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An e�e
tive Bertini theorem and the number of rationalpoints of a normal 
omplete interse
tion over a �nite �eldby
Antonio Cafure and Guillermo Matera (Buenos Aires)

1. Introdu
tion. Let Fq be the �nite �eld of q elements and let Fqbe the algebrai
 
losure of Fq. We denote the n-dimensional proje
tive anda�ne spa
es de�ned over Fq and Fq by P
n(Fq), P

n := P
n(Fq), A

n(Fq) and
A

n := A
n(Fq) respe
tively. Let V be an a�ne or a proje
tive variety de�nedover Fq (an Fq-variety for short). Counting or estimating the number |V (Fq)|of q-rational points of V is a 
lassi
al problem. Here by a q-rational point of

V we mean a point of V with 
oordinates in Fq.In [19℄ (see also [15℄), S. Lang and A.Weil establish a �prototype� estimateon |V (Fq)| for absolutely irredu
ible Fq-varieties. They prove that for anabsolutely irredu
ible Fq-variety V ⊂ P
n of dimension r and degree δ,(1) ∣∣|V (Fq)| − pr

∣∣ ≤ (δ − 1)(δ − 2) qr−1/2 + C(n, r, δ) qr−1,where pr := qr + qr−1 + · · · + q + 1 = |Pr(Fq)| and C(n, r, δ) is a 
onstantindependent of q. We remark that [19℄ does not provide an expli
it expressionfor C(n, r, δ).From the point of view of pra
ti
al appli
ations, it is usually ne
essaryto provide expli
it expressions of the 
onstant C := C(n, r, δ) (see, e.g.,[14℄, [16℄, [24℄, [2℄). Further, parti
ular families of varieties for whi
h betterestimates hold are also of interest (see, e.g., [32℄, [33℄, [21℄, [25℄).S. Ghorpade and G. La
haud ([10℄, [9℄) show that one 
an take C =
9 ·2s(sd+3)n+1 in (1), provided that the variety V is de�ned by s equationsof degree at most d. The proof of this result relies on the Grothendie
k�Lefs
hetz tra
e formula and estimates of the Betti numbers of suitable spa
esof étale ℓ-adi
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20 A. Cafure and G. MateraW. S
hmidt ([27℄, [28℄) develops an alternative approa
h based on 
om-binatorial arguments and an e�e
tive version of the �rst Bertini theorem inorder to obtain for the �rst time an expli
it value of C for an absolutely ir-redu
ible Fq-hypersurfa
e. The authors of this arti
le [3℄ 
ombine S
hmidt'sapproa
h with tools of e�e
tive elimination theory and an improved e�e
-tive version of the �rst Bertini theorem in order to prove that one 
an take
C = 5δ13/3 in (1), provided that the regularity 
ondition q > 2(r+1)δ2 holds.The estimate (1) holds for hypersurfa
es without any regularity 
ondition.These two are the best general estimates known. Nevertheless, in manyparti
ular 
ases they are far from being sharp. In fa
t, in the presen
e ofbetter geometri
 
onditions signi�
ant improvements 
an be obtained, asshown by the work of P. Deligne [7℄, C. Hooley [13℄ and others. This arti
leis devoted to obtaining an estimate of type (1) for the number of q-rationalpoints of a normal 
omplete-interse
tion Fq-variety V ⊂ P

n.This 
ase has already been 
onsidered in [10℄, [9℄. The authors provethat if V ⊂ P
n is a normal 
omplete-interse
tion Fq-variety of degree δ andmultidegree d := (d1, . . . , dn−r), de�ned by n − r equations of maximumdegree d, then the following estimate holds:

(2)
∣∣|V (Fq)| − pr

∣∣ ≤ b′1(n − r + 1,d)qr−1/2 + 9 · 2n−r((n − r)d + 3)n+1qr−1.Here b′1(n − r + 1,d) is the �rst primitive Betti number of a nonsingular
omplete interse
tion 
urve in P
n−r+1 of multidegree d. As b′1(n−r+1,d) ≤

(δ − 1)(δ − 2), with equality if and only if V is a hypersurfa
e, we 
on
ludethat (2) improves (1) with C = 9 · 2s(sd + 3)n+1.Compared with the bound C ≤ 5δ13/3 obtained in [3℄ without using thenormality assumption, the bound C ≤ 9 · 2n−r((n − r)d + 3)n+1 does notseem to be good for low 
odimension varieties, in parti
ular for hypersur-fa
es, whi
h are very 
ommon in pra
ti
al situations (see, e.g., [14℄, [16℄, [24℄,[2℄, [25℄). Indeed, in the hypersurfa
e 
ase the bound for C obtained in [3℄exponentially improves that of [10℄, [9℄. In this dire
tion, using methods ofelimination theory we derive a further estimate of type (2) better adaptedto low 
odimensional situations. Our main result is the following (
f. Theo-rem 6.1 and Corollary 6.2 below):
Theorem. Let q > 2(n−r)dδ +1 and let V ⊂ P

n be a normal 
omplete-interse
tion Fq-variety of degree δ and multidegree d, de�ned by polynomialsof maximum degree d. Then(3) ∣∣|V (Fq)| − pr

∣∣ ≤ b′1(n − r + 1,d)qr−1/2 + 2(n − r)2d2δ2qr−1,where b′1(n−r+1,d) denotes the �rst primitive Betti number of a nonsingular
omplete-interse
tion 
urve in P
n−r+1 of multidegree d.As previously mentioned, our estimate, although valid under the regu-larity 
ondition q > 2(n − r)dδ + 1, 
learly improves (2) in the 
ase of a



An e�e
tive Bertini theorem 21hypersurfa
e. In fa
t, for a hypersurfa
e (2) be
omes
∣∣|V (Fq)| − pn−1

∣∣ ≤ (δ − 1)(δ − 2)qn−3/2 + 18(δ + 3)n+1qn−2.Our estimate also improves (2) in 
ases of low dimension (su
h as 2r ≤ n−1)and low degree (su
h as d ≤ 2(n−r)). Furthermore, we improve the (general)estimate C = 5δ13/3 of [3℄ and its regularity 
ondition q > 2(r + 1)δ2.The proof of our main result relies on arguments of elimination theory inthe spirit of [3℄ and an e�e
tive version of the se
ond Bertini theorem. Morepre
isely, we express the variety V under 
onsideration as the disjoint unionof a suitable number, namely pr−1 := |Pr−1(Fq)|, of 1-dimensional linearse
tions of V de�ned over Fq. Sin
e the dimension of the singular lo
us of Vis at most r − 2, a generi
 1-dimensional linear se
tion of V is a nonsingular
omplete-interse
tion 
urve. A 
riti
al point is to obtain an upper bound onthe number of 1-dimensional singular linear se
tions of V de�ned over Fq.For this purpose, we establish the following e�e
tive version of the se
ondBertini theorem (see Theorem 5.3):
Theorem. Let V ⊂ P

n be a normal 
omplete-interse
tion of dimension rand degree δ, and let π : V → P
r−1 be a generi
 linear proje
tion. Then thereexists a variety W ⊂ P

r−1 of degree at most 2(n − r)2(d − 1)2δ su
h that the�ber π−1(y) is a nonsingular 
urve of degree at most δ for every y /∈ W .The number of q-rational points of V lying in the nonsingular linear se
-tions mentioned above is estimated using Deligne's estimate (see Se
tion 6),while the q-rational points lying in the remaining linear se
tions are 
on-trolled by means of elementary estimates and our e�e
tive se
ond Bertinitheorem.The paper is organized as follows. In Se
tion 3 we exhibit an upper boundon the number of q-rational points of an arbitrary proje
tive variety de�nedover Fq, whi
h illustrates the kind of arguments of elimination theory weuse. Se
tion 4 is devoted to obtaining an upper bound on the degree of thegeneri
ity 
ondition underlying the 
hoi
e of linear varieties Lr and Ln−r−1for whi
h the 
entral proje
tion from Ln−r−1 mapping V onto Lr is a �nitemorphism and the 
orresponding �eld extension is separable. In Se
tion 5 weobtain the e�e
tive version of the se
ond Bertini theorem mentioned above,whi
h is applied in Se
tion 6 to obtain (3). We �nish by brie�y 
ommentingon an appli
ation of (3) in the setting of 
ryptography.2. Notions and notations. We use standard notions and notations of
ommutative algebra and algebrai
 geometry as 
an be found in, e.g., [17℄,[30℄, [22℄.Let K be any of the �elds Fq or Fq. We say that V ⊂ P
n (resp. V ⊂ A

n)is a proje
tive (resp. a�ne) K-variety if it is the set of all 
ommon zeros



22 A. Cafure and G. Materain Fq
n+1 (resp. Fq

n) of a family of homogeneous polynomials F1, . . . , Fm ∈
K[X0, . . . , Xn] (resp. of polynomials F1, . . . , Fm ∈ K[X1, . . . , Xn]). In thisse
tion, unless otherwise stated, all results referring to K-varieties in generalshould be understood as valid for both proje
tive and a�ne varieties.For a K-variety V in the n-dimensional (a�ne or proje
tive) spa
e, wedenote by I(V ) its de�ning ideal and by K[V ] its 
oordinate ring. The di-mension dimV of a K-variety V is the (Krull) dimension of the ring K[V ].The degree deg V of an irredu
ible K-variety V is the maximum number ofpoints lying in the interse
tion of V with a generi
 linear spa
e L of 
odi-mension dim V , for whi
h V ∩ L is a �nite set (a zero-dimensional variety).More generally, if V = V1∪· · ·∪Vs is the de
omposition of V into irredu
ible
K-
omponents, we de�ne the degree of V as deg V :=

∑s
i=1 deg Vi (
f. [11℄).We say that V has pure dimension r if every irredu
ible K-
omponent of

V has dimension r. A K-variety V is absolutely irredu
ible if it is irredu
ibleas an Fq-variety.A K-variety V of dimension r in an n-dimensional spa
e is 
alled an(ideal-theoreti
) 
omplete interse
tion if its ideal I(V ) over K 
an be gener-ated by n−r polynomials. If V is a 
omplete interse
tion in P
n of dimension rand degree δ and F1, . . . , Fn−r is a system of generators of I(V ), the degrees

d1, . . . , dn−r depend only on V and not on the system of generators. Arrang-ing the di in su
h a way that d1 ≥ · · · ≥ dn−r, we 
all d := (d1, . . . , dn−r)the multidegree of the 
omplete interse
tion V . In parti
ular, it follows that
δ =

∏n−r
i=1 di.An irredu
ible proje
tive K-variety V is normal if for every x ∈ V thereis an a�ne neighborhood U of x su
h that the a�ne 
oordinate ring K[U ] isintegrally 
losed. Nonsingular varieties are normal, and when V is a 
urve,normality and nonsingularity are equivalent 
onditions. We re
all Serre's
riterion for normality: A proje
tive 
omplete interse
tion V is normal if andonly if V is regular in 
odimension 1. If V is a normal 
omplete-interse
tion
urve it is 
onne
ted and so absolutely irredu
ible.Let V and W be irredu
ible K-varieties of the same dimension and f :

V → W be a regular dominant map. The degree of the �eld extension
f∗(K(W )) ⊂ K(V ) is 
alled the degree of f . Suppose further that W isnormal and f is a �nite morphism. We say that f is unrami�ed at y ∈ W ifthe number of inverse images of y equals the degree of f .An important tool for our estimates is the following Bézout inequality(see [11℄ for the a�ne 
ase and [5℄ for the proje
tive 
ase; see also [8℄, [34℄):if V and W are K-varieties, then(4) deg(V ∩ W ) ≤ deg V deg W.We shall also make use of the following well-known identities relating thedegree of an a�ne K-variety V ⊂ A

n, the degree of its proje
tive 
losure
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t to the proje
tive Zariski K-topology) V ⊂ P
n and the degreeof the a�ne 
one Ṽ of V (see, e.g., [4, Proposition 1.11℄):(5) deg V = deg V = deg Ṽ .Finally, we have the following result 
on
erning the behavior of the degreeunder linear maps.Lemma 2.1. Let φ : V → W be a regular linear map between K-varieties.Then deg φ(V ) ≤ deg V .Proof. From (5) we see that it is enough to prove the statement fora�ne varieties. But for a�ne varieties this is a well-known fa
t (see, e.g.,[11, Lemma 2℄).3. An elementary upper bound. Following the notations of the pre-
eding se
tion, P

n and A
n stand for P

n(Fq) and A
n(Fq) respe
tively. For agiven variety V , we denote by V (Fq) the set of q-rational points of V and by

|V (Fq)| its 
ardinality.In this se
tion we obtain an elementary upper bound on |V (Fq)|. Noti
ethat in some 
ases it is possible to determine the exa
t value of |V (Fq)|. Forinstan
e, the number of points pn of P
n(Fq) is given by pn := |Pn(Fq)| =

qn + qn−1 + · · · + q + 1.For an a�ne variety V of dimension r and degree δ we have the followingupper bound on the number of q-rational points of V [3, Lemma 2.1℄:(6) |V (Fq)| ≤ δqr.The 
orresponding upper bound for a proje
tive hypersurfa
e is 
lassi-
al ([28℄, [20℄). Our next result extends this bound to arbitrary proje
tivevarieties:Proposition 3.1. Let V be a proje
tive variety of dimension r and de-gree δ. Then
|V (Fq)| ≤ δpr.Proof. The proof is by indu
tion on r. If r = 0 then it is 
lear that

|V (Fq)| ≤ δ. Hen
e we may assume that r ≥ 1. Suppose now that V isirredu
ible. After a linear 
hange of 
oordinates we may assume that thehyperplane at in�nity {X0 = 0} does not 
ontain V .Then Vaff := V ∩ {X0 = 1} is an a�ne r-dimensional variety withproje
tive 
losure V . Therefore, deg Vaff = δ by (5) and thus (6) implies
|Vaff(Fq)| ≤ δqr.On the other hand, by assumption, V∞ := V ∩ {X0 = 0} = V \ Vaff is aproje
tive variety of dimension at most r− 1 and degree at most δ. Then bythe indu
tion hypothesis we have |V∞(Fq)| ≤ δpr−1.



24 A. Cafure and G. MateraIn 
on
lusion,
|V (Fq)| = |Vaff(Fq)| + |V∞(Fq)| ≤ δqr + δpr−1 = δpr.This 
ompletes the indu
tive step when V is irredu
ible. Next, for an arbi-trary proje
tive variety V , let V = V1 ∪ · · · ∪ Vs be its de
omposition intoirredu
ible proje
tive varieties. Then dimVi ≤ r and δ =

∑s
i=1 δi, where

δi := deg Vi for 1 ≤ i ≤ s. Therefore
|V (Fq)| ≤

s∑

i=1

|Vi(Fq)| ≤
s∑

i=1

δipr ≤ δpr.This �nishes the proof of the proposition.A somewhat di�erent proof is given in [10, Proposition 12.1℄ (see also[18, Proposition 2.3℄). Nevertheless, we have in
luded our proof be
ause itillustrates the kind of arguments of elimination theory we use. We also ob-serve that in the 
ase of an Fq-hypersurfa
e H ⊂ P
n of degree δ ≤ q + 1we have the upper bound |H(Fq)| ≤ δqn−1 + pn−2 due to J.-P. Serre [29℄.Unfortunately, the hypersurfa
es we 
onsider in the next se
tions are not ingeneral de�ned over Fq, and thus Serre's bound 
annot be applied.4. On the existen
e of good linear proje
tions. In this se
tion weestablish some results whi
h are 
ru
ial to obtaining our e�e
tive version ofthe se
ond Bertini theorem of Se
tion 5.Let V ⊂ P

n be an absolutely irredu
ible 
omplete-interse
tion Fq-varietyof dimension r and degree δ. Let F1, . . . , Fn−r ∈ Fq[X0, . . . , Xn] be homoge-neous polynomials whi
h form a regular sequen
e and generate the ideal ofthe variety V . We denote by di the degree of Fi for 1 ≤ i ≤ n − r, and weset d := max1≤i≤n−r di.Sin
e V has pure dimension r, for a generi
 
hoi
e of linear varieties Lrand Ln−r−1 of P
n of dimension r and n − r − 1 respe
tively, we have

Lr ∩ Ln−r−1 = ∅, V ∩ Ln−r−1 = ∅.Furthermore, V is mapped onto Lr by the 
entral proje
tion πr from Ln−r−1,and �nitely many points of V lie over any point of Lr under this proje
tion.Finally, if Y0, . . . , Yr are linear forms on Fq[X0, . . . , Xn] whose zero set de�nesthe linear variety Ln−r−1, and πr is de�ned by
πr : V → Lr, x 7→ (Y0(x) : · · · : Yr(x)),then πr is a �nite morphism. Our �rst result yields a suitable 
hoi
e for thelinear variety Ln−r−1:Lemma 4.1. There exist indi
es 0 ≤ ir+1 < · · · < in ≤ n su
h that ,if we de�ne Yj := Xij for r + 1 ≤ j ≤ n, then Yr+1, . . . , Yn are Fq-linearly



An e�e
tive Bertini theorem 25independent and U := {x ∈ V : (∂Fi/∂Yr+j)1≤i,j≤n−r(x) 6= 0} is a nonemptyZariski open subset of V .Proof. Sin
e V is absolutely irredu
ible, from, e.g., [28, Chapter 6, Corol-lary 6.C℄, we 
on
lude that there exist linear forms Y0, . . . , Yr ∈ Fq[X0, . . . , Xn]su
h thatFq(Y0, . . . , Yr) →֒ Fq(V ) is an algebrai
 separable �eld extension. Fur-ther, these linear forms 
anbe 
hosen in su
h away that the proje
tionmapping
πr : V → P

r de�ned by πr(x) := (Y0(x) : · · · : Yr(x)) is a �nite morphism, asasserted above. For the sake of the argument, �x arbitrarily su
h linear formsand denote by λ ∈ Fq
(r+1)×(n+1) the matrix whose rows are the 
oe�
ients ofthese forms.From, e.g., [31, II.6.3, Theorem 4℄, we see that there exists y ∈ P

r su
hthat π−1
r (y) is an unrami�ed �ber of πr, i.e., the number of inverse images of

y equals the degree of the �eld extension Fq(Y0, . . . , Yr) →֒ Fq(V ). Fix arbi-trarily x ∈ π−1
r (y). The unrami�edness of πr at x means that the di�erential

dxπr : TxV → TyP
r between the tangent spa
es is inje
tive (see [6, �5, 5.2℄).This in turns means that the following (n+1)×(n+1) matrix is nonsingular:
Dr(x) :=




λ0, 0 . . . λ0, n... ...
λr, 0 . . . λr, n

∂F1
∂X0

(x) . . . ∂F1
∂Xn

(x)... ...
∂Fn−r

∂X0
(x) . . . ∂Fn−r

∂Xn
(x)




.

Considering the Lapla
e expansion of the determinant of Dr(x), we 
on-
lude that there exist two disjoint sets of indi
es 0 ≤ i0 < i1 < · · · < ir ≤ nand 0 ≤ ir+1 < · · · < in ≤ n su
h that both the square Ja
obian matri
es
(∂Yi/∂Xij )0≤i,j≤r and ((∂Fi/∂Xir+j

)(x))1≤i,j≤n−r are nonsingular.From the nonsingularity of (∂Yi/∂Xij )0≤i,j≤r we 
on
lude that thelinear forms Y0, . . . , Yr, Xir+1 , . . . , Xin are Fq-linearly independent. Fur-thermore, de�ning Yj := Xij for r + 1 ≤ j ≤ n, we see that the matrix
((∂Fi/∂Yr+j)(x))1≤i,j≤n−r is nonsingular, whi
h implies that U := {x ∈ V :
(∂Fi/∂Yr+j)1≤i,j≤n−r(x) 6= 0} is a nonempty Zariski open subset of V .From now on we �x linear forms Yr+1, . . . , Yn satisfying the statementof Lemma 4.1. Our next result yields an upper bound on the degree of thegeneri
ity 
ondition underlying the 
hoi
e of the linear variety Lr. Beforestating it, we introdu
e some notations. Let Λ := (Λi, j)0≤i≤r, 0≤j≤n be amatrix of indeterminates and let Λ(i) denote the ith row of Λ for 0 ≤ i ≤ r.Set X := (X0, . . . , Xn) and Ỹ := (Ỹ0, . . . , Ỹr) := ΛX.



26 A. Cafure and G. MateraProposition 4.2. There exists a nonzero polynomial A ∈ Fq[Λ] of de-gree at most 2δ + 1 in ea
h group of variables Λ(i) for 0 ≤ i ≤ r with thefollowing property. For any λ ∈ Fq
(r+1)(n+1) with A(λ) 6= 0, the linear forms

(Y0, . . . , Yr) := λX satisfy the following 
onditions:(i) the map πr : V → P
r de�ned by Y0, . . . , Yr is a �nite morphism,(ii) Fq(Y0, . . . , Yr) →֒ Fq(V ) is a separable �eld extension,(iii) if Yr+1, . . . ,Yn denote the linear forms of Lemma 4.1, then Y0, . . . , Ynare Fq-linearly independent.Proof. Let Λ(r+1) be a ve
tor of n+1 new indeterminates and let Ỹr+1 :=

Λ(r+1)X. Let PV ∈ Fq[Λ, Λ(r+1), Ỹ0, . . . , Ỹr+1] be the Chow form of V (
f.[26℄, [12℄). It is a well-known fa
t that PV is an irredu
ible polynomialin Fq[Λ, Λ(r+1), Ỹ0, . . . , Ỹr+1] whi
h is separable in ea
h of the variables
Ỹ0, . . . , Ỹr+1 and homogeneous in Ỹ0, . . . , Ỹr+1 and in ea
h group of vari-ables Λ(i) for 0 ≤ i ≤ r + 1. Furthermore, PV satis�es the following degreeestimates:

• deg
Ỹ
PV = deg

Ỹr+1
PV = δ,

• degΛ(i)PV ≤ δ for 0 ≤ i ≤ r + 1.Considering the expansion of PV in powers of Ỹr+1, let Ã1 ∈ Fq[Λ, Λ(r+1)]be the nonzero polynomial whi
h arises as the 
oe�
ient of the monomial
Ỹ δ

r+1 in PV , and let Ã2 ∈ Fq[Λ, Λ(r+1), Ỹ0, . . . , Ỹr] be the 
oe�
ient of a mono-mial Ỹ j0
r+1, with j0 not divisible by the 
hara
teristi
 of Fq. Let A1, A2 ∈ Fq[Λ]be nonzero 
oe�
ients of Ã1 and Ã2, respe
tively, where we 
onsider Ã1 asan element of Fq[Λ][Λ(r+1)] and Ã2 as an element of Fq[Λ][Λ(r+1), Ỹ0, . . . , Ỹr].The above estimates imply that both A1 and A2 have degree at most δ inea
h group of variables Λ(i) for 0 ≤ i ≤ r + 1.Let λ ∈ Fq

(r+1)(n+1) be any point for whi
h A1(λ) 6= 0 and A2(λ) 6= 0,and de�ne the r + 1 linear forms (Y0, . . . , Yr) := λX. Sin
e Ã1(λ, Λ(r+1))and Ã2(λ, Λ(r+1), Y0, . . . , Yr) are nonzero polynomials, we dedu
e the ex-isten
e of Fq-linearly independent ve
tors w0, . . . , wn ∈ Fq
n+1 su
h that

PV (λ, wj, Y0, . . . , Yr, Ỹr+1) ∈ Fq[Y0, . . . , Yr][Ỹr+1] is a nonzero, moni
 (up toelements of Fq) and separable polynomial, for every 0 ≤ j ≤ n.If we de�ne ℓj := wjX for 0 ≤ j ≤ n, it turns out that the polynomial
PV (λ, wj, Y0, . . . , Yr, ℓj) yields an integral dependen
e equation for the 
oor-dinate fun
tion indu
ed by ℓj in the ring extension Fq[Y0, . . . , Yr] →֒ Fq[V ].On the other hand, PV (λ, wj , Y0, . . . , Yr, ℓj) also yields a separable equationfor ℓj in the �eld extension Fq(Y0, . . . , Yr) →֒ Fq(V ). Sin
e Fq[ℓ0, ℓ1, . . . , ℓn] =
Fq[X0, . . . , Xn], we 
on
lude that 
onditions (i) and (ii) are satis�ed.Finally, to prove (iii), let A3 ∈ Fq[Λ] be the nonzero determinant of thematrix de�ned by the ve
tors of the 
oe�
ients of the linear forms Ỹ0, . . . , Ỹr,
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Yr+1, . . . , Yn, where Yr+1, . . . , Yn are the linear forms of the statement ofLemma 4.1. It is 
lear that if A3(λ) 6= 0 and we de�ne (Y0, . . . , Yr) := λX,then 
ondition (iii) will be satis�ed. Observe that degΛ(i) A3≤1 for 0≤ i≤r.De�ne A := A1A2A3; our previous arguments show that A satis�es therequirements of the statement of the proposition.From Lemma 4.1 and Proposition 4.2 we dedu
e the main result of thisse
tion:Corollary 4.3. Let q > 2(n − r)dδ + 1. Then there exist linear forms
Y0, . . . , Yr ∈ Fq[X0, . . . , Xn] satisfying the following 
onditions:(i) the map πr : V → P

r de�ned by Y0, . . . , Yr is a �nite morphism,(ii) the map πr−1 : V \ U → P
r−1 de�ned by Y0, . . . , Yr−1 is a �nitemorphism,(iii) Fq(Y0, . . . , Yr) →֒ Fq(V ) is a separable �eld extension,(iv) Fq(Y0, . . . , Yr−1) →֒ Fq(C) is a separable �eld extension for every ab-solutely irredu
ible 
omponent C of V \ U ,(v) the linear forms Y0, . . . , Yr, Yr+1, . . . , Yn are Fq-linearly independent.Proof. From Proposition 4.2 it follows that there exists a nonzero poly-nomial A ∈ Fq[Λ] of degree at most 2δ + 1 in ea
h group of variables Λ(i) for

0 ≤ i ≤ r + 1 su
h that, for every λ ∈ Fq
(r+1)(n+1) with A(λ) 6= 0, de�ning

(Y0, . . . , Yr) := λX, we see that 
onditions (i), (iii) and (v) are satis�ed.Let V \ U =
⋃s

j=1 Cj be the de
omposition of V \ U into absolutelyirredu
ible 
omponents. We have dim Cj = r − 1 for 1 ≤ j ≤ s. From theproof of Proposition 4.2 we 
on
lude that for 1 ≤ j ≤ s there exists a nonzeropolynomial A(j) ∈ Fq[Λ] of degree at most 2 deg Cj in ea
h group of variables
Λ(i) su
h that for every λ ∈ Fq

(r+1)(n+1) with A(j)(λ) 6= 0, the linear forms
(Y0, . . . , Yr) := λX satisfy 
onditions (ii) and (iv) for Cj .Sin
e ∑s

j=1 deg Cj = deg(V \ U) ≤ (n− r)(d− 1)δ, we 
on
lude that thepolynomial A∗ := A·A(1) · · ·A(s) has degree at most 2δ+1+2(n−r)(d−1)δ ≤
2(n− r)dδ + 1 in ea
h group of variables Λ(i), and for every λ ∈ Fq

(r+1)(n+1)with A∗(λ) 6=0, the linear forms (Y0, . . . , Yr) :=λX satisfy 
onditions (i)�(v).Let a(0) ∈ Fq[Λ
(0)] be a nonzero 
oe�
ient of A∗, 
onsidering A∗ as apolynomial in Fq[Λ
(0)][Λ(1), . . . , Λ(r)]. By (6) it follows that a(0) has at most

(2(n − r)dδ + 1)qn zeros in F
n+1
q . Sin
e q > 2(n − r)dδ + 1, we 
on
ludethat there exists λ(0) ∈ F

n+1
q su
h that A∗(λ(0), Λ(1), . . . , Λ(r)) is a nonzeropolynomial. Arguing in a similar way, we su

essively dedu
e the existen
eof λ(1), . . . , λ(r) ∈ F

n+1
q su
h that A∗(λ) 6= 0 for λ := (λ(0), . . . , λ(r)). Thelinear forms (Y0, . . . , Yr) := λX satisfy the 
onditions of the 
orollary.We remark that, from the proof of Corollary 4.3, we dedu
e that thereexist linear forms Y0, . . . , Yr ∈ Fq[X] su
h that the map πr : V → P

r de�ned



28 A. Cafure and G. Materaby Y0, . . . , Yr is a �nite morphism for q > δ − 1. This is also proved in [18,Proposition 2.3℄.5. An e�e
tive se
ond Bertini theorem. This se
tion is devoted toestablishing an e�e
tive version of the se
ond Bertini theorem suitable forour requirements. The se
ond Bertini theorem (see, e.g., [31, II.6.2, The-orem 2℄) asserts that, given a dominant morphism of irredu
ible varieties
f : V1 → V2 de�ned over a �eld of 
hara
teristi
 zero with V1 nonsingular,there exists a dense open set U of V2 su
h that the �ber f−1(y) is nonsingularfor every y ∈ U . Our e�e
tive version holds without any restri
tion on the
hara
teristi
 of the ground �eld and gives an upper bound on the degree ofthe subvariety of points of V2 de�ning singular �bers. An e�e
tive version ofa weak form of the Bertini theorem is given in [1℄. Nevertheless, the boundgiven there is exponentially higher than ours and therefore is not suitablefor our purposes.Let notations and assumptions be as in Se
tion 4. Assume that q >
2(n− r)dδ +1, and let Y0, . . . , Yn ∈ Fq[X0, . . . , Xn] be linear forms satisfying
onditions (i)�(v) of Corollary 4.3. Consider the linear mappings πr : V →
P

r and πr−1 : V → P
r−1 de�ned by πr(x) := (Y0(x) : · · · : Yr(x)) and

πr−1(x) := (Y0(x) : · · · : Yr−1(x)). Then πr is a well-de�ned �nite morphism,
πr−1 is well-de�ned outside (the 0-dimensional subvariety) π−1

r (0 : · · · : 0 : 1),and the 
hoi
e of the linear forms Y0, . . . , Yr−1 implies that π−1
r−1(y) is a puredimensional 
urve on V for every y ∈ P

r−1. We shall prove that there existsa proper subvariety W of P
r−1 su
h that π−1

r−1(y) is nonsingular for every
y /∈ W , and we shall provide an upper bound for the degree of W .For a given x ∈ V and y := πr−1(x) ∈ P

r−1, we denote by TxV and
TyP

r−1 the respe
tive tangent spa
es. Further, we denote by dxπr−1 : TxV
→ TyP

r−1 the di�erential of πr−1 at x and for any y ∈ P
n−1 we set Vy

:= π−1
r−1(y). We start with the following lemma, whi
h yields a su�
ient
ondition for the nonsingularity of the �ber Vy.Lemma 5.1. Let y be a point of P

r−1 su
h that for any point x ∈ Vy thefollowing 
onditions are satis�ed :(i) x is a regular point of V ,(ii) dxπr−1 is surje
tive.Then Vy is a nonsingular 
urve.Proof. Let x be an arbitrary point of Vy. Sin
e the 
omposite of TxVy →֒
TxV with dxπr−1 is the zero map, the tangent spa
e TxVy is 
ontained in thekernel of dxπr−1. By the surje
tivity of dxπr−1 the dimension of the imageof dxπr−1 equals r − 1. Hen
e

dimTxVy ≤ dim Ker dxπr−1 = dim TxV − dim TyP
r−1 = 1,
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tive Bertini theorem 29where the last equality follows from the fa
t that x is a nonsingular pointof V . Sin
e Vy is of pure dimension 1, we 
on
lude that dimTxVy = 1 andtherefore x is regular point of Vy. This shows that Vy is nonsingular.Next we give a su�
ient 
ondition for the surje
tivity of dxπr−1.Lemma 5.2. Let U = {x ∈ V : det(∂Fi/∂Yr+j)1≤i,j≤n−r(x) 6= 0} be thenonempty Zariski open subset of V of Lemma 4.1. Then dxπr−1 is surje
tivefor every x ∈ U \ π−1
r (0 : · · · : 0 : 1).Proof. Let x be an arbitrary point of U . Then x is a regular pointof V , whi
h implies that TxV has dimension r. Therefore, from the iden-tity dimKer dxπr−1 = r − dim Im dxπr−1, we 
on
lude that the surje
tivityof dxπr−1 is equivalent to the 
ondition dimKer dxπr−1 = 1. Supposewithout loss of generality that Y0(x) 6= 0. Then we may assume that we arein an a�ne situation, and πr−1 is lo
ally de�ned by πr−1(x) := (Y1(x),

. . . , Yr−1(x)). Now Ker dxπr−1 is the a�ne linear spa
e de�ned by the equa-tions ∑n
j=1(∂Fi/∂Yj)(x)(Yj − Yj(x)) = 0 (1 ≤ i ≤ n − r), Yk − Yk(x) = 0

(1 ≤ k ≤ r − 1). From the de�nition of U we see that these equations are
Fq-linearly independent, whi
h proves that Ker dxπr−1 has dimension 1. This
ompletes the proof.Now we are ready to state our e�e
tive version of the se
ond Bertinitheorem.Theorem 5.3. There exists a proper subvariety W ⊂ P

r−1 of degree atmost 2(n−r)2(d−1)2δ su
h that the �ber Vy is a nonsingular 
urve of degreeat most δ for every y /∈ W .Proof. Let Z be the proper 
losed subset of V 
onsisting of the pointsof V where dxπr−1 is not surje
tive, and let Vreg and Vsing denote the sets ofregular and singular points of V , respe
tively. Then Z 
an be expressed as
Z = (Z ∩ Vreg) ∪ (Z ∩ Vsing) = Z ∩ Vreg ∪ (Z ∩ Vsing),where Z ∩ Vreg denotes the Zariski 
losure of Z ∩ Vreg. From Lemma 5.2 we
on
lude that Z ⊂ V \ U , i.e.,

Z ⊂ {x ∈ V : F1(x) = · · · = Fn−r(x) = det(∂Fi/∂Yr+j)1≤i,j≤n−r(x)=0}.Sin
e V is a normal variety, the set of singular points Vsing has 
odimensionat least two in V .Claim 1. There exists a 
losed subset Zsing ⊂ V of 
odimension twoin V and degree bounded by (n − r)2(d − 1)2δ su
h that Vsing ⊂ Zsing.Proof of Claim 1. The Ja
obian matrix (∂Fi/∂Xj)1≤i≤n−r,1≤j≤n+1 has
Nr :=

(n+1
n−r

) maximal minors M1, . . . , MNr
. If x ∈ V is a regular point, atleast one of these minors is not zero at x. As a 
onsequen
e we may 
hoose

γ1, . . . , γNr
∈ Fq su
h that ∑Nr

j=1 γjMj(x) 6= 0. Setting G :=
∑n

j=1 γjMj ,
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obian 
riterion we see that Vsing ⊂ V ∩{G = 0} ⊂ V . Moreover,the absolute irredu
ibility of V implies that V ∩ {G = 0} is an equidimen-sional proje
tive variety of dimension r − 1.Consider now the de
omposition V ∩ {G = 0} =
⋃s

i=1 Ci into absolutelyirredu
ible 
omponents. Sin
e Vsing has dimension at most r − 2, it followsthat Ci∩Vreg is nonempty for 1 ≤ i ≤ s. Hen
e, arguing as above, we 
on
ludethat there exist xi ∈ Vreg ∩Ci for 1 ≤ i ≤ s and γ̃1, . . . , γ̃Nr
∈ Fq su
h that no

xi is a zero of the polynomial H :=
∑Nr

j=1 γ̃jMj . Observe that both G and
H have degree at most (n − r)(d − 1).We de�ne Zsing := V ∩ {G = 0, H = 0}. By 
onstru
tion, Vsing ⊂ Zsing

⊂ V and Zsing is an equidimensional proje
tive variety of dimension r − 2.Furthermore, from the Bézout inequality (4) we 
on
lude that deg Zsing ≤
δ deg Gdeg H ≤ (n − r)2(d − 1)2δ. This �nishes the proof of our 
laim.Claim 2. There exists a proper 
losed subset Zreg ⊂ V of degree boundedby (n − r)2(d − 1)2δ su
h that Z ∩ Vreg ⊂ Zreg and πr−1(Zreg) is a proper
losed subset of P

r−1.Proof of Claim 2. We 
onsider separately the 
ases dimZ ∩ Vreg = r − 1and dimZ ∩ Vreg < r − 1.First, suppose that Z ∩ Vreg has dimension r−1. Let Z ∩ Vreg =
⋃t

i=1 Dibe the de
omposition into absolutely irredu
ible 
omponents. We are goingto prove that the image of ea
h Di under πr−1 is a proper 
losed subsetof P
r−1. For 
omponents having dimension less than r−1 this is 
lear, hen
ewe only have to deal with 
omponents of dimension r − 1.Assume that there exists an irredu
ible 
omponent Di of Z ∩ Vreg ofdimension r−1 for whi
h πr−1(Di) = P

r−1. Sin
e Di ⊂ Z ⊂ V \U , and V \Uhas dimension r−1, it follows that Di is an absolutely irredu
ible 
omponentof V \U , and Corollary 4.3 implies that the �eld extension Fq(Y0, . . . , Yr−1) →֒
Fq(Di) is separable. Applying, e.g., [31, II.6.2, Lemma 2℄, we 
on
lude thatthere exists a nonempty Zariski open subset Oi ⊂ Di su
h that dxπr−1 issurje
tive for every x ∈ Oi, 
ontrary to Di ⊂ Z. This shows that πr−1(Di)is a proper 
losed subset of P

r−1 for every 1 ≤ i ≤ t.Let M(x) denote the Ja
obian matrix of F1, . . . , Fn−r, Y0, . . . , Yr−1 withrespe
t to the variables X0, . . . , Xn evaluated at x. A point x ∈ Vreg be-longs to Z if and only if M(x) does not have full rank n. If x ∈ Vreg is apoint for whi
h dxπr−1 is surje
tive (for instan
e, x 
an be 
hosen in thenonempty open set U of Lemma 5.2), the matrix M(x) has full rank n, andhen
e it has at least one nonzero n×n minor. Denoting by M (1), . . . , M (n+1)the maximal minors of M , we de�ne the polynomial G̃ :=
∑n+1

j=1 ηjM
(j),where η1, . . . , ηn+1 are elements of Fq su
h that G̃(x) 6= 0. It follows that

V ∩ {G̃ = 0} is an equidimensional proje
tive variety of dimension r − 1.
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tive Bertini theorem 31Furthermore, by our 
hara
terization of the points of Z ∩ Vreg we easily
on
lude that Z ∩ Vreg ⊂ V ∩ {G̃ = 0} and so Z ∩ Vreg ⊂ V ∩ {G̃ = 0}.Let V ∩ {G̃ = 0} =
⋃t′

i=1 Ei be the de
omposition into absolutely ir-redu
ible 
omponents. As before, given that dimVsing ≤ r − 2 and thatea
h Ei has dimension r − 1, the interse
tion Ei ∩ Vreg is nonempty for ea
h
1 ≤ i ≤ t′. Assume that E1, . . . , Et′′ are all the 
omponents 
ontained in
Z ∩ Vreg for 
ertain t′′ ≤ t′. This means that for t′′ + 1 ≤ i ≤ t′ there existsa point xi ∈ Ei ∩ (Vreg \ Z). Hen
e, arguing as for Claim 1 we 
on
lude thatthere exist η̃1, . . . , η̃n+1 ∈ Fq su
h that no xi is a root of the polynomial
H̃ :=

∑n+1
j=1 η̃jMj .We 
onsider the variety Zreg := V ∩ {G̃ = 0, H̃ = 0}. By 
onstru
tion,

Z ∩ Vreg ⊂ Zreg ⊂ V and Zreg is a proje
tive variety of dimension r − 1.Furthermore, Zreg 
an be expressed as Zreg =
⋃t′′

i=1 Ei∪Z̃ with dim Z̃ ≤ r−2and dimπr−1(Ei) ≤ r − 2 for 1 ≤ i ≤ t′′, whi
h proves that πr−1(Zreg)is stri
tly 
ontained in P
r−1. Finally, from the Bézout inequality (4) we
on
lude that deg Zreg ≤ δ deg G̃ deg H̃ ≤ (n−r)2(d−1)2δ. This �nishes theproof of our 
laim in the 
ase dimZ ∩ Vreg = r − 1.The analysis of the 
ase dim Z ∩ Vreg < r − 1 is simpler sin
e we do nothave to deal with 
omponents of Z ∩ Vreg of dimension r − 1. Therefore,
hoosing the polynomials G̃, H̃ as above guarantees that dim πr−1(Zreg) ≤

r − 2. This �nishes the proof of Claim 2.From the 
laims above we know that Z ∪Vsing ⊂ Zsing ∪Zreg and Zsing ∪
Zreg is a proper subvariety of V of dimension r − 1 and degree at most
2(n−r)2(d−1)2δ. Furthermore, W := πr−1(Zreg∪Zsing) is a proper subvarietyof P

r−1 whi
h, by Lemma 2.1, has degree at most 2(n − r)2(d − 1)2δ. For
y ∈ P

r−1 \W every x ∈ Vy is a regular point of V not belonging to Z. ThenLemma 5.1 shows that Vy is a nonsingular 
urve of V , whi
h by (4) hasdegree at most δ. This �nishes the proof of the theorem.Sin
e the 
urve Vy is a nonsingular proje
tive 
omplete interse
tion for
y /∈ W , Hartshorne's 
onne
tedness theorem (see, e.g., [17, VI, Theorem 4.2℄)shows that Vy is 
onne
ted, whi
h implies that Vy is absolutely irredu
ible.6. The estimate. In this se
tion we obtain an estimate on the numberof q-rational points of a normal 
omplete-interse
tion Fq-variety V ⊂ P

n ofdimension r, degree δ and multidegree d := (d1, . . . , dn−r). Our estimaterelies on the following estimate, due to P. Deligne ([7℄), on the number of
q-rational points of a nonsingular 
omplete-interse
tion Fq-
urve C ⊂ P

n ofdegree δ and multidegree d:(7) ∣∣|C(Fq)| − p1

∣∣ ≤ b′1(n,d)q1/2,



32 A. Cafure and G. Materawhere b′1(n,d) denotes the �rst primitive Betti number of any nonsingular
omplete interse
tion C ⊂ P
n of dimension 1 and multidegree d. We have

b′1(n,d) ≤ (δ − 1)(δ − 2), with equality if and only if n = 2.Set d := max1≤i≤n−r di and assume that q > 2(n − r)dδ + 1. Thenthere exist linear forms Y0, . . . , Yn ∈ Fq[X0, . . . , Xn] satisfying 
onditions(i)�(v) of Corollary 4.3. We re
all that the 
hoi
e of Y0, . . . , Yr−1 impliesthat Vy := π−1
r−1(y) is a pure dimensional 
urve on V for every y ∈ P

r−1.Denote by Ny the number of q-rational points of Vy for any y ∈ P
r−1(Fq).We are going to estimate |V (Fq)| in terms of the quantities Ny. For thispurpose, we apply our e�e
tive version of the se
ond Bertini theorem (The-orem 5.3), whi
h asserts that there exists a variety W ⊂ P

r−1 of dimensionat most r − 2 su
h that for every y ∈ P
r−1 \W the �ber Vy is a nonsingular
omplete interse
tion of degree at most δ. Sin
e Vy is an Fq-
urve for every

y ∈ P
r−1(Fq), for ea
h y in (Pr−1 \ W )(Fq) we 
an estimate Ny by means of(7). We have the following result:Theorem 6.1. Let V ⊂ P

n be a normal 
omplete-interse
tion Fq-varietyof dimension r, degree δ ≥ 2 and multidegree d. For q > 2(n − r)dδ + 1,
∣∣|V (Fq)| − pr

∣∣ ≤ b′1(n− r +1,d)qr−1/2 +(b′1(n− r +1,d)+ δ deg W +2)qr−1,where W ⊂ P
r−1 is the variety of the statement of Theorem 5.3.Proof. We begin by expressing |V (Fq)| in terms of the numbers Ny with

y ∈ P
r−1(Fq):(8) |V (Fq)| =

∑

y∈Pr−1(Fq)

Ny + e,

where e is the number of q-rational points of π−1
r (0 : · · · : 0 : 1). Sin
e πr isa �nite morphism and P

r is a normal variety, the 
ardinality of every �berof πr is upper bounded by δ. In parti
ular, e ≤ δ.Subtra
ting pr from both sides of (8) and using the identity pr = p1pr−1−
qpr−2, we obtain:(9) ∣∣|V (Fq)| − pr

∣∣ ≤
∑

y∈Pr−1(Fq)

|Ny − p1| + qpr−2 + δ.

We de
ompose the �rst summand of the right-hand side of (9) as
∑

y∈Pr−1(Fq)

|Ny − p1| =
∑

y/∈W (Fq)

|Ny − p1| +
∑

y∈W (Fq)

|Ny − p1|.Thus, we have to estimate the quantities |Ny − p1| in two di�erent 
ases: for
y belonging to W (Fq) and for y belonging to (Pr−1 \ W )(Fq).For any y in W (Fq), the number Ny is less than or equal to δp1. Hen
e,taking into a

ount that δ ≥ 2, we obtain |Ny − p1| ≤ (δ − 1)p1. From
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tive Bertini theorem 33Proposition 3.1 we have |W (Fq)| ≤ deg Wpr−2, and thus(10) ∑

y∈W (Fq)

|Ny − p1| ≤ (δ − 1)p1 · deg Wpr−2 ≤ δ deg Wqr−1.

On the other hand, if y ∈ (Pr−1 \ W )(Fq), Theorem 5.3 shows that the�ber Vy is a nonsingular 
omplete-interse
tion Fq-
urve in P
n−r+1 of degree atmost δ and multidegree at most d. By (7) we obtain the estimate |Ny−p1| ≤

b′1(n−r+1,d)q1/2, where b′1(n−r+1,d) is the 
orresponding Betti number.Hen
e, writing b′1 := b′1(n − r + 1,d), we have(11) ∑

y/∈W (Fq)

|Ny − p1| ≤ b′1q
r−1/2 + b′1pr−2q

1/2 ≤ b′1q
r−1/2 + b′1q

r−1.

Combining (9)�(11) and taking into a

ount that qpr−2 + δ ≤ 2qr−1, weeasily dedu
e the statement of the theorem.Taking into a

ount the upper bound deg W ≤ 2(n − r)2(d − 1)2δ ofTheorem 5.3, we dedu
e the following 
orollary:Corollary 6.2. With notations and assumptions as in Theorem 6.1,we have:
∣∣|V (Fq)| − pr

∣∣ ≤ (δ − 1)(δ − 2)qr−1/2 + 2(n − r)2d2δ2qr−1.In order to illustrate the 
omparison between the result of Corollary 6.2and (2) we brie�y 
omment on an appli
ation of this kind of estimates inthe setting of 
ryptography.Boolean fun
tions f : F2m → F2m are used in 
ryptography in order todesign algorithms for blo
k 
iphering. It is important for su
h fun
tions topossess a high resistan
e to di�erential 
ryptanalysis. In order to analyze theresistan
e of su
h fun
tions to di�erential atta
ks, Nyberg [23℄ has introdu
edthe notion of almost perfe
t nonlinearity (APN).Let q := 2m. In [25, Corollaire 3.1℄, F. Rodier shows that, if a givenfun
tion f : Fq → Fq is APN, then a 
ertain absolutely irredu
ible nonsingularproje
tive Fq-surfa
e Vf of degree δ asso
iated to f has at most 3((δ−3)q+1)
q-rational points. Then, as a 
onsequen
e of [9, Corollary 7.3℄, he shows thatfor m ≥ 6 and δ < q1/6 + 3.9 the fun
tion f is not APN [25, Théorème 4.1℄.By means of our estimates we may strengthen this 
on
lusion. Indeed,from Corollary 6.2 we dedu
e that, for q > 2δ2 + 1,

|Vf (Fq)| ≥ p2 − (δ − 1)(δ − 2)q3/2 − 2δ4q.Therefore, from [25, Corollaire 3.1℄ it follows that if q > 2δ2 + 1 and
p2 − (δ − 1)(δ − 2)q3/2 − 2δ4q > 3((δ − 3)q + 1),then f is not APN. As a 
onsequen
e, we see that for q ≥ 4δ4, the fun
tion

f is not APN, whi
h signi�
antly improves [25, Théorème 4.1℄.
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