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1. Introduction. Let {F),},>0 and {L,,}»>0 be Fibonacci numbers and
Lucas numbers defined by

Fy=0, Fr=1, Fopoo=Fn+F, (n > 0),

LO = 2, L1 = 1, Ln+2 = Ln+1 + Ln (TL > 0)
Duverney, Ke. Nishioka, Ku. Nishioka, and the last named author [9] (see
also [8]) proved the transcendence of the nurnbers

1 =1 =1
Yo T X (5=1,2,3,...)
n=1 Fns n=1 Lns n=1 FQn_l n=1 L

by using Nesterenko’s theorem on the Ramanujan functions P(q), Q(q), and
R(q) (see Section 3).
In this paper, we prove the algebraic independence of the numbers

=1 =1 =1
;F—E, ;F_é’ nz::l F_S <respectively, Z ) Z , z:: Lg)
and write each

=1 =1
Z 7% (respectively, Z 7% > (s=4,5,6,...)
n n

n=1 n=1
as a rational (respectively, algebraic) function of these three numbers over
Q (see Theorems 1, 3, and Example 1). Similar results are obtained for the
alternating sums

(! = (1)
Z s (respectively, Z T) (s=1,2,3,...)
n n

n=1 n=1

(see Theorems 2 and 4).
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It is interesting to compare our results with some arithmetical properties

of the values of the Riemann zeta function ((s) = > 7, n~*%:

(a) Apéry [3] proved the irrationality of ((3) (cf. [4], [6], [15]). It is still
unknown whether ¢(5) is irrational or not. Zudilin [20] showed that at least
one of ((5), ¢(7), €(9), ¢(11) is irrational.

(b) Euler’s formula
(_1)k—122k—132k ok

where By, are the Bernoulli numbers, implies the algebraic dependence of
C(2k) on ((2) = %/6 for any integer k > 2.

For Fibonacci numbers we consider the Fibonacci zeta function
o

G(5) =Y e (Re(s)>0),

n=1""

(kGN),

which extends meromorphically to the whole complex plane (cf. [14]).

(a’) André-Jeannin [2] proved the irrationality of (r(1) (see also [5], [7]).
The arithmetical nature of (r(3) is unknown.

(b") Our results in this paper imply that the values (r(2), (r(4), ¢r(6)
are algebraically independent, and that for any integer s > 4,

Cr(25) — 55 2ry(r(4) € Q(u,v), w:=C(p(2), v:=(p(6),
with some 75 € Q (rs = 0 if and only if s is odd), where the rational function
of u and v is explicit; for example,

15 1
— S (p(4) = ————(256u — 3456u° + 2880u? + 1792u°
Cr(8) — 77 ¢r(4) 378(4u+5)2( u u® + 2880u’ + 17920y

— 11100u® 4 20160u*v — 10125u> 4 7560uv + 3136v% — 10500)
(see Theorem 1, Example 1, and Table 1).

2. Statement of results. Suppose that «, 5 € C satisfy |5] < 1 and
af = —1. We put

(1) U, = aﬂ%gn (n>0),
(2) Vo=a"+3"  (n>0).

If o +p3 =a € Z, then {Up}n>0 and {V,,}n>0 represent integer-valued,
linearly independent binary recurrences satisfying the relation

Xny2=aXp1+ X, (n>0)

with initial values (Xo, X1) = (0,1) and (2, a), respectively. In particular, if
B = (1—+/5)/2, we have the Fibonacci and Lucas numbers:

Up=F, Vyo=L, (n>0).
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In what follows s always denotes a positive integer. Set op(s) = 1, and
for s > 2 let 01(s),...,05—1(s) be the elementary symmetric functions of
the s — 1 numbers —1, 22, ..., —(s — 1)? defined by

oi(s) = (-1 Y e (1<i<s—1).
1<ri<--<r;<s—1

The coefficients of the expansions

1 > . ° 4
cosec’s = — + Z aijJ, sec’z = Z bszj
R j=0

are given by
(=1)771(27 = 1)2% By;

(25)! ’
(=1)71(2 — 1)2%(2% — 1) By;

(25)!

(j > 1), where By = 1/6, By = —1/30, Bg = 1/42, ... are the Bernoulli

numbers. (In this paper, the symbol B, is used for the Bernoulli numbers
only here. It will denote a g-series in Sections 3 and 4.)

aj—1 =

bj_1 =

THEOREM 1. Let {Uy,}n>1 be defined by (1) with o, € Q satisfying
18] <1 and a8 = —1, and set

Bye = (= )72 U12S .

n=1 "

Then the numbers @9, @4, Pg are algebraically independent, and for any
integer s > 4 the number o4 is written as

1
Byy = o
7 (25— 1)
s—1 ey
(=1)7(2))! s
« (oeahne = X i o sa(o)es - (1705 - ap)
j=1
with
by (s odd),
MS = 1 2 5
3 AP35 + 2P — 18Py + w — 1 (s even),
4 13
= — (3203 — 509 — w + —
P1 3<3 5 — 0P2 w+10),
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4
09 = —— (24Dy — 1) (112@% — 21y — 5w + E),

63 12
3 =

= iPj—i— 2> 3),
CRrETeTES PRGCEIEEN

4 25
¢1:§<16¢§—13q§2—5w+z>,

4 2
szz§(24¢2—1)(16@%—13@2—5&)4-?5),

1 =

= (2(2405 — 1), — i i > 3),
¥j j(2j—1)(( 2 — 1)1 3;?/)% 1) (J=3)

where
56P¢ + 5/4
w=——

4¢2+1

REMARK 1. If s > 4, then (1 + 4®,)15/2(By, — r,B4) € Q[P2, g, and
the total degree of this does not exceed s + [s/2], where rs € Q (rs = 0 if
and only if s is odd).

Table 1. Relations for @5, in Theorem 1

13:@2 y2¢4 22456

3 1
=—y+ ——
70" 1890(4z + 1)*
— 44423 4 2016022z — 812 4+ 15122 + 156802 — 422)

1

(128025 — 34562° 4 576z + 89602°~

s=5 P19 = ———— (51227 — 7042° + 1622° — 160022 — 30z
297 (4x + 1)
+ 256022 — 152% + 450272 4 4760222 + 75z2 + 70022 + 152)
1 1
s=6 b1 =—y+ (1089536x° — 7741442% — 111168z

4627 " 162162(4z + 1)®
— 4558848257 + 534242 + 7741442° 2z — 40608x° + 1737792z 2
+ 85585922° 2% — 11556 + 3114722 2 + 754790422 2% — 32582°
+ 771122 2 + 1202544x2% + 24586242° — 35122 4 378022

+ 12726022 — 2522)

THEOREM 2. Let {Uy}n>1 be defined as in Theorem 1, and set
=, (et

By =(a—B)7> s

n=1
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Then the numbers &5, D, D are algebraically independent, and for any
integer s > 4 the number @5, is writlen as

1
(2s —1)!

s—1 ; .
X <as1(8)us + % as—j-1(s)(pj + (=1)"; — aj))
j=1

* JR—
¢28 -

with
{@3 (s odd),
Hs =
ﬁ(élf —1) (s even),
4 . ) 11
Y1 = —E (180@4 — ].Of + 5€ — §>,
16
ot

Y2 = 7189

11
<180¢;; — 662 + 5¢ — §>,
j—2

3 .
Z%’%’—i—l (j=3),
i=1

PTG+
4 11
Y1=—3 (180@;; +2¢% 4+ 5¢ — §>,

16 11
= — ¢( 1809% + 2¢2 S
(5 275( 809 + 2£° + 5§ 8>,

-2
1 J
= Ty - i | 2 3),
U5 =~ (860 33 v ) G239
where £ = (P35, Py, Pg) is a number satisfying
177
(3) 8¢ +5¢% 4 (1440P% — 46)¢ — (252@; + 12609} — 75608 — ﬁ) = 0.

Table 2. Relations for @5, in Theorem 2

T = P5 y=&;

.1 5 11 23
s=4 = y2+(—€2——£+ >y

K] 189 378° ' 432
+ 68104§4 B 6810453 B 1821344§2 + 10;;;645 B 1741;;224
s=5 Bio= g5~ (056~ 59)7 ~ (30756 ~ 705 * 7o~ 725
B 5613355 + 64152 & 443824053 B 40224£2 + 321605097205 B 57;12(7)?320
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THEOREM 3. Let {V;,}n>1 be defined by (2) with o, € Q satisfying
18] < 1 and a8 = —1, and set

=1
WQS = Z 1725
n=1 Vns

Then the numbers Yo, Wy, Ws are algebraically independent, and for any
integer s > 4 the number Yoy is written as

1
with
2 (s odd),
o QU3 + Wy — 60y (s even),

1
Y1 = 3 (8W9 + 1)(8¥, + 1+ 1),

1
Y2 = — (8@2 + 1)(8@2 +n+ 1)(24@2 +n+ 3),

12
1 =
i=1

1
P = —5 (8@2 + 1)(8@2 —-n+ 1),

1
— (8Wy + 1) (8%, — 4+ 1)(24¥ — n + 3),

o = D
1 12
VYj = = ((24% —n+3)h 1 +3) ?/)i%'—i—l) (J =3),
325 = 1) Pt
Table 3. Relations for ¥, in Theorem 3
xr = !pg Yy = w4
_ 3, 84,4 s (1 o 1 2
s=4 We=gaut el 4 +(315’7 + ’7+63)
BRI S | VAR BT SN |
1260" 180" " 2520 20160” 2880~ 2520
_ 25,14 17 A1 4l s
s=5 o= qze’tqpe +(5040 * 504" +720)

(AT e 11 81
13440’7 1344 1920

(b, Lo 6T, 65 221\
5806080 " 96768" " 193536  290304" " 645120

. o288 . 6L i
4644864077 77414477 7741440 T 331776" 5160960

+
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where n = n(We, Us) is a number satisfying

3840% + 30
(n+5)2 = 19203 — 48%, + 6 + 2800% + 9

¥y +1
THEOREM 4. Let {V,,}n>1 be defined as in Theorem 3, and set
o0
* (_1)n+l
!p23 = Z 1 2s
n=1 n

Then the numbers Wy, ¥y, W are algebraically independent, and for any
integer s > 4 the number W5, is written as

. = e (1) us+2 e oy a6+ -1y 1))

with
12 (s odd),
fs = $(0—1) (s even),
1
1 =35 (967 — 0> + 20 — 3),
1
P2 = Top (967 — 02 + 20 — 3)(96W; — 302 + 20 — 3),
1
;= ———— (96W} — 36 + 20 — ) (j>3),
TS ( !
1
Yr == (967 + 0 +20 — 3),
Wy = 5 (9697 + 0% + 20 — 3)(96¥; + 36% + 20 — 3),
1 W =
=————( (96w +30% +20—3)-LL +3 i i >3
Table 4. Relations for ¥5, in Theorem 4
T =3 y=v;
_ * 1 3 _ 2
s=4 VS = secioms (98304y° — 1024(220 + 9)y
+32(110* + 3267 4 440 + 9)y — 20° — 116* + 3862 — 220 — 3)
s=5 SO (786432y° — 73728(0 + 1)y°

630" ' 6451200
+ 576(6% 4 36% 4 80 4+ 4)y — 36° — 180 — 160° — 5462 4 11560 — 24)
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where 0 = O(W5, ¥y, ¥¢) is a number satisfying
0% — (19205 — 6)0 + 19209 — 64¥;5 — 7 = 0.

REMARK 2. The quantities &, 1, and 6 in Theorems 2, 3, and 4, respec-
tively, are algebraic functions of the corresponding sums for 1 < s < 3. In
applying these theorems, we have to choose appropriate branches of them
depending on the parameter a (or 3). This will be done in Section 5 (The-
orems 5, 6, and 7).

EXAMPLE 1. The reciprocal sums of Fibonacci (respectively, Lucas) num-
bers Y 00 | F 2, 5700 FoA %0 L F6 (respectively, Y o0 | L2, S0 L4
> Ly 6) are algebraically independent, and for any integer s > 4 the num-
ber 575> > | F, 2% (respectively, > o0 | L,?%) is written by the formula in
Theorem 1 (respectively, Theorem 3 with 7 in Theorem 6). The alternat-
ing sums Y 07 (—=1)" T F 25 and Y00 | (—1)"T1 L, 2% have similar properties
mentioned in Theorems 2 and 4 with £ and 6 in Theorems 5 and 7, respec-
tively.

ExXaAMPLE 2. The Pell numbers 1,2,5,12,29,... defined by
POZO, _Plzl7 Pn+2:2Pn+I+Pn (TLZO)

are expressible by (1) with 3 = 1—+/2 and o = —1/3 satisfying o — 3 = V/8
(see [13]). To the numbers > 00 | P2 and Y oo, (—1)""1 P25, we can apply
Theorems 1 and 2 (with Theorem 5).

3. Preparation for the proofs. The reciprocal sums of {U,},>1 and
{Vi}n>1 in our theorems are written as series of hyperbolic functions. In [19]
Zucker gave a method of summing such series. He wrote them as ¢-series
expressible in closed form in terms of K, E, and k, where K and E are
the complete elliptic integrals of the first and second kind with the modulus
k # 0,£1 defined by

1
dt [1— k22
K =K(k) = \/(1—t2)(1—k2t2)’ E:S Tﬂdt
0 0

for k2 € C\ ({0} U{z|z > 1}). The branch of each integrand is chosen so
that it tends to 1 as ¢ — 0. The relation among ¢ and these quantities is as
follows:

—

g=e", c¢=K/K, K =K(F), kF+(F#)?=1
We start with the following formulas. We choose ¢ = ¢(8) (or ¢ = ¢(5))
so that ¢ = e ™ = (2, 3 = —e ™/2. Then by [19, Tables 1(i), 1(ii),
1(iv), 1(iii)],
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oo s—1
— 4S8 S 1
(4) Xy =272 E cosech?® (ve) = 25— 1)1 E 05— j—1(8)A2j11(6%),
v=1 T j=0

o _1ys—1 s—1
(5) Xp:=27% Z sech®®(vrc) = % Z 0s—j—1(8)B2j+1(6%),

v=1 7=0
o] s—1
_ 2v — 1)7we —1)5-1
(6) X3 :=27% ZsechQS( 5 ) = ((23 z 0 Zo-sfjfl(s)DQ_]#*l(/B )
v=1 " =0
[e's) s—1
_ 2v — 1)me 1
(7) Yy:=2 2SZ(zosechZS( 5 Jme _ CEE o j-1(5)Cojy1(6%)
v=1 T j=0
(note that o;(s) denotes a;(s) in [19]), where
00 2j4+1 2n o0 1\n41,2j+1 2n
n**lq (=1)""n¥"q
Azjii(q) = 1o Baj+i1(q) = Z 1= ;
n=1 n=1
® 2j+1,n X (_1\yn+1,,25+1, . n
n**lq (=)™ n¥ g
Cajt1(q) = Z o Dyjia(q) = Z 1 g2n
n=1 q n=1 q
Our reciprocal sums are expressible by these series of hyperbolic functions:
o o
_ 1 1
(8) Pos = (= B) 2S<ZUT+ZW>:Z3+EM
v=1 ~2v—1 v=1 ~2v
= 1 = 1
(9) WZS:Z %5 +Z—25:E4—|—22,
v=1 ‘/211—1 v—=1 V21/
[e.e] o0
* — 1 1
(10) 25 = (=) 2S<ZUT_ZW>:E3_21’
v=1 ~2v—1 v=1 ~2v
| =1
(11) W2S:ZVT_ZWZZ4_Z2’
v=1 @ 2v—1 v=1 ' 2v

The g-series Agji1, Boji1, Coj41, and Dgjyq are generated from Fourier
expansions of the squares of Jacobian elliptic functions ns?z, nc?z, dn’z,
and nd?z, respectively, where

1 1 1
= — =——— dnz=+V1-—k3n? dz=—,
nsz=_—, mnez —— nz sn’z,  ndz = —
with w = sn z defined by

_1§ dw
Ao - ed)

The power series expansions of these elliptic functions give the expressions
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of the corresponding g-series in terms of K, E, and k (cf. [10]). For example,
we find in [17] the expressions

P(¢%) :=1—24A,(q) = <¥>2<3E 2+ k:2>

K
4
(12) Q(¢%) =14 240A43(q) = <¥> (1— k2 + K4,
2K

R(q*) :=1—50445(q) = <

with g=e"", ¢c=K'/K.
We recall here the theorem of Nesterenko and its corollary ([16]).

> —(1+EH( -2k (2 - k)

™

NESTERENKO’S THEOREM. If p € C with 0 < |g| < 1, then

trans.degg Q(o, P(0), Q(0), R(0)) > 3.

COROLLARY. If o € Q with 0 < |g| < 1, then P(0), Q(0), and R(o) are
algebraically independent.

The corollary with (12) implies the following:

LEMMA 1. If¢g=e"™ € Q with 0 < |q| < 1, then K/7, E/m, and k are
algebraically independent.

To get the formulas stated in the theorems, we use the recurrence rela-
tions satisfied by the coefficients of the power series expansions of Jacobian
elliptic functions, which are given by the following lemmas.

LEMMA 2. The coefficients of the ewpansz’on

ns’z = — +Zc]

are given by
1

1
- (1 2 :_1_2 4 - (1 21_222_2
Co 3< +k), C1 15( k +/€), C9 189( +k‘)( k)( k‘),
j—2
(j — 2)(2] + 3)6]' = Szcicj—i—l (] > 3)
=1

Proof. Since w = sn z is a solution of (w')? = (1 — w?)(1 — k?w?) such
that w(0) = 0, the function v = ns?z = w2 satisfies (uv')? = 4 ( N?Z =
4w (w2 — 1) (w2 — k2), that is,

(13) (u)? = du(u — 1)(u — k?),
and differentiation of (13) leads us to

(14) u’ = 6u® — 4(1 + k?)u + 2k2,
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Substituting v = 272 4+ v, v = Z;'io ;2% into (14), we have

s . > \2
64 + Z 2j(2) — 1)z 72 = 6( 3 ¢;2%)

7=0
+12272 ch 4(1 4 k?) Zc 22 4627 — 41+ k)22 + 2k2
7=0

Comparing the coefficients of 2~2 and the constant terms on both sides, we
obtain ¢ = (1 +k2)/3 and ¢ = (1 — k? + k*)/15. For j > 2, the coefficients

of 22772 on both sides satisfy
j—1
2j(25 — 1)e; =63 cicj i1+ 12¢; — 4(1+ k)ej 1.
i=0

Since 1 + k2 = 3¢, this can be written in the form

j—1 j—2
(15) (J—2)(25 + 3)6]' =3 Z cicj_i—1 — bcocj_1 =3 Z CiCj—i—1-
1=0 =1

When j = 2, however, both sides of (15) vanish, and ¢y is not determined
uniquely. To compute cy, substitute v = 272 + ¢y + 122 + co2* + -+
into equation (13), and compare the constant terms. Then we have co =
(1+ k%) (1 —2k?)(2—k?)/189. Once co, c1, and ¢z are known, the coefficients
¢j (j > 3) are uniquely determined by (15). m

It is also possible to derive the recurrence formula from the proof of Satz
3 in [11, pp. 169-170] concerning the p-function by choosing ns?z = p(z) +
(14+k2)/3, go = (4/3)(1 — k2 + k%), and g3 = (4/27)(1+Kk?)(1 - 2k?)(2 - k?).

LEMMA 3. The coefficients of the expansion

(1—-k*)(nc’z—1) = chZQj
j=1

are given by

1
ca=1-k* = 3 (1—k%)(2—k?),
Jj—2
j(2] — l)clcj = 6026]'_1 + 3c1 Zcz’cj—z‘—l (] > 3).
=1

Proof. Since nc?z = (1 —sn?z)~!, the function u = (1 — k?)(nc?z — 1) is
a solution of (u/)? = 4u(u + 1)(u + 1 — k?) such that u(0) = +/(0) = 0, and
hence
u’ = 6u® +4(2 — k?)u + 2(1 — k?).
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Substitution of u = Z;’il cjz2j yields the equality

D 25(2 = 1)e;2¥ 72 = 6(2 chQJ)Q +4(2 — k?) i ;2% +2(1 — k?).

j=1 j=1 j=1
Looking at the constant terms, we have ¢; = 1 — k2. Furthermore, for j > 2,

j—2

(16) 2j(2) — 1)ej =42 = k*)ej 1 +6 Y cicji,
=1

in particular, ¢ = (2 —k?)c1/3 = (1 —k?)(2 — k?)/3. Multiplying both sides

of (16) by ¢y, we obtain the desired recursive relation for j > 3. =

LEMMA 4. The coefficients of the expansion
o0 .
(1—k?)nd?z=1-k*+ ZC]'ZQJ
i=1

are given by

1
aa=k1-k), = -3 E2(1 — k3 (1 — 2k?),
j—2

](2] - l)clcj = 6626]'_1 - 361 Zcicj—i—l (] > 3)
i=1

Proof. The function u = (1 — k?)nd?z = (1 — k?)(1 — k?sn?2)~!, which
satisfies (u/)? = 4u(1 — u)(u — (1 — k?)), is a solution of

u’ = —6u? +4(2 — E*)u — 2(1 — k?)

with the initial condition u(0) = 1 — k%, w/(0) = 0. Substitution of u =
1=k v, v =352 ¢;z% yields ¢; = k*(1 — k?) and, for j > 2,

7j—2

§(25 = Dej = —2(1 = 2k%)¢j1 = 3 eicjio1.
i=1

Multiplying both sides by ¢; and observing co = —(1 — 2k%)c;1/3, we obtain
the desired formula for j > 3. u

LEMMA 5. The coefficients of the expansion

o0
dn?z =1+ Z chQj
j=1
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are given by

1

c1 = —k2, co = § k‘2<1 + k2),
j—2
](2] - l)clcj = 6026]'_1 - 361 Zcicj—i—l (] > 3)
i=1
Proof. By definition, u = dn?z satisfies (u/)? = 4u(1 — u)(u — (1 — k?)),

u(0) = 1. This lemma is verified by the same argument as in the proof of
Lemma 4.

4. Proofs of the theorems
4.1. Proof of Theorem 1. It follows from (4), (6), and (8) that

s—1
1 S
(17) P95 = @s— 1) (03_1(8)Ms + Zas—j—l(s)(A%'H - (=1 D2j+1)>7
! =
where pus = (A1 — (—1)°Dy). In particular
(18) Py = A1 + Dy, 6P, = (Ag — Dg) — (Al — Dl),
(19) 12096 = (A5 + D5) — 5(As + D3) + 4(A1 + D1).

Recall the generating functions of Ag;y1 and Dy;11 given by

2K\? ,[2K AK(K — E 21)2
<—> n82< ;17) = ( 5 E) + cosec .T}—SZ JA23+1 (22)

T ™ 71' 2’
2K \? 2K 4KE > (2a)%
~— ) (1-%*)nd? 1)7 Dojyq ~tr
() o <7r> o Gy
cf. [19, Tables 1(i), 1(i 18, p. 535/, Wthh ield
( p. y
2K ]+2 .22]4-3 '
(20) = <7> - (=1) WAMH (j=1),
2K 2J+2 22]+3 .
Here c; and cj are the coefficients given by Lemmas 2 and 4, respectively.
Note that
( 2K\’ [ E
Di== ) ([=+4+k-1
o= () ()
2K
(22) 16D5 = ( W ) k(1 — k%),
2K\ 2 2 2
16D5 = ( — | k(1 — k7)(1 — 2k°)
m
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(cf. [19, Table 1(iv)] or (21) combined with Lemma 4). Then, by (12) with
q = 3? and (22),

(23) A1+ Dy = i4 1— < >(1—2k2)>

<
o anei( (2] 0e)

4

[\

[\

1+ 14k% — 14k:4)>,

2K
_< (
T
1 2K \* ) A
(26) A3—D3——%<1—<ﬂ>(1—16k‘ +16k:)>
1 2K

6
(27) A5+ D5 = <1 < . > (1—2k%)(1 — 31k> —|—31k:4)),
(28)  As— D5 = 5—(1)4 <1 — <¥>6(1 — 2k%)(1 + 32k* — 32k:4)).

Substituting these quantities into (18) and (19), we have expressions of @3,
@4, and D¢ in terms of K, F/, and k; and then we put

2K> (1 —2k?),

(29) X::24<152—1:—(
T

Y = 14408, + 11
2K\? (6E 2K
=10 <—> <6K 5+ 4k2> ( > (1 —16k* 4 16k,

T T
Z = —1209609¢ + 4032P5 + 23

2K \°
=2 <—> (1 —2k?)(1 — 31k + 31k*)
T
oK \* ) A
+21( == ) (14 14k% — 14k%).
v
Let us set

(30) x:= (%)2 Yy = <¥>2§ z:= <2f) (1—2k?).

(Note that the same symbols z, y, and z denote different quantities in Sec-
tion 2.) Then the quantities above are written as follows:

X =—2 Y =10(6y — 3z — 22) + 42% — 322,
21
7= g (812° = 272%) + T (92 — 72%).

Solving these equations, we obtain
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31X3 4+ 147X%2 + 27
27(X +7) ’
302y —z) =Y —4X? - 20X +30, z=-X.

Hence z,y, z are algebraic over Q(X,Y, Z) = Q(®Py, P4, Pg), and the alge-
braic independence of @5, &4, g follows from Lemma 1.
Substituting (20) and (21) into (17), we obtain the formula for @94 stated
in the theorem. Observe that
9 124 22 103 5 _ 56 + 5/4

e il /7 iy Y it ith =
16 3 gty T gw Wit W=

The expression of us is obtained by writing (23) and (24) in terms of X,
Y, and (2, namely, @2, @4, and w. Furthermore, (20) and (21) for j = 1,2
together with (12) and (22) imply

1 /2K\* 1
cpl:—<—) (1 —E*+ kY = — (322 + 27),

22 =0 =

15\ = 60

P2 = 1 <%)6(1 —28%)(2+ K — k') = = (9% — 2%),

189\ = " 756
(31 2K \* 1
n=(5) @ - =6 -,
2
Py = —é <¥> (1 -2k = —21/11

with 22 = 2, z = — X, from which the desired expressions follow. Multiply-
ing both sides of the recurrence formula in Lemma 2 by (2K/7)%*2, and
using (20), we obtain the formula for ¢; (j > 3). The recurrence formula for
1; is obtained from Lemma 4 by using /11 = X/3 = (249 — 1)/3.

4.2. Proof of Remark 1. Denoting the denominator of w by T :=4®P9+1,
we have the polynomials T"pa,_1, TV @2, T %oy,—1, T2, (v > 1) in
(P2, D) of total degrees, say, day—1, 02y, 05, 1, 05, respectively. Then the
recurrence formulas concerning ¢; and 1; imply, for v > 1,

d2p—1 < 1;%%5_3{1 + 02 + Oo(y—i—1)5 02i—1 + F2(—i)—1}5

02 < 1S%%§_2{52i + Oa(—i)—1}

81 <  Juax {1+ 0% + 0,1y 0251 + i1, 2 + 05y o},

IN

Oy < | max {0+ 0y iy, 1+ 3}
Using these relations, by induction on v we can verify dg,_1,05,_; < 3v
and 02,05, < 3v + 1, which yields the estimate for the total degree of the

polynomial T5/2(By, — r,dy).
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4.3. Proof of Theorem 2. From (4), (6), and (10) we have
1

(52) 95 = Gy

s—1
x (ot ()ps = Y- 0ujma (1) Daja(5) + Azja(5))
j=1

with ps = —((—1)*D1(B8%) + A1(5?)). In particular,
(33) &5 =D — Ay, 60y =—(Ds+ A3)+ (D1 + Ay),
(34) 12095 = (D5 — As) — 5(Ds — As) + 4(D1 — Ay).
Substituting (23)—(26) and (28) into (33) and (34), we obtain
2K\’ 2K\
Y = 144005 — 11 = —10<—> (1—2k?) — <—> (1 + 14K% — 14K,

T ™
Z := 1209608, — 403285 + 23
2K \* 2K \°
=21 (—) (1 — 16k* + 16k%) + 2(—> (1 —2k*)(1 + 32k* — 32k*),
7T T

which are written in the form
Y = 10z — (922 — 72%)/2,  Z = 21(42° — 32%) + 22(92% — 82%)
with z and z given by (30). From these equations, we obtain
8€3 + 562 + (Y —35)¢ — (14Y — 2)/16 =0, &= z/4,

which is written as (3). It is easy to see that K /7, E/m, and k are algebraic
functions of @3, &3, &g over Q. This fact combined with Lemma 1 implies
the algebraic independence of @3, @}, &g.

Formula (32) together with (20) and (21) implies the expression of &5
in terms of ¢; and v;. By (23) and (24), we can write p, in terms of &3
and ¢£. Substituting z = 4¢ and 922 = 16(7¢2 — 5¢) — 2Y into (31), we
obtain ¢1,...,19 expressed in terms of @} and {. The recurrence formula
for ; follows from that of Lemma 4 combined with (21) and the relation

Yo /P = —4E/3.
4.4. Proof of Theorem 3. From (5), (7), and (9) we have
1 s—1
(35) W, = s 1)1 (Us—l(s)us +> 05 j-1(s)(Cajr — (—1)SB2j+1)),
! =
where p1s = (C1 — (—1)°By). In particular,

Uy =C1+ By, 6% = (C3— B3)—(C1— By),
120¥ = (C5 + Bs) — 5(Cs + B3) + 4(C1 + B1).
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The formulas

(3 s e (M)K;)

2K\? ,(2Kzx 4KE - (21)%
() et () - £82 Con gy

=0

(cf. [19, Tables 1(ii), 1(iii)]) imply the relations

21K 2j+2 . 92j+3 '
(36) pj = <—> cj =0+ (=1) 5 Boj11 (j=>1),

T (29)!
2j+2 2543
o = (B) G- G2,

where ¢; and c} are the coefficients given in Lemmas 3 and 5, respectively.
From [19, Tables 1(ii), 1(iii)] or Lemmas 3 and 5, we obtain

AKE 2K \? E
vop =2 80, <W>< K)
2K \* ) 2K\*
1-16B3= (=) (1 -k, 1605 = [ 2= ) &2,
™ T
2K \% 1 2K \°
1+ 8B5 = <—) —(1=EH(2 -k, 16C5 = <—> E2(1+ k?).
s 2 T
Hence
1 1/2K\°
B = -+ -2
(38) Ci+ By 8+8<7r>’
1 1/2K\° oF
(39) Cl‘Bl—§+§(7> (1—?)7
11 /2K\*
4 By=———| =/ (1-2k?
(40) Gt B = o - 1o () -2,
11 /2K\*
41 CBa— (28
(41) C3 — Bs 16+16(7r)’
1 1/2K\°
42 Cs+Bs=—+-(—) 1—-kK+&*
(12) 4B = g+ g () -k a),
1 1/2K\°
43 Cs—Bs=-— (=) (1-2k?
(43) s— b= -3 () a-2)
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So we can express ¥y, ¥y, and ¥ in terms of K, E, and k. Put

2
(44) X =8 +1= <%> ,

™

oK \* 2K \? 2F
Y =960, +3 = <—> —2<—> <1——>,
™ i K

Z :=1920% + 15
2K \° 2K \* 2K \?
:2(—) (1—k2+k4)+5(—> (1—2k2)+8(—) :

T

™ ™

By the same argument as in Sections 4.1 and 4.3 with z, y, z given by (30),
we have

r=X, 4dy=Y —X?+2X,
(45) X222 +10Xz + (3X% + 16X —22) =0,
implying that z, y, and z are algebraic over Q(X,Y, Z) = Q(Wa, ¥y, Vs).
Substitution of (36) and (37) into (35) yields the desired formula for ¥s,
in terms of ¢; and v;. Furthermore, using (36) and (37) for j = 1,2 together

with Lemmas 3 and 5, respectively, we have

;

4
o= (Z)a-=Fc+a),
2
P2 = %<%> (2-K)p1 = 1(ZJr 3x)ep1,
s 6
(46) DR\
¢1=—<—> =2 (),
T 2
2
=g (B) a8 = G- 3o
s 6

The right hand sides of these equalities as well as ps can be written in terms
of X and z satisfying the quadratic equation (45). The recurrence formulas
for ¢; and v; are derived from those of Lemmas 3 and 5 combined with
wa/p1 = (3X + 2)/6 and 9 /Yy = —(3X — 2)/6, respectively. Replacing z
by n, we obtain the theorem.

4.5. Proof of Theorem 4. Relation (11) together with (5) and (7) implies

1

(47) ¥y, = @25 =11

s—1
x (oumt (s + D 001 () (Coga (87) + (<1)*Baya(8))
j=1
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with s = C1(8%) + (=1)*B1(5?). In particular,

(48) W; =(C1 — By, 6@;{ = (Cg + Bg) — (Cl + Bl),
(49) 120@5 = (05 — B5) — 5(03 — B3) + 4(01 — Bl).
Substituting (38)—(41) and (43) into (48) and (49), we obtain

2K \* 2K \?
Y::96w4*—3:—<—) (1—2k2)—2<—> ,

T 7
2K \° 2K \*
Z = 19200 — 6405 — 7 = —2<—> (1—2k?) — 5(—> ,
7 m
which are written as Y = —2z — 2z, Z = —22%2 — 522 with = and z given

by (30). Then we have 22 —2Yx + Z = 0, 2 = —2 — Y/x. The quantities
K/m, E/7m, and k are algebraic functions of &3, ¥y, ¥t over QQ, which implies
the algebraic independence of W3, ¥y, Wg.

The desired expression of W3, is obtained by substituting (36) and (37)
into (47). By (38) and (39) the quantity us is expressible in terms of W3
and z. Using (46), we have the desired expressions of ¢1,...,12 in terms
of ¥f and x. Observing the relations ¢2/p1 = (3x + 2)/6 and 2/1)1 =
—(3z —2)/6, we derive from Lemmas 3 and 5 the recurrence formulas for ¢,
and 1), respectively. Replacing = by ¢ in these expressions, we obtain the
theorem.

5. Branches of the related algebraic functions. In what follows we
put a = o+ 3 € C, namely 8 = (a/2)(1 — 1 + 4a—2), where the branch is
chosen so that 8(a) = O(a™!) as a — oo. Then each reciprocal sum in the
theorems is treated as a function of a or .

THEOREM b. Under the assumptions of Theorem 2, we have the following:

(i) The function & = &(a) is holomorphic in the domain |a| > 8.146,
and is expressible in the form

) 3 .
(50) §(a) = YRR +71/00, 00 = 0o(a) := \/72 +1/7 =3

with v1 = v1(a), v2 = v2(a) expressed as
1129 17963 63
51 = 600 = Dy - 2 @
( ) 7 242 4 72 243 + 4 2+ 92 4 9 6
satisfying y1(a) = 1129-2472+ O(a™2) and y2(a) = —17963 - 2473 +
O(a™2) as a — oo. Here the branches of the square and cube roots
are taken so that \/v1(00)3 — y2(00)2 = (7/192)v/4395 and that

(52) 00(00) = % (11 — VA395).

195 945
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(ii) For any real number a > 2.6, the function £(a) admits the expression
(50) with the same branches as above, where

V=% >0, y+4/1—-13i#0.

(iii) For a = 1 (respectively, a = 2) corresponding to the Fibonacci
(respectively, Pell) numbers, the quantity £(1) = —2.66158... (res-
pectively, £(2) = —0.72378 .. .) is expressible as (50) with

00(1) = —1.22662. .. + (0.57598 .. .)i, y1(1)> = y2(1)* > 0
(respectively,
00(2) = —0.25772... — (1.00662...)i, y1(2)> — 72(2)% > 0).
THEOREM 6. Under the assumptions of Theorem 3, we have the following:

(i) The function n = n(a) is holomorphic in the domain |a| > 5.431,
and is expressible in the form

n(a) = =5+ v/x(a)
with
x(a) = —1920F — 48U, + 6 + (3840Ws + 30) /(8% + 1)
satisfying x(a) = 36 + O(a~2) as a — co. Here the branch is taken

so that /x(o0) = 6.

(ii) For a =1 corresponding to the Lucas numbers,

n(1) =-5-vx@1) (<-5),
and for any integer a > 2
(53) n(a) = =5+ v/x(a) (>-5).
Furthermore, the last equality holds for any real number a > 2.4.
THEOREM 7. Under the assumptions of Theorem 4, we have the following:

(i) The function 8 = 60(a) is holomorphic in the domain |a| > 5.819,
and is expressible in the form
0(a) = x1(a) + v/ x2(a)
with
Xl(a) - 96@2{ - 37
xa(a) = 64W5 + 9216(¥;)? — 576W; — 19209 + 16
satisfying x1(a) = —3+0(a™*) and x2(a) = 16+ 0(a"2) as a — oo.
Here the branch of the square root is taken so that \/x2(c0) = 4.
(ii) For a =1 corresponding to the Lucas numbers,

0(1) = xa(1) = vx2(1) (< xa(1)),
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and for any integer a > 2,
0(a) = x1(a) + Vx2(a) (> xa(a)).
Furthermore, the last equality holds for any real number a > 2.5.

5.1. Proof of Theorem 6. By definition we have |V,,| = [67" + (" >
|8|7™(1 — |B|*"), so that |V}, |_1 < (1—1B)*)~Y8|™. This implies, for s > 1,

(54) ol <D IVal ™2 < (L= |87 D18 < (1 - 18177718,
n>1 n>1

and hence ¥y (s € N) are holomorphic for |3| < 1. Set

(55) Q(B) = (8% + 1)x(a) = 12(3 — 128W5 — 4803 + 320%).

Under the assumption || < 0.3, we deduce from (54) that [¥| < 1.13|8]? <
0.12, and that || < 1.17|8|® < 0.002. By these inequalities, for |3| < 0.3
we get |2(8)]/12 > 3 — 128|Wy | — 48|Ws|? — 320|Ws| > 1, and |8y + 1| > 1 —
8|%s| > 0.03. Hence, in the domain |3| < 0.3, the function \/x(a) # 0, 00 is
holomorphic. Note that 5 = (3(a) conformally maps the domain C\ {a = yi |
—2 < y < 2} to the disc || < 1. To examine the corresponding domain
around a = oo, observe that for |z| < 1/7,

|\/1—|—z—1|<S (L+ )2 dt| < 2 (=) |2l <0.8146]2

Using this estimate, we have |28 = |a(1 — V1 +4a~2)| < 0.8146|4a"!| =
3.2584|a| ™!, provided that |4a=2| < 1/7. This fact implies that the image of
the domain |a| > 5.431 is contained in the disc |3(a)| < 0.3. By (54) and
(55) we see

(56) x(a) =36 +0(3%*) =36 +0(a"?) asa— oo.
To determine the branch of 7, recall that
(57) n = (2K/m)*(1 — 2k?) = 1 — 24%,

(cf. Section 4.4 and (29)). Since | — B||Uy| > |B7™(1 — |B[?), we have
Py = O(B?%) = O(a™2), so that n(a) = 1+ O(a2) as a — oo. This fact
combined with (56) implies the assertion (i).
To determine the sign of 1(1), we use the following numerical values for
a=1:
Uy =1.2072919..., Ys=1.0016249..., Py =0.485264....

Then we have x(1) = 31.88115... = (5.6463...)%. On the other hand,
n(l) = —10.64633... by (57). Consideration of these values leads to the
sign — of the square root. Similarly, for a = 2, using the values

Uy =0.2839243 ..., ¥ =0.0156465..., &9 =0.1622974...,
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we get 7(2) = —2.89513... and x(2) = (2.1048...)2, which yields the sign
+ in (53). Finally, we consider the case a > 2.4. Since Vo = a? + 2 =

a(a + 2a~') > 3.23a, we have V,, > 3.23¢" ! (n > 2), which yields ¥ =
Sous1 Va2 <a?+3237%a72 Y g0 < 1.116a7% < 0.194 for a > 2.4.
Hence (55) 1mphes x(a) > 1 for a > 2.4. Combining this fact with (56) and
n(a) = 1+0(a"?) (a — o), and taking the continuity of n(a) into account,
we deduce formula (53) for a > 2.4, which completes the proof.

5.2. Proof of Theorem 7. Since
W3, <D Val 7 < (L= 1877 B,
n>1
we have |&3,| < 1.125713)%¢ for | 3] < 0.3, so that
Ix2(a)| > 16 — 64|W5| — 9216|¥;|? — 576|¥;| — 1920|¥;| > 0.7

for |3| < 0.28. This implies that y/x2(a) is holomorphic for |3| < 0.28. By
the same argument as in Section 5.1, it is holomorphic for |a| > 5.819. Recall
the relation

(58) 0= (2K/m)* = 80y + 1

(cf. (44)). Observing the estimates ¥o = O(a™2), x1(a) = —3 + O( -4,
and yo(a) = 16 + O(a™2) as a — oo, we have 0(a) = Xl ) + Vx2(a) for
la] > 5.819, where the branch is taken so that y/x2(c0) = 4. In this Way the

assertion (i) is verified.
When a = 1, by numerical computation we have

Uy =0.9370204..., ¥y =0.9912040..., ¥ =0.9988644...;

and relation (58) together with the numerical value of ¥y (cf. Section 5.1)
yields 6(1) = 10.65833. ... Similarly when a = 2,

Wy = 0.2265861..., Wi =0.0617537..., W& =0.0156036...,

and 0(2) = 3.27139.... Using these numerical values, we can check the
equalities for a = 1,2. For a > 2.5, observe that V;, > 3.3a" ! (n > 2). Then
for a > 2.5 we have U5 < 37 -, V2m 1 § a®+33 %Y ja¥ <
1.00001a=5 < 0.03a~2 and ¥ > V; 2 V2 > (a®?+2)"1 > 0. 75(1_2 so that
xa(a) > 7+ 645 — 19209; > 7 — 9.6a=2 > 5 which implies the assertion.

5.3. Proof of Theorem 5. Put { = —5/24+ \. Then (3) is written in the
form

(59) A3 =33\ — 292 = 0,

where «v; and 7 are as given in the theorem, which may be regarded as
functions of @ € C or . Since |a — 3| |U,| > |3|7"(1 — |B|?), we infer for
s > 1 that |®5,] < (1 —|8|*)~271|B|?. Hence &}, (s € N) are holomorphic
for || < 1. In particular, for || < 0.2, we have |®3| < 0.046, |®}| < 0.002
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and |@F| < 0.0001. Using (51), we obtain |y;| > 1.8, |y2| < 2.3 for |B] < 0.2,
and y; — 11292472, 49 — —17963 - 243 as 3 — 0 (or a — 00).

To determine the branch of £, we note that {(a) = n(a)/4 (cf. (57)), which
implies £ — 1/4 as a — oo. Let us find the solution of (59) corresponding
to £. Such a solution may be expressed in the form

3 :
Ao =71/00+ 00, 00 = \/’72+\/’Y%—7§Z

around 3 = 0, where the branches should be chosen so that 245(+ —43) —
11293 — 179632 > 0, ¢ — 1/4, namely, \g — 11/24 as 3 — 0. The second
condition is satisfied if (52) is valid. Furthermore, provided |3| < 0.2, it
is easy to see that |v3 — 12| > |v§| — [¥3] > 1.8% — 2.32 > 0, and that
2 + /7 — 754 # 0. Hence go(8) is holomorphic for |3| < 0.2. By the
same numerical argument as in Section 5.1, we can verify that the image of
the domain |a| > 8.146 is contained in the disc || < 0.2. In this way the
assertion (i) is proved.

If @ > 2.6, then &5, < 10.767%, because (o — 8)? = a® + 4 > 10.76.
Hence we have 71 > 1.44 and —1.68 < 49 < 1.01, implying 73 — 72 > 0.16
for a > 2.6. This fact combined with the continuity of & with respect to a
implies the assertion (ii).

When a = 1, by numerical computation, we obtain

@5 =0.0335078..., &; =0.0020616..., &g =0.0001145....

Then we have y1(1) = 1.836371..., 72(1) = —0.624754..., and £(1) =
n(l)/4 = —2.66158 ... (cf. Section 5.1). Similarly, when a = 2, we have

@5 =0.0980088..., &% =0.0146727..., & =0.0019227...,

implying ~v1(2) = 1.079707..., 72(2) = 0.766330. .., and £(2) = n(2)/4 =
—0.72378 . ... Using these numerical values, we can determine the branches
as in the assertion (iii).
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