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1. Introduction. Given a subset A of N = {0, 1, 2, . . .} and a pos-
itive integer h, the h-representation function by A is the function which
to each integer n ≥ 0 associates the number rh(A, n) of h-tuples of ele-
ments of A whose sum is equal to n. The study of such functions, their
properties and their characterizations are the focus of much attention in
additive number theory. In particular, they are used to study some impor-
tant notions such as that of basis. The set A is called an h-basis (resp.
an asymptotic h-basis) of N if every integer n ≥ 0 (resp. every sufficiently
large integer n) is the sum of h elements of A. The set A is called a Sidon
set if all the sums a + b, with a, b ∈ A and a ≤ b, are distinct, i.e. if
r2(A, n) ≤ 2 for all integers n ≥ 0. An open problem due to P. Erdős,
A. Sárközy and V. T. Sós [1] asks if there exists a Sidon set which is
an asymptotic 3-basis of N. This problem was mistakenly presented in [3]
as asking if a Sidon set can be an asymptotic 2-basis of N. Even though
the negative answer to the latter question is an easy consequence of some
well-known properties, it is not extant in published explicit form, and it
would therefore not be without interest to give a proof using some new
ideas.
In this paper, we give some new properties of the 2-representation func-

tion of an infinite subset A of N, of intrinsic interest. We then apply them
to give a simple proof of the fact that a Sidon set cannot be an asymptotic
2-basis of N. We then turn to the real open problem of the existence of a
Sidon set which is an asymptotic 3-basis of N, and we provide a partial an-
swer by proving that a Sidon set cannot be a 3-basis of N. We also give an
algorithm for finding, if any exists, a Sidon set A such that, from a specific
point on, every integer is the sum of three elements of A.
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2. Definitions and notations. Let A = {a1 < a2 < · · ·} be a (finite
or infinite) subset of the set N = {0, 1, 2, . . .} of natural numbers. Let h
be a positive integer. The h-representation function rh(A, ·) by A is defined
on N by

rh(A, n) = |{(x1, . . . , xh) ∈ A
h : x1 + · · ·+ xh = n}|,

where n ∈ N, and |E| denotes the cardinality of a set E.
The set A is called a Sidon set if r2(A, n) ≤ 2 for all n ∈ N. This property

is equivalent to the assertion that all the sums a+ b, for a, b ∈ A with a ≤ b,
are distinct, which in turn is equivalent to asserting that all the non-zero
differences a− b, for a, b ∈ A, are distinct.
The set A is called an h-basis, or a basis of order h, of N if rh(A, n) > 0

for all n ∈ N. It is called an asymptotic h-basis, or an asymptotic basis of
order h, of N if rh(A, n) > 0 for all large enough integers n. More specifically,
given c ∈ N, we say that A is a c-asymptotic h-basis of N if rh(A, n) > 0 for
all n ≥ c.
The set of all sums of h terms from A is written hA = {x1 + · · ·+ xh :

(x1, . . . , xh) ∈ A
h} or A+ · · ·+A (h summands). On the other hand, the set

of h-multiples of the elements of A is written h ·A = {ha : a ∈ A}. Clearly,
A is an h-basis (resp. a c-asymptotic h-basis) of N if and only if hA = N

(resp. the interval of integers [c,∞[ is contained in hA).
We further set sh(A) = sup{rh(A, n) : n ∈ N} in N ∪ {∞}. Thus A is a

Sidon set if and only if s2(A) ≤ 2.
An old conjecture of Erdős and Turán [2] states that s2(A) is infinite for

every asymptotic 2-basis A. In other words, if s2(A) is finite, then r2(A, ·)
takes the value 0 infinitely often.

3. Properties of 2-representation functions. Let A= {a1<a2< · · ·}
be an infinite subset of N.

3.1. Lemma. If A contains s elements in arithmetic progression, then
s2(A) ≥ s.

Indeed, if a, a + d, . . . , a + (s − 1)d all belong to A, then the s distinct
pairs (bk, ck) = (a + kd, a + (s − 1 − k)d), for 0 ≤ k ≤ s − 1, give the s
representations 2a+ (s− 1)d = bk + ck. So r2(A, 2a+ (s− 1)d) ≥ s.

3.2. Lemma. The set 2A \ 2 ·A is infinite.

Indeed, for every index i > 0, we have ai + ai+1 ∈ 2A \ 2 · A, since
1
2 (ai + ai+1) 6∈ A, as ai <

1
2 (ai + ai+1) < ai+1.

3.3. Lemma. The value of r2(A, n) is odd if n ∈ 2 ·A, and it is even and
positive if n ∈ 2A \ 2 ·A. Therefore r2(A, n) takes infinitely often odd values
and infinitely often positive even values.
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Indeed, the representations of n as sum of two elements a, b ∈ A come
in pairs, (a, b) and (b, a), which are distinct as long as a 6= b. So the number
r2(A, n) of such representations is even unless n = 2a with a ∈ A, i.e.
n ∈ 2 ·A. Moreover, both 2 ·A and 2A \ 2 ·A are infinite sets, in view of the
infinitude of A and of 3.2.

3.4. Proposition. If the representation function r2(A, ·) is periodically
odd from some point on, then s2(A) is infinite.

Indeed, suppose that r2(A, n+ kt) is odd, for given n and t and for each
k in N. Then n + kt ∈ 2 · A for all k ∈ N. All those integers n + kt being
even, their halves (n+ kt)/2 are integers forming an arithmetic progression
in A. The result follows from 3.1.

3.5.Corollary. The representation function r2(A, ·) cannot be periodic
from some point on.

Indeed, if r2(A, ·) were periodic, then it would take only a finite number
of values, so that s2(A) would be finite. But also, r2(A, ·) would periodically
take odd values, over 2 ·A. So, according to 3.4, s2(A) should be infinite, a
contradiction.

3.6.Theorem. If s2(A) is finite, then the representation function r2(A, ·)
takes infinitely often some odd value u, and infinitely often some even value
v > 0. Moreover , either r2(A, ·) takes also infinitely often some other value
w 6= u, v, or else u ≥ v + 1 ≥ 3.

Proof. The representation function r2(A, ·) takes only a finite number of
values, since s2(A) is finite. Both subsets 2 · A and 2A \ 2 · A are infinite,
according to 3.2. On each of them, r2(A, ·) takes only a finite number of
values, odd on the first subset, even on the second one, all of them not
zero. Hence, it takes infinitely often an odd value u on the first subset, and
infinitely often an even value v ≥ 2 on the second one.

Now suppose that r2(A, ·) does not take any other value infinitely often,
that is, r2(A, ·) takes only the two values u and v from some point m on.
[Note: this implies that A is an asymptotic 2-basis since r2(A, n) 6= 0 for
large enough n.] To show that u ≥ v + 1 ≥ 3, we use power series. Let

f(x) =
∑

a∈A

xa , g(x) = f(x)2 =
∑

n∈N

r2(A, n)x
n.

Also, set

I = {n ∈ N : r2(A, n) = u, n ≥ m},

J = {n ∈ N : r2(A, n) = v, n ≥ m} = [m,∞[ \ I.

Those two sets are infinite, disjoint, and cover [m,∞[. Hence, with p(x)



152 G. Grekos et al.

a polynomial, we have

g(x) = p(x) + u
∑

n∈I

xn + v
∑

n∈J

xn

= p(x) + v
∑

n≥m

xn + (u− v)
∑

n∈I

xn

= p(x) + v
xm

1− x
+ (u− v)

∑

n∈I

xn.

The above relations are valid for −1 < x < 1, the interval of convergence
on the real line of the power series f(x) and g(x). As x approaches −1 from
above, both p(x) and xm/(1− x) converge to finite values, p(−1) and ±1/2
respectively, while

∑
n∈I x

n approaches +∞ because the n’s in I are all

even. Since g(x) = f(x)2 ≥ 0, u− v must be positive. Since v ≥ 2, it follows
that u ≥ v + 1 ≥ 3.

3.7. Corollary. If A is an asymptotic 2-basis, then

s2(A) ≥ lim sup
n→∞

r2(A, n) ≥ 3.

Indeed, if s2(A) is infinite, this holds trivially. If s2(A) is finite, then the
conclusion follows from 3.6, since r2(A, ·) cannot take the value 0 infinitely
often.

3.8. Remark. As noted in the proof of 3.6, if s2(A) is finite and r2(A, ·)
takes only two values from some point on, then A is an asymptotic 2-basis.
Of course no such example is available, otherwise we would know that the
Erdős–Turán conjecture is not true. This raises the question: When s2(A) is
finite, does r2(A, ·) always take infinitely often at least three distinct values?

3.9. Conclusion. Summing up, cursorily, we can say that, for a func-
tion f : N → N to be the 2-representation function of some infinite subset
A of N, it must have at least the following properties:

(1) f(n) ≤ n+ 1 for every n ∈ N.

(2) f(n) is even only if n is odd.

(3) f takes infinitely often odd values, and infinitely often positive even

values.

(4) f is not periodic from some point on.

(5) A fortiori, f is not constant from some point on.

3.10. Application. No Sidon set can be an asymptotic 2-basis.

Indeed, A is a Sidon set whenever s2(A) ≤ 2, which, in view of 3.7, is
incompatible with A being an asymptotic 2-basis.
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4. Sidon sets and bases of order 3. Let A = {a1 < a2 < · · ·} be a
(finite or infinite) subset of N. For every n ∈ N

∗ = N \ {0}, let

An = {a1 < · · · < an},

En = En(A) = {ai + aj − ak : 1 ≤ i, j, k ≤ n},

αn = min(N \ 3An).

All the intervals considered below are intervals in N.

4.1. Lemma. The set A is a Sidon set if and only if an+1 ∈ N \ En for
all n.

Indeed, first, the condition is necessary, since if an+1 ∈ En for some n,
then, clearly, A is not a Sidon set. Conversely, assume that A is not a Sidon
set, i.e. ai+aj = ak+al for some indices i ≤ j and k ≤ l with (i, j) 6= (k, l).
Then j 6= l (otherwise ai = ak and (i, j) = (k, l)), and, without loss of
generality, we may assume j < l, i.e. k < i. Therefore al = ai+aj −ak with
k < i ≤ j < l, so that an+1 ∈ En for n = l − 1.

4.2. Lemma. The set A is a 3-basis of N if and only if an+1 ≤ αn for
all n ∈ N

∗.

Indeed, since N is the union of all the intervals [0, an+1[ (for n ∈ N
∗),

A is a 3-basis of N if and only if [0, an+1[ ⊂ 3A for all n ∈ N
∗. But since

the sequence (an) ⊂ A is strictly increasing, an integer m ∈ [0, an+1[ can
only be a sum m = ai + aj + ak for i, j, k ≤ n. So A is a 3-basis of N

if and only if [0, an+1[ ⊂ 3An for all n ∈ N
∗. Moreover, the inclusion

[0, an+1[ ⊂ 3An, being equivalent to N \ 3An ⊂ [an+1,∞[, amounts to
an+1 ≤ min(N \ 3An) = αn.

4.3. Proposition. The set A is both a Sidon set and a 3-basis of N if

and only if an+1 ∈ [an + 1, αn] \En for all n ∈ N
∗.

Indeed, by 4.1 and 4.2, A is a Sidon set and a 3-basis of N if and only
if for all n ∈ N

∗, we have an+1 ∈ N \ En and an+1 ≤ αn. Since an+1 > an,
this amounts to an+1 ∈ (N \ En) ∩ [an + 1, αn] = [an + 1, αn] \ En, for all
n ∈ N

∗.

4.4. Remark. Since the properties of being a Sidon set and of being
an asymptotic basis (of any order h) of N are translation invariant, we may
always set a1 = 0.

4.5. Theorem. There exists no Sidon set which is also a 3-basis of N.

Indeed, setting a1 = 0, and defining A recursively by the condition
an+1 ∈ [an + 1, αn] \ En, for every n ∈ N

∗, which characterizes Sidon sets
that are 3-bases of N (in view of 4.3), we constructed, using the software
Maple, all possible such sets A. It turned out that there were only finitely
many such sets, which were all finite, since in every case, the sequence (an)
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terminated after a few steps, due to the fact that the set [an + 1, αn] \ En
became empty, because min(N \En) became more than αn.
We thus found exactly the following eleven sets:

{0, 1, 3, 7, 12, 20},

{0, 1, 3, 7, 12, 22, 30},

{0, 1, 3, 8, 12, 18, 31},

{0, 1, 3, 8, 12, 18, 32, 45},

{0, 1, 3, 8, 12, 18, 34},

{0, 1, 3, 8, 12, 22, 28, 45},

{0, 1, 3, 8, 12, 22, 28, 46, 59},

{0, 1, 4, 6, 13, 21},

{0, 1, 4, 6, 14},

{0, 1, 4, 6, 15, 22, 32},

{0, 1, 4, 6, 15, 23}.

Since the above list exhausts all possible sets defined via the condition
characterizing Sidon sets which are bases of order 3, and since each one of
these sets is maximal (i.e. it cannot be enlarged any further), we conclude
that there exists no Sidon set which is a 3-basis of N.

4.6. Lemma. Given c ∈ N, let αn(c) = min([c,∞[ \ 3An). The set A is
a c-asymptotic 3-basis of N if and only if an+1 ≤ αn(c) for all n such that
an > c.

Indeed, A is a c-asymptotic 3-basis of N if and only if [c,∞[ ⊂ 3A, i.e. for
an > c, we have [c, an+1[ ⊂ 3An. The latter condition amounts to [0, an+1[ ⊂
3An ∪ [0, c[, i.e. [c,∞[ \ 3An ⊂ [an+1,∞[, i.e. an+1 ≤ min([c,∞[ \ 3An).

4.7. Proposition. For a given c ∈ N, the set A is both a Sidon set and
a c-asymptotic 3-basis of N if and only if an+1 ∈ [an + 1, αn(c)] \En for all
n such that an > c, and an+1 ∈ N \ En for an ≤ c.

Indeed, by 4.1 and 4.6, A is a Sidon set and a c-asymptotic 3-basis of N
if and only if an+1 ∈ N \ En for all n ∈ N

∗ and an+1 ≤ αn(c) for an > c.
Since an+1 > an, this amounts to an+1 ∈ (N \ En) ∩ [an + 1, αn(c)] =
[an + 1, αn(c)] \En for an > c, while an+1 6∈ En for all n ∈ N

∗.

4.8. Corollary. For a given m ∈ N
∗, the set A is both a Sidon set and

an am-asymptotic 3-basis of N if and only if an+1 ∈ [an + 1, αn(am)] \ En
for all integers n > m, and an+1 ∈ N \En for 1 ≤ n ≤ m.

4.9. Remark. In view of 4.4, we may and do assume that a1 = 0 in
the following. Then A is a Sidon set and an a1-asymptotic 3-basis of N if
and only if A is a Sidon set and a 3-basis of N, which is impossible in view
of 4.5. Thus, if A is to be a Sidon set and an asymptotic 3-basis of N, then
it must be a Sidon set and an am-asymptotic 3-basis of N for some m ≥ 2.
We show next that m ≥ 3, and later indicate that in fact m ≥ 4. We further
report on the results of some computations establishing a lower bound for c
such that A is a c-asymptotic 3-basis of N (if such a basis exists).
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4.10. Application. There is no Sidon set which is an a2-asymptotic
3-basis of N.

Indeed, assume that [a2,∞[ ⊂ 3A. Then a2 ≥ 2; otherwise, A would be a
3-basis of N and a Sidon set, which contradicts 4.5. Also, since a2+1 ∈ 3A,
we must have a3 = a2 + 1; for, as a2 < a2 + 1 < 2a2, the only way to
have a2 + 1 = ai + aj + ak, with necessarily 1 ≤ i, j, k ≤ 3, is to have
i = j = 1 and k = 3. Moreover, since a2 + 2 ∈ 3A, it follows that a2 = 2;
otherwise, a2 ≥ 3 implies a3 < a2 + 2 < 2a2, and since a Sidon set cannot
contain three terms in arithmetic progression, a4 − a3 6= a3 − a2 = 1, i.e.
a4 > a3 + 1 = a2 + 2, which makes a2 + 2 = ai + aj + ak impossible. Thus,
starting with a1 = 0, a2 = 2, a3 = 3, and defining A recursively by the
condition an+1 ∈ [an+1, αn(a2)]\En for all n ≥ 3, which characterizes Sidon
sets that are a2-asymptotic 3-bases of N (in view of 4.8), we constructed all
possible such sets A. All we found were the following eleven finite maximal
such sets:

{0, 2, 3, 7, 13, 21, 30},

{0, 2, 3, 7, 13, 22, 30},

{0, 2, 3, 7, 15, 21, 31},

{0, 2, 3, 7, 15, 21, 32},

{0, 2, 3, 8, 12, 19, 32},

{0, 2, 3, 8, 12, 19, 33},

{0, 2, 3, 8, 12, 19, 34, 47},

{0, 2, 3, 8, 12, 19, 37},

{0, 2, 3, 8, 15, 19},

{0, 2, 3, 9},

{0, 2, 3, 10}.

Since this list is exhaustive, we conclude that there is no Sidon set which is
an a2-asymptotic 3-basis of N.

4.11. Computation results. If a Sidon set A is also a c-asymptotic
3-basis of N, then c ≥ 40.

Indeed, for a given positive integer c ≤ 39, there are only finitely many
Sidon sets contained in [0, c], which are easy to enumerate by setting a1 = 0
and applying the criterion in 4.1. Then, starting from each one of these Sidon
sets and applying the algorithm in 4.7, we computed, using the software
Maple, all possible such maximal Sidon sets: they were all finite and there
were only finitely many of them for each c ≤ 39.

Thus, for instance, for c = 39, we found 211795 maximal sets each of
cardinality ≤ 23. They obviously include all maximal sets corresponding to
smaller values of c. An example of a maximal set of maximal length for
c = 39 is

{0, 3, 9, 11, 25, 37, 38, 42, 57, 78, 102, 125, 168, 175,

219, 304, 314, 363, 393, 467, 547, 623, 681}.
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Also, by similar arguments to those in 4.10, and by more extensive com-
putations, we found that there is no Sidon set which is an a3-asymptotic
3-basis of N.
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