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1. Introduction. We start with the classical continued fraction algo-
rithm over the formal Laurent series field F ((z−1)). Let Z be the ring of
integers and F be a field. Denote by

F ((z−1)) =
{

∞
∑

i=t

aiz
−i
∣

∣

∣
ai ∈ F, t ∈ Z

}

the formal Laurent series field over F in z−1. For any non-zero element
r =

∑∞
i=t aiz

−i in F ((z−1)) with t ≤ 0, set

⌊r⌋ =
0
∑

i=t

aiz
−i and {r} =

∞
∑

i=1

aiz
−i.

They are called the polynomial part and remainder part of r respectively.
The classical continued fraction algorithm [14] over F ((z−1)) is recalled be-
low:

Let r ∈ F ((z−1)). Initially, set a0 = ⌊r⌋ and α0 = {r}. Suppose that
for k ≥ 1, we have obtained [a0, a1, . . . , ak−1] and αk−1. If αk−1 = 0,
let µ = k−1 and the algorithm terminates; otherwise, do the following
steps iteratively:

(1) set ̺k = 1/αk−1,

(2) set ak = ⌊̺k⌋, αk = ̺k − ak.

If the above procedure never stops, let µ = ∞.

The output [a0, a1, . . .] of the algorithm with input r is called the
classical continued fraction expansion C(r) of r.
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The continued fraction algorithm is a useful tool in dealing with many
number-theoretic problems and numerical computation problems [9, 10, 12].
It is well-known that the continued fraction expansion C(r) gives the op-
timal rational approximation of a single element r [14]. Many people have
contrived to construct multi-dimensional continued fractions in dealing with
the rational approximation problem for multi-reals. One construction is the
Jacobi–Perron algorithm (JPA) [1]. This algorithm and its modification are
extensively studied [7, 8, 11, 13]. These algorithms have been adapted to
study the same problem for multi-dimensional formal Laurent series [4, 6].
But none of these algorithms guarantees optimal rational approximations to
the general multi-dimensional formal Laurent series.

Let C(r) = [a0, a1, . . .] be the classical continued fraction expansion of r.
It is called (λ, T )-periodic if there exist integers λ ≥ 1 and T ≥ 1 such that
aλ+T+k = aλ+k for all k ≥ 0. We then also call C(r) periodic for short.
It is known that C(r) is (λ, T )-periodic if and only if the (λ − 1)th partial
remainder αλ−1 and the (λ + T − 1)th partial remainder αλ+T−1 are equal.
In [2, 3], the classical continued fraction algorithm is generalized to an algo-
rithm acting on a multi-formal Laurent series r in F ((z−1))m, m > 1, and
called the multi-continued fraction algorithm (or multi-dimensional contin-

ued fraction algorithm), m-CFA for short. Likewise, the m-CFA provides
a multi-continued fraction expansion of a multi-series r in F ((z−1))m and
a method of finding the optimal rational approximation of r as well. It is
natural to ask whether the same criterion of periodicity is valid for multi-
continued fraction expansions. Unfortunately, equality of the (λ − 1)th and
(λ+T −1)th partial remainders is not enough for C(r) to be (λ, T )-periodic
for m > 1.

In this paper, we provide a criterion to determine whether a multi-
continued fraction expansion is (λ, T )-periodic.

This paper is organized as follows. In Section 2, some preliminaries are
provided, which include the indexed valuation over F ((z−1))m, the m-CFA,
some parameters and some main properties of multi-continued fraction ex-
pansions. The main theorem, a criterion of periodicity of multi-continued
fraction expansions, is stated in Section 3. Some preparatory lemmas and
the proof of the main theorem are given in Sections 4 and 5 respectively.

2. Preliminaries. In this section we briefly recall some concepts such
as the indexed valuation and m-CFA, all of which may be found in [2, 3].

2.1. Indexed valuation over F ((z−1))m. Let F be a field and m be a
positive integer. We denote by F [z]m and F ((z−1))m the spaces of column m-
vectors over the polynomial ring F [z] and over the formal Laurent series field
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F ((z−1)) respectively. Before introducing the concept of indexed valuation
over F ((z−1))m, we first define an order over Zm×Z, where Zm denotes the
set {1, . . . , m}.

Definition 2.1. For any (h, v) and (h′, v′) in Zm×Z, we define (h, v) <
(h′, v′) if v < v′ or v = v′, h < h′.

It is clear that the order defined above is linear [5].

Let r =
∑∞

i=t aiz
−i be a non-zero element in F ((z−1)). Then the integer

t is called the discrete valuation [5] of r if at 6= 0, and is denoted by v(r).
By convention, v(0) = ∞.

Definition 2.2. Let r = (r1, . . . , rm)τ ∈ F ((z−1))m \ {0}, where τ
means transpose. We define

Iv(r) = (h, v),

where

v = min{v(rj) | j ∈ Zm}, h = min{j ∈ Zm | v(rj) = v}

and call Iv(r) the indexed valuation of r, v the valuation of r, denoted by
v(r), and h the index of r, denoted by I(r). By convention, Iv(0) = (1,∞).

For each j ∈ Zm, let ej = (ej,1, . . . , ej,m)τ , where ej,i = 0 for i 6= j
and ej,j = 1, which is exactly the jth standard basis element in the col-
umn vector space of dimension m over F ((z−1)). For any non-zero element
r = (r1, . . . , rm)τ in F ((z−1))m, where rj =

∑

i rj, iz
−i for each j ∈ Zm, if

Iv(r) = (h, v), we call rh,vz
−veh the leading term of r, denoted by Ld0(r).

The indexed valuation over F ((z−1))m has the following basic properties:

Proposition 2.3. Let α, β ∈ F ((z−1))m. Then

(1) Iv(α) 6= (1,∞) if and only if α 6= 0.
(2) If Iv(α) = (h, v), then Iv(rα) = (h, v + v(r)) for any non-zero r in

F ((z−1)).
(3) Iv(α − β) ≥ min{Iv(α), Iv(β)}, and equality holds if and only if

Ld0(α) 6= Ld0(β).

2.2. m-CFA. We first introduce some related notations and concepts.
For any r = (r1, . . . , rm)τ ∈ F ((z−1))m, we define

⌊r⌋ = (⌊r1⌋, . . . , ⌊rm⌋)τ , {r} = ({r1}, . . . , {rm})τ ,

which are called the polynomial part and remainder part of r.

In this paper, we denote by Diag(β1, . . . , βm) the diagonal matrix with
the ith diagonal element being βi.

The m-CFA can be described as below:
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m-CFA: Let r∈F ((z−1))m. Initially, set a0 =⌊r⌋, α0 ={r}, ∆0 =Im.
Suppose that for k ≥ 1, we have obtained

[

h1 · · · hk−1

a0 a1 · · · ak−1

]

,

αk−1 = (αk−1,1, . . . , αk−1,m) ∈ F ((z−1))m,

and
∆k−1 = Diag(z−vk−1,1, . . . , z−vk−1,m).

If αk−1 = 0, let µ = k − 1 and the algorithm terminates; otherwise,
do the following steps iteratively:

(1) set (hk, vk) = Iv(∆k−1αk−1),
(2) set ∆k = Diag(z−vk,1, . . . , z−vk,m), where

vk,j =

{

vk−1,j if j 6= hk,

vk if j = hk,

(3) set ̺k = (̺k,1, . . . , ̺k,m)τ , where

̺k,j =

{

αk−1,j/αk−1,hk
if j 6= hk,

1/αk−1,hk
if j = hk,

(4) set ak = ⌊̺k⌋, αk = {̺k}.

If the above procedure never stops, let µ = ∞.

It is proved that m-CFA is well defined, that is, αk−1,hk
6= 0 for 1≤k≤µ.

As a result of the m-CFA acting on r, we obtain a sequence pair

C(r) = (h, a) =

[

h1 · · · hµ

a0 a1 · · · aµ

]

,

where h = {hk}1≤k≤µ, a = {ak}0≤k≤µ, 1 ≤ hk ≤ m and ak ∈ F [z]m. We
call C(r) the multi-continued fraction expansion of r, and call µ the length

of C(r).

C(r) provides an optimal rational approximation to r by the following
procedure:

Let

A(ak) =

(

Im ak

0 1

)

, 0 ≤ k ≤ µ,

and
B0 = A(a0), Bk = Bk−1Ehk

A(ak), k ≥ 1,

where Im is the identity matrix of order m, and Ehk
is a permutation matrix

of order m + 1 obtained by exchanging the hkth and (m + 1)th columns
of Im+1.
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Let (

pk

qk

)

= Bk

(

0

1

)

,

the rightmost column of Bk, where pk ∈ F [z]m and qk ∈ F [z]. We call pk/qk

the kth rational fraction of C(r). In [2, 3], we proved that pk/qk is an optimal
rational approximant of r for all 0 ≤ k ≤ µ.

To see how close to r the kth rational fraction pk/qk is and further study
the properties of C(r), we have to recall some parameters.

For all 1 ≤ k ≤ µ, let ak = (ak,1, . . . , ak,m) and denote by deg(ak,j) the
degree of ak,j . It is known [2, 3] that ak,hk

6= 0 and deg(ak,hk
) ≥ 1.

For all 1 ≤ k ≤ µ, we define

tk = deg(ak,hk
), dk =

∑

1≤i≤k

ti.

Definition 2.4. Let S ⊆ Zm. Denote by D(S, z−c) the diagonal matrix

Diag(z−c1 , . . . , z−cm)

where

cj =

{

c if j ∈ S,

0 if j 6∈ S.

When S = {h}, we simply denote D(S, z−c) by D(h, z−c).

Then we have

Theorem 2.5 ([2, 3]).

(1) αk−1,hk
6= 0 and tk = v(αk−1,hk

) ≥ 1 for all 1 ≤ k ≤ µ.

(2) For any 1 ≤ k ≤ µ, 1 ≤ j ≤ m, we have

vk,j =
∑

1≤i≤k
hi=j

ti, vk = vk,hk
, v0,j = 0.

As a consequence, ∆k = ∆k−1D(hk, z
−tk).

(3) Iv(∆kak) = Iv(∆k̺k) = (hk, vk−1,hk
) < Iv(∆kαk) = (hk+1, vk+1)

for all 1 ≤ k ≤ µ, where we let (hµ+1, vµ+1) = (1,∞) if µ < ∞.

(4) Let

(−Im, r)Bk = (−Rk−1, rk)

for k ≥ 1, where Rk−1 is a square matrix of order m and rk is an

element in F ((z−1))m. Then Rk−1 is invertible and
{

rk = rqk − pk = {rqk} = Rk−1αk,

Iv(rk) = (hk+1, vk+1)

for any 0 ≤ k ≤ µ. As a consequence, rk 6= 0 for any 0 ≤ k < µ,
and rµ = 0 if µ < ∞.
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Theorem 2.6 ([2, 3]).

(1) deg(qk) = dk and

Iv(r − pk/qk) = (hk+1, dk + vk+1)

for all 0 ≤ k ≤ µ.

(2) We have

r =















lim
k→∞

pk

qk

if µ = ∞,

pµ

qµ

if µ < ∞.

As a consequence, µ < ∞ if and only if r ∈ F (z)m.

(3) pk/qk is an optimal rational approximant of r. Moreover , if p/q is

an optimal rational approximant of r, then deg(q) = dk for some k.

3. Periodicity of multi-continued fraction expansion. In the fol-
lowing, we only study infinite multi-continued fraction expansions, that is,
we assume µ = ∞.

Definition 3.1. We say that C(r) is (λ, T )-periodic, where λ ≥ 1 and
T ≥ 1, if

(hλ+k+T , aλ+k+T ) = (hλ+k, aλ+k) for all k ≥ 0.

m-CFA is an iterative algorithm. A practical problem is how to determine
whether C(r) is (λ, T )-periodic. In this paper, we provide a criterion that
permits one to determine whether C(r) is (λ, T )-periodic only by means of
the data obtained in the process of m-CFA.

When m = 1, the multi-continued fraction expansions are exactly the
classical continued fraction expansions. In this case, we have ̺k = 1/αk−1.
The continued fraction expansion C(r) of r is (λ, T )-periodic if and only if
αλ−1 = αλ+T−1. However, when m ≥ 2, the condition αλ−1 = αλ+T−1 alone
does not guarantee that C(r) is (λ, T )-periodic.

Definition 3.2. Let α = (α1, . . . , αm)τ ∈ F ((z−1))m. We define

J∗(α) = {j | αj 6= 0, 1 ≤ j ≤ m}.

For the given multi-continued fraction expansion C(r) of r obtained by
m-CFA, we give a simple criterion to decide whether C(r) is periodic.

Theorem 3.3 (Main Theorem). For λ ≥ 1 and T ≥ 1, the following

three conditions are equivalent :
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(1) C(r) is (λ, T )-periodic.

(2)

{

αλ+T−1 = αλ−1,

∆−1

λ−1
∆λ+T−1 = D(J∗(αλ−1), z

−c),

where c is a positive integer.

(3)

{

̺λ+T = ̺λ,

∆−1

λ ∆λ+T = D(J∗(̺λ), z−c),

where c is a positive integer.

Remark. In Theorem 3.3, neither αλ+T−1 = αλ−1 (resp. ̺λ+T = ̺λ)

nor ∆−1

λ−1
∆λ+T−1 = D(J∗(αλ−1), z

−c) (resp. ∆−1

λ ∆λ+T = D(J∗(̺λ), z−c))
in condition (2) (resp. (3)) can be rejected, since the following examples
show that αλ+T−1 = αλ−1 (resp. ̺λ+T = ̺

λ
) does not imply ∆−1

λ−1
∆λ+T−1 =

D(J∗(αλ−1), z
−c) (resp. ∆−1

λ ∆λ+T = D(J∗(̺λ), z−c)), and vice versa.

Example 3.4. Let m = 2 and r =
(

r1

r2

)

∈ F2((z
−1))2, where r1 =

1/(z + r2) and r2 =
∑

i ciz
−i ∈ F2((z

−1)), where

ci =











































0 if i < 4,

1 if i = 4,
k−1
∑

j=2

cjci−2j−4 if i = 2k > 4,

ck−1 + ck +

k−1
∑

j=2

cjci−2j−4 if i = 2k + 1 > 4.

It is straightforward to check that r2 is a root of the algebraic equation
X3 + (z + z3)X2 + z4X + 1 = 0 over F2((z

−1)), and v(r2) = 4. By [4], this
algebraic equation is irreducible over F2(z). So, by Theorem 2.6, µ = ∞.

Then, by m-CFA, we have

Parameters obtained in the process of m-CFA with input r

k hk ∆k ak αk ̺k

0 I2 0
(

r1

r2

)

1 1 Diag(z−1, 1)
(

z

0

) (

r2

r−1

1 r2

) (

z + r2

r−1

1 r2

)

2 2 Diag(z−1, z−3)
( 0

z3

) (

r1

r2

) (

r1

z3 + r2

)

3 1 Diag(z−2, z−3)
(

z

0

) (

r2

r−1

1 r2

) (

z + r2

r−1

1 r2

)
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From the above computations, we see that
{

α0 = α2,

∆−1
0

∆2 = Diag(z−1, z−3) 6= D(J∗(α0), z
−c) = z−cI2,

and
{

̺1 = ̺3,

∆−1
1

∆3 = Diag(z−1, z−3) 6= D(J∗(̺1), z
−c) = z−cI2.

Example 3.5. Let m = 2 and

α0 = r =

(

(z2 + r1)
−1

r2(z2 + r1)−1

)

∈ F2((z
−1))2,

where r1 and r2 are as in Example 3.4. Just as in Example 3.4, C(r) is
infinite, that is, µ = ∞.

Then, by m-CFA, we have

Parameters obtained in the process of m-CFA with input r

k hk ∆k ak αk ̺k

0 I2 0
( (z2 + r1)

−1

(z2 + r1)
−1r2

)

1 1 Diag(z−2, 1)
(

z2

0

) (

r1

r2

) (

z2 + r1

r2

)

2 1 Diag(z−3, 1)
(

z

0

) (

r2

r−1

1 r2

) (

z + r2

r−1

1 r2

)

3 2 Diag(z−3, z−3)
( 0

z3

) (

r1

r2

) (

r1

z3 + r2

)

4 1 Diag(z−4, z−3)
(

z

0

) (

r2

r−1

1 r2

) (

z + r2

r−1

1 r2

)

5 2 Diag(z−4, z−6)
( 0

z3

) (

r1

r2

) (

r1

z3 + r2

)

6 1 Diag(z−5, z−6)
(

z

0

) (

r2

r−1

1 r2

) (

z + r2

r−1

1 r2

)

7 1 Diag(z−9, z−6)
(

z4

z

) (

z3r2 + r−1

1 r2

r2

) ( z4 + z3r2 + r−1

1 r2

r−1

1

)

From the above computations, we see that
{

α0 6= α3,

∆−1
0

∆3 = Diag(z−3, z−3) = D(J∗(α0), z
−3) = z−3I2,

and
{

̺2 6= ̺7,

∆−1
2

∆7 = Diag(z−6, z−6) = D(J∗(̺2), z
−6) = z−6I2.
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4. Some lemmas. Before proving the main theorem, we need to prepare
some lemmas.

Lemma 4.1.

(1) For all k ≥ 1, αk−1,hk+1
6= 0.

(2) If αk,j = 0, then αl,j = 0 for all l ≥ k. As a consequence, J∗(αk+1) ⊆
J∗(αk) for all k ≥ 0.

(3) limk→∞ vk = ∞.

(4) For all l > k ≥ 1, define

Bk,l = Ehk+1
A(ak+1) · · ·Ehl

A(al).

Let
(

pk,l

qk,l

)

be the last column of Bk,l, where pk,l ∈ F [z]m and qk,l ∈

F [z]. Then qk,l 6= 0, and

αk = lim
l→∞

pk,l

qk,l

.

Proof. (1) Noting that ∆kαk 6= 0 and hk+1 = I(∆kαk), we have vk,hk+1
+

v(αk,hk+1
) = v(∆kαk) = vk+1 ∈ Z. Thus, v(αk,hk+1

) = vk+1 − vk,hk+1
∈ Z.

Hence, {̺k,hk+1
} = αk,hk+1

6= 0. So, ̺k,hk+1
6= 0. By the definition of ̺k,

αk−1,hk+1
6= 0.

(2) We have ̺k+1,j = αk,j/αk,hk
= 0. Thus, αk+1,j = {̺k+1,j} = 0.

Repeating this process, we have αl,j = 0 for any l ≥ k.

(3) Let

H∞ = {j | there exist infinitely many k’s such that hk = j, k ≥ 1},

Kj = {k | hk = j, k ≥ 1}.

By definition, |Kj| = ∞ for any j ∈ H∞. Moreover, there exists k0 such
that

⋃

j∈H∞

Kj = {k | k ≥ k0} ∪ S,

where S is a finite integer set.

By Theorem 2.5,

vk =
∑

1≤i≤k
hi=hk

ti, so lim
k→∞
k∈Kj

vk = ∞

for any j ∈ H∞. Further,

lim
k→∞

vk = lim
k→∞
k≥k0

vk = lim
k→∞

k∈
⋃

j∈H∞
Kj

vk = ∞.

(4) Noting that

Bl = BkBk,l and (−Rk−1, rk) = (−Im, r)Bk,
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we have

(−Rl−1, rl) = (−Im, r)Bl = (−Rk−1, rk)Bk,l.

Then

rl = (−Rk−1, rk)

(

pk,l

qk,l

)

.

Suppose qk,l = 0. Then pk,l 6= 0 and pk,l = −R−1

k−1
rl. Thus

v(−R−1

k−1
rl) = v(pk,l) ≤ 0.

Since liml→∞ vl = ∞, we have

lim
l→∞

v(rl) = lim
l→∞

vl+1 = ∞.

So there exists some integer l such that v(−R−1

k−1
rl) > 0, a contradiction.

Hence, qk,l 6= 0.

By Theorem 2.5, we have

rl = (−Rk−1, Rk−1αk)

(

pk,l

qk,l

)

= Rk−1(−pk,l + αkqk,l).

Then since liml→∞ v(rl) = liml→∞ vl+1 = ∞, we have

lim
l→∞

v

(

αk −
pk,l

qk,l

)

= lim
l→∞

v

(

R−1

k−1
rl

qk,l

)

= ∞.

So,

αk = lim
l→∞

pk,l

qk,l

.

Lemma 4.2.

(1) If hλ+T = hλ and tλ+T = tλ, then

∆−1

λ ∆λ+T = ∆−1

λ−1
∆λ+T−1.

(2) If hλ+T = hλ, then

̺λ+T = ̺λ ⇔ αλ+T−1 = αλ−1.

(3) Let α ∈ F ((z−1))m. Then

D(J∗(α), z−c)α = z−cα.

(4) If αk+l = αk for some l ≥ 1, then

J∗(αk+i) = J∗(αk) for any 0 ≤ i ≤ l.

(5) J∗(̺k) = J∗(αk−1) for any k ≥ 1.

Proof. (1) By Theorem 2.5, we have

∆λ+T = ∆λ+T−1D(hλ+T , z−tλ+T ), ∆λ = ∆λ−1D(hλ, z−tλ).
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So,

∆−1

λ ∆λ+T = ∆−1

λ−1
∆λ+T−1.

(2) & (3) Obvious.

(4) By Lemma 4.1, we have

J∗(αk) = J∗(αk+l) ⊆ · · · ⊆ J∗(αk+1) ⊆ J∗(αk).

So, J∗(αk+i) = J∗(αk) for any 0 ≤ i ≤ l.

(5) Obvious.

5. The proof of the main theorem. In this section, we will prove
the main theorem.

(1)⇒(2). Since C(r) is (λ, T )-periodic, we have hλ+k = hλ+k+T and
Bλ+k,λ+l = Bλ+k+T,λ+l+T for any l > k ≥ 0. Then

(

pλ+k,λ+l

qλ+k,λ+l

)

=

(

pλ+k+T,λ+l+T

qλ+k+T,λ+l+T

)

.

Thus

αλ+k−1 = lim
l→∞

pλ+k,λ+l

qλ+k,λ+l

= lim
l→∞

pλ+k+T,λ+l+T

qλ+k+T,λ+l+T

= αλ+k+T−1

for all k ≥ 0 from Lemma 4.1.

Define vλ+T−1,j − vλ−1,j = cj . Then

∆−1

λ−1
∆λ+T−1 = Diag(z−c1 , . . . , z−cm), where cj =

∑

λ≤i<λ+T
hi=j

ti.

Let J = {hk | λ ≤ k < λ + T}. Then

(∗) cj

{

= 0 if j 6∈ J ,

> 0 if j ∈ J .

We claim that cj is a positive constant c for all j ∈ J , hence ∆−1

λ−1
∆λ+T−1 =

D(J, z−c). In fact, for k ≥ λ, n ≥ 1 and 1 ≤ j ≤ m, we have

(∗∗) vk + nchk
= vk,hk

+ nchk
= vk+nT,hk

= vk+nT,hk+nT
= vk+nT

≤ vk+nT−1,j + v(αk+nT−1,j) = vk−1,j + ncj + v(αk−1,j),

where the inequality comes from the fact that

(hk, vk+nT ) = (hk+nT , vk+nT ) = Iv(∆k+nT−1αk+nT−1)

≤ (j, vk+nT−1,j + v(αk+nT−1,j)).

Then taking j = hk+1, we have

vk + nchk
≤ vk−1,hk+1

+ nchk+1
+ t,
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where t = v(αk−1,hk+1
) ∈ Z, since αk−1,hk+1

6= 0. This implies chk
≤ chk+1

for any k ≥ λ, since otherwise,

−n ≥ n(chk+1
− chk

) ≥ vk − vk−1,hk+1
− t

for all n ≥ 1, a contradiction. So

chλ
≤ chλ+1

≤ · · · ≤ chλ+T−1
≤ chλ+T

= chλ
.

Thus cj = chλ
for any j ∈ J , i.e., cj is equal to a positive constant c.

We claim that J = J∗(αλ−1). In fact, if j ∈ J, then j = hk and αk−1,j =
αk−1,hk

6= 0 for some k satisfying λ ≤ k < λ + T . Thus, j ∈ J∗(αk−1) ⊆
J∗(αλ−1) from Lemma 4.1.

If j 6∈ J , then

vλ + nc = vλ + nchλ
≤ vλ−1,j + ncj + v(αλ−1,j) = vλ−1,j + v(αλ−1,j)

for any n ≥ 1 from (∗) and (∗∗). Noting that c > 0, we have v(αλ−1,j) = ∞
and αλ−1,j = 0. Thus, j 6∈ J∗(αλ−1).

From the above we get immediately

∆−1

λ−1
∆λ+T−1 = D(J, z−c) = D(J∗(αλ−1), z

−c).

(2)⇒(3). By Lemma 4.2,

∆λ+T−1αλ+T−1 = ∆λ−1D(J∗(αλ−1), z
−c)αλ−1 = z−c∆λ−1αλ−1.

Then hλ+T = I(∆λ+T−1αλ+T−1) = I(z−c∆λ−1αλ−1) = hλ. By Lemma 4.2,
we have ̺λ+T = ̺λ. So, aλ+T = aλ, αλ+T = αλ and tλ+T = tλ. By
Lemma 4.2,

∆−1

λ ∆λ+T = ∆−1

λ−1
∆λ+T−1 = D(J∗(αλ−1), z

−c) = D(J∗(̺λ), z−c).

(3)⇒(2). By Lemma 4.2,

∆λ+T ̺λ+T = ∆λD(J∗(̺λ), z−c)̺λ = z−c∆λ̺λ.

Then by Theorem 2.5,

hλ+T = I(∆λ+T ̺λ+T ) = I(z−c∆λ̺
λ
) = hλ,

and

tλ+T = deg(aλ+T,hλ+T
) = deg(⌊̺λ+T,hλ+T

⌋) = deg(⌊̺λ,hλ+T
⌋)

= deg(⌊̺λ,hλ
⌋) = deg(aλ,hλ

) = tλ.

Thus by Lemma 4.2,

∆−1

λ−1
∆λ+T−1 = ∆−1

λ ∆λ+T = D(J∗(̺λ), z−c) = D(J∗(αλ−1), z
−c).

(3)⇒(1). We already know that conditions (2) and (3) are equivalent,
so we can suppose that they both hold. We claim that
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(a) (hλ+T , aλ+T ) = (hλ, aλ);

(b) ̺λ+1+T = ̺λ+1, ∆−1

λ+1
∆λ+1+T = D(J∗(̺λ+1), z

−c).

Repeating this process, we find that C(r) is (λ, T )-periodic.

In fact, in (3)⇒(2) above, we have proven hλ+T = hλ. By definitions,
̺λ+T = ̺λ implies that

aλ+T = aλ, αλ+T = αλ.

Since (3) implies (2), we have αλ+T−1 = αλ−1. Then J∗(αλ) = J∗(αλ−1) =
J∗(̺λ) from Lemma 4.2. So

∆−1

λ ∆λ+T = D(J∗(̺λ), z−c) = D(J∗(αλ), z−c).

Since (2) implies (3), from the above we conclude that

̺λ+1+T = ̺λ+1, ∆−1

λ+1
∆λ+1+T = D(J∗(̺λ+1), z

−c).
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