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A criterion for periodicity of multi-continued fraction
expansion of multi-formal Laurent series

by

ZONGDUO DAI, PING WANG, KUNPENG WANG
and X1UTAO FENG (Beijing)

1. Introduction. We start with the classical continued fraction algo-
rithm over the formal Laurent series field F((z7!)). Let Z be the ring of
integers and F' be a field. Denote by

F((z"Y) = {iaiz_i ‘ aeFte z}

the formal Laurent series field over F in z~!. For any non-zero element
r=3%2 a;z""in F((z71)) with ¢t <0, set

0 0
|r] = Z a;iz”" and {r}= Z aiz".
i=t i=1

They are called the polynomial part and remainder part of r respectively.
The classical continued fraction algorithm [14] over F((z~1)) is recalled be-
low:
Let r € F((z71)). Initially, set agp = || and ap = {r}. Suppose that
for k > 1, we have obtained [ag, a1, ...,ar_1] and ag_1. If a1 =0,
let 4 = k—1 and the algorithm terminates; otherwise, do the following
steps iteratively:

(1) set o, = 1/avg—1,
(2) set ap, = |ok], ok = ok — ax.
If the above procedure never stops, let u = oo.

The output [ag,a1,...] of the algorithm with input r is called the
classical continued fraction expansion C(r) of r.
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The continued fraction algorithm is a useful tool in dealing with many
number-theoretic problems and numerical computation problems [9, 10, 12].
It is well-known that the continued fraction expansion C(r) gives the op-
timal rational approximation of a single element r [14]. Many people have
contrived to construct multi-dimensional continued fractions in dealing with
the rational approximation problem for multi-reals. One construction is the
Jacobi-Perron algorithm (JPA) [1]. This algorithm and its modification are
extensively studied [7, 8, 11, 13]. These algorithms have been adapted to
study the same problem for multi-dimensional formal Laurent series [4, 6].
But none of these algorithms guarantees optimal rational approximations to
the general multi-dimensional formal Laurent series.

Let C(r) = [ao, a1, . ..] be the classical continued fraction expansion of r.
It is called (X, T')-periodic if there exist integers A > 1 and T' > 1 such that
axtr+k = axyk for all & > 0. We then also call C(r) periodic for short.
It is known that C(r) is (A, T)-periodic if and only if the (A — 1)th partial
remainder a)_1 and the (A + 7T — 1)th partial remainder a1 are equal.
In [2, 3], the classical continued fraction algorithm is generalized to an algo-
rithm acting on a multi-formal Laurent series r in F((271))™, m > 1, and
called the multi-continued fraction algorithm (or multi-dimensional contin-
ued fraction algorithm), m-CFA for short. Likewise, the m-CFA provides
a multi-continued fraction expansion of a multi-series 7 in F((z7!))™ and
a method of finding the optimal rational approximation of r as well. It is
natural to ask whether the same criterion of periodicity is valid for multi-
continued fraction expansions. Unfortunately, equality of the (A — 1)th and
(A+T —1)th partial remainders is not enough for C(r) to be (A, T')-periodic
for m > 1.

In this paper, we provide a criterion to determine whether a multi-
continued fraction expansion is (A, T)-periodic.

This paper is organized as follows. In Section 2, some preliminaries are
provided, which include the indexed valuation over F((271))™, the m-CFA,
some parameters and some main properties of multi-continued fraction ex-
pansions. The main theorem, a criterion of periodicity of multi-continued
fraction expansions, is stated in Section 3. Some preparatory lemmas and
the proof of the main theorem are given in Sections 4 and 5 respectively.

2. Preliminaries. In this section we briefly recall some concepts such
as the indexed valuation and m-CFA, all of which may be found in [2, 3].

2.1. Indexed valuation over F((z7!))™. Let F be a field and m be a
positive integer. We denote by F[2]™ and F((2~1))™ the spaces of column m-
vectors over the polynomial ring F'[z] and over the formal Laurent series field
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F((z71)) respectively. Before introducing the concept of indexed valuation
over F((z71))™, we first define an order over Z,, x Z, where Z,, denotes the
set {1,...,m}.

DEFINITION 2.1. For any (h,v) and (h/,v) in Z,, X Z, we define (h,v) <
(W, v)ifv<v orv=v,h<h.
It is clear that the order defined above is linear [5].

Let 7 =Y 2%, a;2~* be a non-zero element in F((271)). Then the integer
t is called the discrete valuation [5] of r if a; # 0, and is denoted by v(r).
By convention, v(0) = oco.

DEFINITION 2.2. Let r = (r1,...,7)" € F((z71))™ \ {0}, where
means transpose. We define
Iv(r) = (h,v),
where
v=min{v(r;)|j € Z,}, h=min{j € Z,,|v(r;) =v}

and call Tv(r) the indexed valuation of r, v the valuation of r, denoted by
v(r), and h the index of r, denoted by I(r). By convention, Iv(0) = (1, c0).

For each j € Zp, let ¢; = (€j1,---,€5m)", where e;; = 0 for i # j
and e;; = 1, which is exactly the jth standard basis element in the col-
umn vector space of dimension m over F((z~1)). For any non-zero element
r=(r,...,mm)" in F((z71))™, where r; = Y. r; ;27 for each j € Zy,, if
Iv(r) = (h,v), we call 7,2 ¢, the leading term of r, denoted by Ldy(r).
The indexed valuation over F((z71))™ has the following basic properties:

PROPOSITION 2.3. Let a,3 € F((z~1))™. Then
(1) Tv(a) # (1,00) if and only if a £ 0

(2) If Iv(a) = (h,v), then Tv(ra) = (h,v 4+ v(r)) for any non-zero r in

F((z71)
(3) Iv(a — B) = min{lv(a),Iv(B)}, and equality holds if and only if
Ldo(a) 7 Ldo(5).

2.2. m-CFA. We first introduce some related notations and concepts.
For any 7 = (r1,...,7m)" € F((z71))™, we define
LTJ :(Lrlj,...,erJ)T, {T}:({Tl}W"?{rm})T?
which are called the polynomial part and remainder part of r.

In this paper, we denote by Diag(f1,...,[mn) the diagonal matrix with
the ith diagonal element being ;.

The m-CFA can be described as below:
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m-CFA: Let r€ F((z1))™. Initially, set ap= ||, ag={r}, Ao=1In.
Suppose that for k£ > 1, we have obtained

hy -+ hi
ao @ o @pe1]
g = (Vo115 Qm1m) € F((TH)™,
and
Ag_1 = Diag(z k11 .. 27 k-Lm),
Ifap, 1 =0,let p =k —1 and the algorithm terminates; otherwise,
do the following steps iteratively:
(1) set (hk,vk) = I’U(Ak_lgk_l),
(2) set Ax = Diag(z7 k1, ..., 27 % m) where
{Uij if j # hi,
Vg,j = e
Vg if j = hg,
(3) set o = (0k,1,-- -, 0km)", Where
. {ak—l,j/ak—l,hk if j # hg,
k,g — oo
! /a1, if j = hg,
(4) set ar = |ok], o = {ok}-
If the above procedure never stops, let u = oo.

It is proved that m-CFA is well defined, that is, a1 5, # 0 for 1<E<p.
As a result of the m-CFA acting on r, we obtain a sequence pair

C(T)Z(b,g)zl o h”]7

ag @y - Gy

call C(r) the multi-continued fraction expansion of r, and call p the length
of C(r).

C(r) provides an optimal rational approximation to r by the following
procedure:

Let

where h = {hr}i<k<p, @ = {ar}o<k<p, 1 < hiy < m and g € F[z]™. We

Im ag

A(Qk):<0 1>, 0<k<p,

By = A(ao), Bi=Br_1EpAlar), k=>1,

where I,,, is the identity matrix of order m, and Fj, is a permutation matrix
of order m + 1 obtained by exchanging the hith and (m + 1)th columns
of Im+1.

and



Periodicity of multi-continued fraction expansion 131

L
— Dk ;
qk 1

the rightmost column of By, where py € F[z]™ and qx € F[z]. We call py/qx
the kth rational fraction of C(r). In [2, 3], we proved that py /gy is an optimal
rational approximant of r for all 0 < k < pu.

To see how close to r the kth rational fraction py /gy is and further study
the properties of C'(r), we have to recall some parameters.

For all 1 <k < p, let a, = (a1, ..., akm) and denote by deg(ax, ;) the
degree of ay, ;. It is known [2, 3] that ayp, # 0 and deg(ag,p,) > 1.
For all 1 < k < u, we define
ty = deg(arp,), dip = Z t;.
1<i<k
DEFINITION 2.4. Let S C Z,,. Denote by D(S, 27¢) the diagonal matrix
Diag(z~“,...,z7 ")
where
c ifjes,
= {o ifj & 8.
When S = {h}, we simply denote D(S,z7¢) by D(h,z"°).
Then we have
THEOREM 2.5 ([2, 3]).

(1) ag—1n, #0 and ty, = v(ag_14,) > 1 forall1 <k < p.
(2) Forany 1 <k <p,1<j<m, we have
Vk,j = Z ti, Uk =Ukh,, vo;=0.

1<i<k
hi=j

As a consequence, Ap = Ag_1D(hy, 27 ).
(3) Iv(Agay,) = IU(Aka) = (h, Vk—1p,,) < T0(Arey) = (Rks1,Vk41)
for all 1 < k < p, where we let (hyy1,vu41) = (1,00) if p < 00.
(4) Let
(=Im,7)Br = (—Rp—1,7%)
for k > 1, where Ri_1 is a square matriz of order m and 7 is an
element in F((2~1))™. Then Ry_1 is invertible and

{l"k =rqx —pr = {rqx} = Rp_10y,
Iv(rg) = (Pkt1, Vit1)

for any 0 < k < p. As a consequence, 1 # 0 for any 0 < k < p,
and r, =0 if p < oo.
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THEOREM 2.6 ([2, 3]).
(1) deg(qr) = di and

Iv(r — pr/qr) = (Pry1, di + V1)
for all0 <k < pu.

(2) We have
lim Lk if = o0,
k—o0 q
=9
=2 if p < oo.
4u

As a consequence, p < oo if and only if r € F(2)™.
(3) pr/ax is an optimal rational approxzimant of r. Moreover, if p/q is
an optimal rational approximant of r, then deg(q) = dy for some k.

3. Periodicity of multi-continued fraction expansion. In the fol-
lowing, we only study infinite multi-continued fraction expansions, that is,
we assume j4 = 00.

DEFINITION 3.1. We say that C(r) is (A, T')-periodic, where A > 1 and
T>1,if

(Payk+T> argksT) = (Pagr,anir) forall k> 0.

m-CFA is an iterative algorithm. A practical problem is how to determine
whether C(r) is (A, T')-periodic. In this paper, we provide a criterion that
permits one to determine whether C(r) is (A, T')-periodic only by means of
the data obtained in the process of m-CFA.

When m = 1, the multi-continued fraction expansions are exactly the
classical continued fraction expansions. In this case, we have g = 1/qy,_;.
The continued fraction expansion C(r) of 7 is (A, T)-periodic if and only if
ay_1 = ayy7_1- However, when m > 2, the condition a;y_; = a;\ .71 alone
does not guarantee that C(r) is (A, T)-periodic.

DEFINITION 3.2. Let a = (a1,...,amn)" € F((271))™. We define
J(a)={j|e; #0,1<j<m}

For the given multi-continued fraction expansion C(r) of r obtained by
m-CFA | we give a simple criterion to decide whether C(r) is periodic.

THEOREM 3.3 (Main Theorem). For A > 1 and T > 1, the following
three conditions are equivalent:
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(1) C(r) is (A, T)-periodic.
(2) {g)\—‘rT—l =1
A;1A>\+T—1 = D(J*(ar_1),27°),
where ¢ is a positive integer.
(3)‘{£%f3‘::QA7 . .
Ay Axir = D(J*(0r), 27°),

where ¢ is a positive integer.

REMARK. In Theorem 3.3, neither a7 1 = a,_1 (resp. oxy7 = 0))
nor A)_\ilAAHLl = D(J*(ay_1),2"¢) (resp. A;lAAHﬂ = D(J*(0r),279))
in condition (2) (resp. (3)) can be rejected, since the following examples
show that a7 1 = a1 (resp. oxy7 = Q/\) does not imply A;ilA)\JrT_l =

D(J*(ay_1),27¢) (resp. A;lAA+T = D(J*(ox),27°)), and vice versa.
EXAMPLE 3.4. Let m = 2 and r = (:;) € Fy((z71))?, where r; =

1/(z+719) and 1o = >, c;iz7" € Fy((271)), where

7

0 if 1 < 4,
1 ifi=4,
k—1
c; = CjCi—25—4 if i =2k > 4,
=2 k—1
Ck—1 +cp + Z CjCi—25—4 ifi=2k+1>4.
=2

It is straightforward to check that ro is a root of the algebraic equation

X34+ (24 2)X2+ 24X +1 =0 over F5((z71)), and v(r2) = 4. By [4], this

algebraic equation is irreducible over F5(z). So, by Theorem 2.6, u = oo.
Then, by m-CFA, we have

Parameters obtained in the process of m-CFA with input r

k  hg Ak Ak — Lx
0 I 0 (:;)
1 1 Diag(z71,1) ((z)) (rl_rfrz) (i;:j)

. 9 + 72
31 b (o) (5,) (Ghn)
iag(2 2 0 rl_lrz rl_lrz
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From the above computations, we see that

{QD = o,
AgtAg = Diag(z7!, 27%) # D(J*(ap), 27°) = 2~ I,

and

01 = 03,
{Al_lAg = Diag(z1, 273) # D(J*(01),27°) = 2z~ “Ia.
EXAMPLE 3.5. Let m = 2 and
(2% +r)! S1y2
= r = F:
QO f (T2(22+T1)_1 E 2((2 )) 9y

where 1 and 72 are as in Example 3.4. Just as in Example 3.4, C(r) is
infinite, that is, u = oo.
Then, by m-CFA, we have

Parameters obtained in the process of m-CFA with input r

k  hg Ay, ag Qy Qk

2 1
0 N o (5700
Vo oty (3) (D) (2
> 1 peety (3 (7)) iy
3 2 DiegGte (L) (D) (')
11 b= (5) 0 (2) (7r)
502 Dag = (L) (D) )
6 1 Die"= (5) (7)) (i)
7 1 Diag(z7?,279) (i) (237'2 —11:21"1_17“2> (Z4 * ZB:;lJr rl_lTQ)

From the above computations, we see that

{Qo 7é g,
AytAs = Diag(z73,273) = D(J*(ay), 273) = 2731,

and

{Q2 7& o7,
Ay A7 = Diag(z7%,27%) = D(J*(2),27%) = 2751
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4. Some lemmas. Before proving the main theorem, we need to prepare
some lemmas.

LEMMA 4.1.

(1) Forallk > 1, a1, #0.

(2) Ifag; =0, thenog; =0 foralll > k. As a consequence, J*(ay 1) C
J*(ay,) for all k> 0.

(4) For all I > k > 1, define

By = Epy, Alak11) - EnAla).

Let (p“) be the last column of By, where py; € F[2]™ and gy €
F[z]. Then gk # 0, and

Pkl

L = lliglo Gt

Proof. (1) Noting that Apay, # 0 and hgy1 = I(Aray), we have vy p, , +
v(ak’hkﬂ) = v(Aray) = Vg1 € Z. Thus, v(akyhkﬂ) = Vg4l — Vkhyy, € 2L
Hence, {0khy.1} = Qknyy 7 0. S0, Oy, 7 0. By the definition of gy,
Q—1,hyyy 7 O

(2) We have gp41, = agj/agn, = 0. Thus, apr1; = {okt+1,} = 0.
Repeating this process, we have oy ; = 0 for any | > k.

(3) Let

H., = {j | there exist infinitely many k’s such that hy = j, k > 1},

Kj={k|hk=j, k=1}
By definition, |K;| = oo for any j € Hu. Moreover, there exists kg such
that
U Ej={klk>k}US,
JE€H

where S is a finite integer set.

By Theorem 2.5,

—00
1<i<k keK;
hi=hg,
for any j € He. Further,
lim vy = hm V= lim Vg = 00.
k—o0 k—o0
B ke 1

(4) Noting that
By = BBy, and (—Ry_1,1%) = (—Im,7)By,
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we have
(=Ri—1,11) = (=Im,7)B; = (—Ri—1,7%) B -

r; = (—Rp—1,7k) <Pk’l>.

qk,1

Then

Suppose qx; = 0. Then py # 0 and Pkl = —R,;_llrl. Thus
v(=R ' ) = v(pka) < 0.
Since lim;_, o, v; = 0o, we have

lim v(r;) = lim v = oc.
l—o0 l—o0

So there exists some integer [ such that v(—R,;llrl) > 0, a contradiction.
Hence, g # 0.

By Theorem 2.5, we have

Pk,
1y = (—Ryp—1, Rp—10y,) <zjk l) = Rp_1(—prg + Qxqr.1)-

Then since lim;_, o v(r;) = lim;_, o, v;41 = 00, we have

-1

. ( pk,l) . (Rk_lrz>
limv|a,—==) =limv|—— ) =00
l—o0 qk,l l—o0 qk,l

So,

LEMMA 4.2.
(1) If hyxyr = hy and tyxyr = ty, then
A Ay ir = A Ao
(2) If hyyr = hy, then
ON+T = O0X <= Qy7—1 = QX)—1-
(3) Let a € F((z=1))™. Then
D(J*(a),z “)a =2"‘a.
(4) If gy = oy, for some | > 1, then
J(pys) = T () forany 0 <i <L
(5) J*(aw) = J*(ag_1) for any k > 1.
Proof. (1) By Theorem 2.5, we have
Ayir = Axyr_1D(hagr, 27 ™4T), Ay = Ax_1D(hy, 27 ™).
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So,
A Ay = AV Ay,
(2) & (3) Obvious.
(4) By Lemma 4.1, we have
S aw) = T (@) € - © T (@) € 7 (ay)-
So, J*(api:) = J*(ay,) for any 0 < i < [
(5) Obvious. =

5. The proof of the main theorem. In this section, we will prove
the main theorem.

(1)=(2). Since C(r) is (A, T)-periodic, we have hyix = hyirrr and
Btk a+1 = Batkt+ra+i+1 for any [ > k > 0. Then

(P)\—i—k,)\—i—l) _ <]_9>\+k+T,>\+l+T>
A4k N+ A+ k+T N\+1+T

Prx+k A+l

Thus
. PA+E+TAHAT
Q\pp—1 = lim lim =———— = 4171
=00 @Atk A+l 100 QA4 k+T A+I+T
for all £ > 0 from Lemma 4.1.
Define vyxy7_1,; —va—1,; = ¢j. Then
A)_\ElA)\JrT_l = Diag(z~“,...,27“"), where ¢; = E t;.

AZi<A+T
hi=j

Let J ={ht |\ <k <A+ T} Then

=0 ifj&J,
(*) ¢j .

>0 ifjelJ.
We claim that ¢; is a positive constant ¢ for all j € J, hence A;\ilA AT—1 =
D(J,z7¢). In fact, for k > A\,n > 1 and 1 < j < m, we have
(%) Vg +nCpy, = Vi, + NCh = VkgnTohy = VktnTohyinr = Vk+nT

< Vkgnr-1,5 + U(ak-i-nT—l,j) = Ug-1, +ncj + U(ak—Lj)’
where the inequality comes from the fact that
(hies VegnT) = (Phtn, Vi) = T0(DpgnT—1Q% 17 —1)
< (Js Vkgnr—1,5 + V(QhgnT—15))-

Then taking j = hg41, we have

Vg + nep, < Vk—1,hjpq T NChy oy + t,
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where t = v(ag_1,n,,,) € Z, since ay_1p,,, 7 0. This implies ¢z, < cp, .,
for any k > A, since otherwise,
-n > n(chk+1 - Chk) > Vg — Uk—1,hpq1 — t

for all n > 1, a contradiction. So

Chy < Chyyy <o S Chyppy S Chyyqp = Chy-
Thus ¢; = ¢y, for any j € J, i.e., ¢; is equal to a positive constant c.
We claim that J = J*(a,_q). In fact, if j € J, then j = hy, and aj_1 ;
ag—1p, 7 0 for some k satisfying A < k < A+ T. Thus, j € J*(a;_1)
J*(ay_;) from Lemma 4.1.
If j & J, then

N1l

Ux e = oy Fncp, < oo+ ne Folaa-ng) = oaeg +olaa-ig)
for any n > 1 from (*) and (*x). Noting that ¢ > 0, we have v(ay_1 ;) = o0
and ay_q; = 0. Thus, j & J*(a,_1).
From the above we get immediately
AL Ayiror = D(J,27) = D(J*(ay1), 2 7).
(2)=-(3). By Lemma 4.2,
Ayir—1ayyrog = DT (an1): 27Dy = 27 “Ay1ay .

Then hyir = I(Axyr—10y,7_1) = 1(27°Ax_1a)_1) = h). By Lemma 4.2,
we have gyt = ox- S0, axt1r = an, oy = a, and {7 = ). By
Lemma 4.2,

AT Aver = 7Y Aver 1 = D(T*(ay 1), 2%) = D(T*(02), ).
(3)=(2). By Lemma 4.2,
Axirorer = AD(J"(0r), 27 %)on = 2z~ “Axon.
Then by Theorem 2.5,
hosr = I(Axtronir) = 1(27°Axg,) = ha,
and

Ia+T = deg(a)\-i-T,h)\JrT) = deg(LQ)\+T,h>\+TJ) = deg( LQA,hA+TJ)
= deg([oan,]) = degaxn,) = ta.
Thus by Lemma 4.2,
A Asiroy = A Aspr = D(J¥ (@), 27¢) = D(J* (ay_4), 279).

(3)=(1). We already know that conditions (2) and (3) are equivalent,
so we can suppose that they both hold. We claim that
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(@) (hasrs axtr) = (hasan);
(b) oa+147 = 0x+1, Ayt Drr1r = D(J*(0r+1), 279).
Repeating this process, we find that C(r) is (A, T')-periodic.

In fact, in (3)=(2) above, we have proven hy,r = hy. By definitions,
OX+T = 0 implies that

A\+T = 4), Qi 7 = Q).
Since (3) implies (2), we have o, ;7 1 = a)_1. Then J*(ay) = J*(a)_1) =
J*(ox) from Lemma 4.2. So

AV Ayir = D(J*(er), 27%) = D(J" (@), 279).
Since (2) implies (3), from the above we conclude that
A+ 14T = 031, AyLAnirar = D(J*(0r41),27°). =
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