg < r — 1 is simpler since we do not
have to deal with components of Z N Ve of dimension r — 1. Therefore,

choosing the polynomials é,ﬁ as above guarantees that dimm,_1(Zeg) <
r — 2. This finishes the proof of Claim 2.

From the claims above we know that Z U Viing C Zging U Zreg and Zging U
Zreg 1s a proper subvariety of V' of dimension » — 1 and degree at most
2(n—r)2(d—1)%8. Furthermore, W := 7, _1(ZregUZsing) is a proper subvariety
of P"~1 which, by Lemma 2.1, has degree at most 2(n — r)?(d — 1)24. For
y € PP\ W every x € Vy is a regular point of V' not belonging to Z. Then
Lemma 5.1 shows that Vj, is a nonsingular curve of V, which by (4) has
degree at most . This finishes the proof of the theorem. m

Since the curve Vj, is a nonsingular projective complete intersection for
y ¢ W, Hartshorne’s connectedness theorem (see, e.g., [17, VI, Theorem 4.2])
shows that V), is connected, which implies that V;, is absolutely irreducible.

6. The estimate. In this section we obtain an estimate on the number
of g-rational points of a normal complete-intersection F;-variety V' C P" of
dimension r, degree § and multidegree d := (dy,...,d,—,). Our estimate
relies on the following estimate, due to P. Deligne ([7]), on the number of
g-rational points of a nonsingular complete-intersection F-curve C C P" of
degree 0 and multidegree d:

(7) |IC(E)| = p1| < bi(n, d)g"/?,
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where b} (n,d) denotes the first primitive Betti number of any nonsingular
complete intersection C C P of dimension 1 and multidegree d. We have
bi(n,d) < (§ —1)(6 — 2), with equality if and only if n = 2.

Set d := maxj<j<n—rd; and assume that ¢ > 2(n — r)dé + 1. Then
there exist linear forms Yp,...,Y, € F,[Xo,...,X,] satisfying conditions
(i)=(v) of Corollary 4.3. We recall that the choice of Yj,...,Y,_; implies
that V, := 7TT__11 (y) is a pure dimensional curve on V for every y € P71,

Denote by N, the number of g-rational points of V,, for any y € P"~1(F,).
We are going to estimate |V (F,)| in terms of the quantities N,. For this
purpose, we apply our effective version of the second Bertini theorem (The-
orem 5.3), which asserts that there exists a variety W C P"~! of dimension
at most 7 — 2 such that for every y € P"~1\ W the fiber V, is a nonsingular
complete intersection of degree at most ¢. Since Vj, is an [f-curve for every
y € PT=Y(E,), for each y in (P"~1\ W)(F,) we can estimate N, by means of
(7). We have the following result:

THEOREM 6.1. Let V. C P" be a normal complete-intersection [, -variety
of dimension r, degree 6 > 2 and multidegree d. For ¢ > 2(n —r)dd + 1,
HV )| —pT’ < b ( —r—i—1,d)q7"_1/2—|—(b'1(n—r+1,d) —|—<5degW—i—2)qT_1
where W C P™~1 is the variety of the statement of Theorem 5.3.

Proof. We begin by expressing |V (F,)| in terms of the numbers N, with
y € PrH(E):

(8) V()| = Z N+e

ye]P)r 1

where e is the number of g-rational points of 7, 1(0:---:0:1). Since 7, is
a finite morphism and P" is a normal variety, the cardinality of every fiber
of 7, is upper bounded by J. In particular, e < 4.

Subtracting p, from both sides of (8) and using the identity p, = pi1p,—1—
qpr—2, We obtain:

(9) “V ’_pr| < Z |Ny_p1|+qpr—2+5-
yeP 1 (1)
We decompose the first summand of the right-hand side of (9) as
Z [Ny —p1] = Z [Ny —p1] + Z [Ny — p1l.
yEPT 1 (8) yEW (| yeEW (By)

Thus, we have to estimate the quantities | N, — p1| in two different cases: for
y belonging to W (F,) and for y belonging to (P"~1\ W)(E,).

For any y in W ([,), the number Ny is less than or equal to ép;. Hence,
taking into account that § > 2, we obtain [Ny, — pi| < (6 — 1)p;. From



An effective Bertini theorem 33

Proposition 3.1 we have |W(F,)| < deg Wp,_2, and thus

(10) Z IN, —p1] < (6 — 1)p1 - degWp,_2 < d deg Wq" .
yeWw (B)

On the other hand, if y € (P"~!\ W)(F,), Theorem 5.3 shows that the
fiber V,, is a nonsingular complete-intersection I;-curve in P+ of degree at
most ¢ and multidegree at most d. By (7) we obtain the estimate | N, —pq| <
by (n—r+1,d)q"/?, where b, (n—r+1,d) is the corresponding Betti number.
Hence, writing b} := b} (n —r + 1,d), we have

(11) >INy = pil <V 4 Vippagt? < Vg2 Vg
yEW (&)

Combining (9)—(11) and taking into account that gp, o + 0 < 2¢" !, we
easily deduce the statement of the theorem. =

Taking into account the upper bound degW < 2(n — r)?(d — 1)26 of
Theorem 5.3, we deduce the following corollary:

COROLLARY 6.2. With notations and assumptions as in Theorem 6.1,
we have:

IVE)] = pr| < (6 =16 —2)a"? +2(n - r)?d?6%¢".

In order to illustrate the comparison between the result of Corollary 6.2
and (2) we briefly comment on an application of this kind of estimates in
the setting of cryptography.

Boolean functions f : Fom — Fom are used in cryptography in order to
design algorithms for block ciphering. It is important for such functions to
possess a high resistance to differential cryptanalysis. In order to analyze the
resistance of such functions to differential attacks, Nyberg [23] has introduced
the notion of almost perfect nonlinearity (APN).

Let ¢ := 2™. In |25, Corollaire 3.1|, F. Rodier shows that, if a given
function f : I, — [, is APN, then a certain absolutely irreducible nonsingular
projective F;-surface V of degree § associated to f has at most 3((6 —3)g+1)
g-rational points. Then, as a consequence of |9, Corollary 7.3|, he shows that
for m > 6 and & < ¢/ + 3.9 the function f is not APN [25, Théoréme 4.1].

By means of our estimates we may strengthen this conclusion. Indeed,
from Corollary 6.2 we deduce that, for ¢ > 262 + 1,

Vi(F)| = p2 — (6 = 1)(8 - 2)¢** — 26%.
Therefore, from [25, Corollaire 3.1] it follows that if ¢ > 262 4+ 1 and
p2— (6= 1)(6 — 2)¢** — 20%¢ > 3((6 — 3)g + 1),

then f is not APN. As a consequence, we see that for ¢ > 464, the function
f is not APN, which significantly improves |25, Théoréme 4.1].
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