Infinite sums as linear combinations of polygamma functions

by
Kh. Hessami Pilehrood and T. Hessami Pilehrood (Tehran and Shahrekord)

Dedicated to Professor Yu. V. Nesterenko

on the occasion of his 60th birthday

1. Introduction. 1. We begin with some notations and definitions. Let d be a positive square-free integer. We denote by $\mathbb{Z}, \mathbb{Q}, \overline{\mathbb{Q}}$, and $\mathbb{Q}(i \sqrt{d})$ the set of integers, the field of rational numbers, the field of algebraic numbers, and an imaginary quadratic field, respectively.

We will use the polygamma function

$$
\psi^{(k)}(z)=\frac{d^{k}}{d z^{k}} \psi(z)=\frac{d^{k+1}}{d z^{k+1}} \log \Gamma(z), \quad k=1,2, \ldots
$$

which has the following series expansion (see $[2, \S 1.16]$):

$$
\begin{equation*}
\psi^{(k)}(z)=(-1)^{k+1} k!\sum_{n=0}^{\infty} \frac{1}{(n+z)^{k+1}}, \quad z \neq 0,-1,-2, \ldots \tag{1}
\end{equation*}
$$

and the logarithmic derivative of $\Gamma(z)$,

$$
\psi(z)=\frac{d}{d z} \log \Gamma(z)=-\gamma+\sum_{n=0}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+z}\right), \quad z \neq 0,-1,-2, \ldots
$$

called the digamma function. Obviously, $\psi(1)=-\gamma$, where γ is Euler's constant. The function $\psi^{(k)}(z), k=0,1,2, \ldots$, is single-valued and analytic in the whole complex plane except for the points $z=-m, m=0,1,2, \ldots$,

[^0]where it has poles of order $k+1$. The polygamma function satisfies many functional relations [2, §1.16] such as

- "recurrence formula":

$$
\begin{equation*}
\psi^{(k)}(z+1)=\psi^{(k)}(z)+\frac{(-1)^{k} k!}{z^{k+1}} \tag{2}
\end{equation*}
$$

- "reflection formula":

$$
\begin{equation*}
\psi^{(k)}(1-z)+(-1)^{k+1} \psi^{(k)}(z)=(-1)^{k} \pi \frac{d^{k}}{d z^{k}} \cot \pi z, \tag{3}
\end{equation*}
$$

- "multiplication formula":

$$
\psi^{(k)}(m z)=\delta \log m+\frac{1}{m^{k+1}} \sum_{r=0}^{m-1} \psi^{(k)}\left(z+\frac{r}{m}\right),
$$

where $\delta=1$ if $k=0$ and $\delta=0$ if $k>0$.
We also introduce its alternating analog (see [2, §1.16])

$$
\begin{equation*}
g^{(k)}(z)=(-1)^{k} k!\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+z)^{k+1}}=\frac{1}{2^{k+1}}\left(\psi^{(k)}\left(\frac{z+1}{2}\right)-\psi^{(k)}\left(\frac{z}{2}\right)\right), \tag{4}
\end{equation*}
$$

which satisfies the similar functional relations

$$
\begin{gather*}
g^{(k)}(z+1)=\frac{(-1)^{k} k!}{z^{k+1}}-g^{(k)}(z), \quad k=1,2, \ldots, \tag{5}\\
g^{(k)}(z)+(-1)^{k} g^{(k)}(1-z)=\pi \frac{d^{k}}{d z^{k}}\left(\frac{1}{\sin \pi z}\right) . \tag{6}
\end{gather*}
$$

Obviously by (1) and (4), the numbers $\psi^{(k)}(1) / \zeta(k+1), g^{(k)}(1) / \zeta(k+1)$, $\psi^{(k)}(1 / 2) / \zeta(k+1)$ are rational (here $\zeta(s)=\sum_{n=1}^{\infty} 1 / n^{s}$ is the Riemann zeta function) and therefore from (2), (5) we get the following inclusions:

$$
\begin{equation*}
\psi^{(2 k-1)}(m), g^{(2 k-1)}(m), \psi^{(2 k-1)}(m+1 / 2) \in \mathbb{Q}^{\times} \cdot \pi^{2 k}+\mathbb{Q}, \quad m \in \mathbb{N} . \tag{7}
\end{equation*}
$$

2. In this paper, we consider the values of the series

$$
\begin{equation*}
S=\sum_{n=0}^{\infty} \frac{P(n)}{Q(n)}, \quad T=\sum_{n=0}^{\infty} \frac{P(n)}{Q(n)}(-1)^{n}, \quad U=\sum_{n=0}^{\infty} \frac{P(n)}{Q(n)} f(n), \tag{8}
\end{equation*}
$$

where $P(x), Q(x) \in \overline{\mathbb{Q}}[x]$ and f is a periodic number-theoretic function, and express them as linear combinations of values of the polygamma functions (see Lemmas 1-2 below). Such a representation allows one to give simple sufficient conditions for the numbers S, T to be algebraic or transcendental, which is done in Section 2. Further, we assume that all the zeros of $Q(x)$ are in the imaginary quadratic field $\mathbb{Q}(i \sqrt{d})$ and the polynomials $P(x), Q(x)$ have some symmetry properties. By formulas (3), (6), summing the series
S, T, U explicitly and applying Nesterenko's famous result [7] on algebraic independence of the numbers $\pi, e^{\pi \sqrt{d}}$ we show that the infinite sums (8) either have a computable algebraic value or are transcendental. (By a computable value, we mean a number which can be explicitly determined in terms of its defining parameters.) Actually, we describe a mixed approach for computation of infinite sums (8) combining linear combinations of values of the polygamma functions and contour integration. The latter can be applied to the trigonometric series

$$
V=\sum_{n=-\infty}^{\infty} \frac{P_{1}(n) e^{i \beta_{1} n}+\cdots+P_{s}(n) e^{i \beta_{s} n}}{Q(n)}, \quad \beta_{1}, \ldots, \beta_{s} \in \mathbb{Q}
$$

and enables us to prove that under certain conditions on the polynomials P_{1}, \ldots, P_{s}, Q, the sum V is either zero or transcendental. As a consequence, we establish the transcendence of some Fourier series (see Section 4). In Section 5 we extend these results to a more general set of roots of the polynomial $Q(x)$ provided that the Schanuel conjecture holds. This generalizes the well-known result of P. Bundschuh on the series $\sum_{n=2}^{\infty} 1 /\left(n^{2 k}-1\right), k \geq 2$ (see [3], [12, Section 3.2]).

Special cases of the infinite sums (8) were considered by P. Bundschuh in [3]. Using Baker's theory on linear forms in logarithms, he proved that the value of the series

$$
F(z)=z \sum_{m=1}^{\infty} \frac{a_{m}}{m(m-z)},
$$

where $\left\{a_{m}\right\}_{m=1}^{\infty}$ is a periodic sequence of algebraic numbers and $z \in \mathbb{Q} \cap$ $(0,1)$, is either zero or transcendental. In particular, this yields the transcendence of the numbers $\psi(z)+\gamma, \psi(z)-\psi(z / 2)$ for any $z \in \mathbb{Q} \backslash \mathbb{Z}$, and of the series $\sum_{n=2}^{\infty} \zeta(n) z^{n}, \sum_{n=2}^{\infty} \beta(n) z^{n}$ for any rational z with $0<|z|<1$, where $\beta(s)=\sum_{k=0}^{\infty}(-1)^{k} /(2 k+1)^{s}$ is the Dirichlet beta function.

The case when all the roots $\alpha_{1}, \ldots, \alpha_{m}$ of $Q(x)$ are distinct rational numbers was considered in [1], where by Baker's theory it was proved that each of the numbers (8) is either a computable algebraic number or is transcendental. In particular, if $Q(x)$ is a reduced polynomial, i.e., if $\alpha_{1}, \ldots, \alpha_{m}$ are distinct rational numbers from $[-1,0)$, then S, T, U and the series

$$
\sum_{n=0}^{\infty} \frac{P_{1}(n) \beta_{1}^{n}+\cdots+P_{s}(n) \beta_{s}^{n}}{Q(n)}, \quad \beta_{1}, \ldots, \beta_{s} \in \overline{\mathbb{Q}}
$$

are either zero or transcendental.
Notice that from [1] it follows that for any rational numbers $\alpha_{1}, \ldots, \alpha_{m}$ distinct from nonnegative integers and such that $\alpha_{k}-\alpha_{l} \notin \mathbb{Z}, 1 \leq k \neq l \leq m$,
all the values

$$
\begin{equation*}
\psi\left(\alpha_{1}\right), \ldots, \psi\left(\alpha_{m}\right) \tag{9}
\end{equation*}
$$

are transcendental except for at most one value of α_{k} (compare this with [6, Theorem 3]). In fact, taking into account (2) we can assume without loss of generality that $\alpha_{1}, \ldots, \alpha_{m}$ are distinct numbers from $(0,1]$ and then by [1, Theorem 3] we have, for $k \neq l$,

$$
\psi\left(\alpha_{l}\right)-\psi\left(\alpha_{k}\right)=\sum_{n=0}^{\infty}\left(\frac{1}{n+\alpha_{k}}-\frac{1}{n+\alpha_{l}}\right)=\sum_{n=0}^{\infty} \frac{\alpha_{l}-\alpha_{k}}{\left(n+\alpha_{k}\right)\left(n+\alpha_{l}\right)} \notin \overline{\mathbb{Q}}
$$

Therefore the set (9) cannot contain two algebraic numbers.
In 2001, G. Molteni [5] considered the generating power series for the sequence $\{\zeta(2 k+1)\}_{k=1}^{\infty}$, which can also be written as a linear combination of values of the digamma function,

$$
F(z)=\sum_{k=1}^{\infty} \zeta(2 k+1) z^{2 k}=-\frac{1}{2} \psi(1+z)-\frac{1}{2} \psi(1-z)+\psi(1)
$$

and proved that the numbers $1, F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{m}\right)$ are linearly independent over $\overline{\mathbb{Q}}$ if all $\alpha_{k}=a_{k} / b_{k}$ are distinct rational numbers from the interval $(0,1)$ such that $\left(a_{k}, b_{k}\right)=1$ and for any k there exists an odd prime p_{k} dividing b_{k} and $p_{k} \nmid b_{j}$ when $j \neq k$. An obvious corollary is that $F(\alpha)$ is transcendental for all $\alpha=a / b \in(0,1)$ with b not a power of 2 . Actually, this restriction can be removed and $F(\alpha)$ is transcendental for any rational α with $0<|\alpha|<1$ by [1, Theorem 3], since

$$
F(\alpha)=\sum_{n=0}^{\infty} \frac{\alpha^{2}}{(n+1)(n+1+\alpha)(n+1-\alpha)}
$$

and the last series does not vanish.

2. Sums S, T, U as linear combinations of polygamma functions

Lemma 1. Let $f: \mathbb{Z} \rightarrow \overline{\mathbb{Q}}$ be periodic with period $q \in \mathbb{N}$. Suppose that $P(x), Q(x) \in \overline{\mathbb{Q}}[x], \operatorname{deg} P(x) \leq \operatorname{deg} Q(x)-1$, and $Q(x)=\left(x+\alpha_{1}\right)^{l_{1}} \ldots$ $\ldots\left(x+\alpha_{m}\right)^{l_{m}}$, where $l_{1}, \ldots, l_{m} \in \mathbb{N}$ and $\alpha_{1}, \ldots, \alpha_{m}$ are distinct, and distinct from non-negative integers. If $\operatorname{deg} P(x)=\operatorname{deg} Q(x)-1$, suppose also that $\sum_{t=0}^{q-1} f(t)=0$ (convergence condition). Then the series

$$
U=\sum_{n=0}^{\infty} \frac{P(n)}{Q(n)} f(n)
$$

converges and we have the following representation:

$$
\begin{equation*}
U=\sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \frac{A_{k, l}}{q^{l}} \psi^{(l-1)}\left(\frac{t+\alpha_{k}}{q}\right) \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{k, l}=\left.\frac{1}{\left(l_{k}-l\right)!} \frac{d^{l_{k}-l}}{d x^{l_{k}-l}}\left(\frac{P(x)}{Q(x)}\left(x+\alpha_{k}\right)^{l_{k}}\right)\right|_{x=-\alpha_{k}} \in \overline{\mathbb{Q}} \tag{11}
\end{equation*}
$$

Proof. Writing n in the form $n=q \tau+t, \tau, t \in \mathbb{Z}, 0 \leq t \leq q-1, \tau \geq 0$, we get

$$
\begin{equation*}
U=\sum_{\tau=0}^{\infty} \sum_{t=0}^{q-1} f(q \tau+t) \frac{P(q \tau+t)}{Q(q \tau+t)}=\sum_{\tau=0}^{\infty} \sum_{t=0}^{q-1} f(t) \frac{P(q \tau+t)}{Q(q \tau+t)} . \tag{12}
\end{equation*}
$$

Decomposing $P(x) / Q(x)$ into partial fractions, we have

$$
\frac{P(x)}{Q(x)}=\sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{A_{k, l}}{\left(x+\alpha_{k}\right)^{l}}
$$

where the coefficients $A_{k, l}$ are defined in (11) and $\sum_{k=1}^{m} A_{k, 1}=0$ if $\operatorname{deg} P(x) \leq \operatorname{deg} Q(x)-2$.

To prove (10), we first suppose that $\operatorname{deg} P(x) \leq \operatorname{deg} Q(x)-2$. Then from (12) we have

$$
U=\sum_{t=0}^{q-1} f(t) \sum_{\tau=0}^{\infty} \frac{P(q \tau+t)}{Q(q \tau+t)}
$$

where

$$
\begin{aligned}
\frac{P(q \tau+t)}{Q(q \tau+t)} & =\sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{A_{k, l}}{\left(q \tau+t+\alpha_{k}\right)^{l}} \\
& =\sum_{k=1}^{m} \frac{A_{k, 1}}{q \tau+t+\alpha_{k}}+\sum_{k=1}^{m} \sum_{l=2}^{l_{k}} \frac{A_{k, l}}{\left(q \tau+t+\alpha_{k}\right)^{l}} \\
& =\frac{1}{q} \sum_{k=2}^{m} A_{k, 1}\left(\frac{1}{\tau+\frac{t+\alpha_{k}}{q}}-\frac{1}{\tau+\frac{t+\alpha_{1}}{q}}\right)+\sum_{k=1}^{m} \sum_{l=2}^{l_{k}} \frac{A_{k, l}}{\left(q \tau+t+\alpha_{k}\right)^{l}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sum_{\tau=0}^{\infty} \frac{P(q \tau+t)}{Q(q \tau+t)}= & \frac{1}{q} \sum_{k=2}^{m} A_{k, 1}\left(\psi\left(\frac{t+\alpha_{1}}{q}\right)-\psi\left(\frac{t+\alpha_{k}}{q}\right)\right) \\
& +\sum_{k=1}^{m} \sum_{l=2}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \frac{A_{k, l}}{q^{l}} \psi^{(l-1)}\left(\frac{t+\alpha_{k}}{q}\right) \\
= & \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \frac{A_{k, l}}{q^{l}} \psi^{(l-1)}\left(\frac{t+\alpha_{k}}{q}\right),
\end{aligned}
$$

which yields (10). If $\operatorname{deg} P(x)=\operatorname{deg} Q(x)-1$, then we find

$$
\begin{aligned}
& \sum_{t=0}^{q-1} \frac{P(q \tau+t)}{Q(q \tau+t)} f(t)=\sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{A_{k, l}}{\left(q \tau+t+\alpha_{k}\right)^{l}} \\
& =\sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \frac{A_{k, 1}}{q \tau+t+\alpha_{k}}+\sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=2}^{l_{k}} \frac{A_{k, l}}{\left(q \tau+t+\alpha_{k}\right)^{l}} \\
& =\sum_{k=1}^{m} \frac{A_{k, 1}}{q} \sum_{t=1}^{q-1} f(t)\left(\frac{1}{\tau+\frac{t+\alpha_{k}}{q}}-\frac{1}{\tau+\frac{\alpha_{k}}{q}}\right)+\sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=2}^{l_{k}} \frac{A_{k, l}}{\left(q \tau+t+\alpha_{k}\right)^{l}} .
\end{aligned}
$$

Hence, by (12), we get

$$
\begin{array}{r}
U=\sum_{k=1}^{m} \frac{A_{k, 1}}{q} \sum_{t=1}^{q-1} f(t)\left(\psi\left(\frac{\alpha_{k}}{q}\right)-\psi\left(\frac{t+\alpha_{k}}{q}\right)\right)+\sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=2}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \frac{A_{k, l}}{q^{l}} \\
\times \psi^{(l-1)}\left(\frac{t+\alpha_{k}}{q}\right)=\sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \frac{A_{k, l}}{q^{l}} \psi^{(l-1)}\left(\frac{t+\alpha_{k}}{q}\right)
\end{array}
$$

as required.
Let us mention two particular cases $q=1, f \equiv 1$ and $q=2, f(n)=(-1)^{n}$ of Lemma 1.

Lemma 2. Let $P(x), Q(x) \in \overline{\mathbb{Q}}[x], Q(x)=\left(x+\alpha_{1}\right)^{l_{1}} \ldots\left(x+\alpha_{m}\right)^{l_{m}}$, where $l_{1}, \ldots, l_{m} \in \mathbb{N}$ and $\alpha_{1}, \ldots, \alpha_{m}$ are distinct, and distinct from non-negative integers. Suppose that the series

$$
S=\sum_{n=0}^{\infty} \frac{P(n)}{Q(n)}, \quad T=\sum_{n=0}^{\infty} \frac{P(n)}{Q(n)}(-1)^{n}
$$

converge. Then the following representations are valid:

$$
S=\sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} A_{k, l} \psi^{(l-1)}\left(\alpha_{k}\right), \quad T=\sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l-1}}{(l-1)!} A_{k, l} g^{(l-1)}\left(\alpha_{k}\right)
$$

where the coefficients $A_{k, l}$ are defined in (11).
If $Q(x)$ has only simple zeros, then Lemma 2 enables us to give simple sufficient conditions for S, T to be algebraic or transcendental.

Corollary 1. Let $P(x), Q(x) \in \overline{\mathbb{Q}}[x], Q(x)=\left(x+\alpha_{1}\right) \ldots\left(x+\alpha_{m}\right)$, where $\alpha_{1}, \ldots, \alpha_{m}$ are distinct, and distinct from non-negative integers, and $\operatorname{deg} P(x) \leq \operatorname{deg} Q(x)-2$. If there is a subset L of $\{1, \ldots, m\}$ with $\# L \geq 2$, with $j, k \in L \Rightarrow \alpha_{j}-\alpha_{k} \in \mathbb{Z}$, and with $P\left(-\alpha_{l}\right)=0$ for $l \notin L$, then

$$
S=\sum_{n=0}^{\infty} \frac{P(n)}{Q(n)}
$$

is algebraic.

Proof. This statement easily follows from Lemma 2 and formula (2).
REmARK 0.1. In the case $m=3$ and $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Q}, P(x), Q(x) \in \mathbb{Q}[x]$ the conditions of Corollary 1 are necessary and sufficient for S to be rational (see [9, Theorem 2]).

Corollary 2. Let $P(x), Q(x) \in \overline{\mathbb{Q}}[x], Q(x)=\left(x+\alpha_{1}\right) \ldots\left(x+\alpha_{m}\right)$, where $\alpha_{1}, \ldots, \alpha_{m}$ are distinct, and distinct from non-negative integers, and $\operatorname{deg} P(x) \leq \operatorname{deg} Q(x)-1$. If $\alpha_{k}-\alpha_{1}=: n_{k} \in \mathbb{Z}$ for all $1 \leq k \leq m$ and

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{n_{k}} \frac{P\left(-\alpha_{k}\right)}{Q^{\prime}\left(-\alpha_{k}\right)}=0 \tag{13}
\end{equation*}
$$

then

$$
T=\sum_{n=0}^{\infty} \frac{P(n)}{Q(n)}(-1)^{n}
$$

is algebraic. (In particular, if all n_{k} are even and $\operatorname{deg} P(x) \leq \operatorname{deg} Q(x)-2$, then condition (13) holds automatically.)

Proof. This statement easily follows from Lemma 2 and formula (5).
Remark 0.2. In the case $m=2$ and $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Q}, P(x), Q(x) \in \mathbb{Q}[x]$ the conditions of Corollary 2 are necessary and sufficient for T to be rational (see [9, Theorem 1] and [10, Theorem 3]).

Corollary 3. Let $P(x) \in \overline{\mathbb{Q}}[x], Q(x)=\left(x+\alpha_{1}\right) \ldots\left(x+\alpha_{m}\right)$, where $\alpha_{1}, \ldots, \alpha_{m}$ are distinct rational numbers, distinct from non-negative integers, and $\operatorname{deg} P(x)=m-1$. If $\alpha_{k}-\alpha_{l} \in 2 \mathbb{Z}$ for all $1 \leq k, l \leq m$, then the sum

$$
T=\sum_{n=0}^{\infty} \frac{P(n)}{Q(n)}(-1)^{n}
$$

is transcendental.
Proof. By Lemma 2 and formula (5) it follows that

$$
T=A+a g\left(\alpha_{1}\right)=B \pm a g(\alpha)=B \pm a \sum_{n=0}^{\infty}\left(\frac{1}{2 n+\alpha}-\frac{1}{2 n+\alpha+1}\right)
$$

where $A, B \in \overline{\mathbb{Q}}, a \neq 0$ is the leading coefficient of the polynomial $P(x)$ and $\alpha \equiv \alpha_{1}(\bmod 1), \alpha \in(0,1]$. Since the infinite sum in the latter expression of T does not vanish, by [1, Theorem 3] we conclude that T is transcendental.

Lemma 3. For the k th derivatives we have

$$
\text { (a) }(\cot \pi z)^{(k)}=\pi^{k} p_{k}(\cot \pi z), \quad \text { (b) }\left(\frac{1}{\sin \pi z}\right)^{(k)}=\pi^{k} \frac{q_{k}(\cos \pi z)}{\sin ^{k+1} \pi z}
$$

where $p_{k}(z), q_{k}(z) \in \mathbb{Z}[z], \operatorname{deg}\left(p_{k}(z)-(-1)^{k} k!z^{k+1}\right) \leq k, \operatorname{deg}\left(q_{k}(z)-(-z)^{k}\right)$ $\leq k-1$.

Proof. The proof is by induction on k. Obviously, for $k=0$ formulas (a), (b) are valid with $p_{0}(z)=z$ and $q_{0}(z)=1$. Assuming (a), (b) to hold for k, we will prove them for $k+1$. We have

$$
(\cot \pi z)^{(k+1)}=\pi^{k}\left(p_{k}(\cot \pi z)\right)^{\prime}=\pi^{k+1} p_{k+1}(\cot \pi z)
$$

where $p_{k+1}(z)=-p_{k}^{\prime}(z)\left(z^{2}+1\right)=(-1)^{k+1}(k+1)!z^{k+2}+c_{k+1} z^{k+1}+\cdots \in$ $\mathbb{Z}[z]$, and

$$
\left(\frac{1}{\sin \pi z}\right)^{(k+1)}=\pi^{k}\left(\frac{q_{k}(\cos \pi z)}{\sin ^{k+1} \pi z}\right)^{\prime}=\pi^{k+1} \frac{q_{k+1}(\cos \pi z)}{\sin ^{k+2} \pi z}
$$

with $q_{k+1}(z)=q_{k}^{\prime}(z)\left(z^{2}-1\right)-(k+1) z q_{k}(z)=(-1)^{k+1} z^{k+1}+d_{k} z^{k}+\cdots \in$ $\mathbb{Z}[z]$.

3. Main results

Theorem 1. Let $P_{1}, \ldots, P_{s}, Q_{1}, \ldots, Q_{s} \in \overline{\mathbb{Q}}[x], m_{1}, \ldots, m_{s} \in \mathbb{N}, r_{1}, \ldots, r_{s}$ $\in \mathbb{Z}$ satisfy the following conditions: for any $1 \leq j \leq s$, $\operatorname{deg} P_{j} \leq \operatorname{deg} Q_{j}-2$,

$$
\begin{equation*}
\frac{P_{j}(-x)}{Q_{j}(-x)}=\frac{P_{j}\left(r_{j}+x\right)}{Q_{j}\left(r_{j}+x\right)} \tag{14}
\end{equation*}
$$

$Q_{j}(x)=\prod_{k=1}^{2 m_{j}}\left(x-\alpha_{j, k}\right)^{l_{j, k}}$, where $\alpha_{j, k}=a_{j, k}+i b_{j, k} \sqrt{d} \in \mathbb{Q}(i \sqrt{d}) \backslash \mathbb{N}_{0}$, $k=1, \ldots, 2 m_{j}$, are distinct and such that $\alpha_{j, m_{j}+k}=r_{j}-\alpha_{j, k}, b_{j, k} \geq 0$, $l_{j, m_{j}+k}=l_{j, k} \in \mathbb{N}, k=1, \ldots, m_{j}$. Then the sum

$$
S=\sum_{n=0}^{\infty}\left(\frac{P_{1}(n)}{Q_{1}(n)}+\cdots+\frac{P_{s}(n)}{Q_{s}(n)}\right)
$$

is either a computable algebraic number or transcendental. Moreover, S is transcendental if at least one of the following conditions holds:
(i) $\alpha_{j, k} \notin \mathbb{Q} \backslash \mathbb{Z}, j=1, \ldots, s, k=1, \ldots, 2 m_{j}$, and

$$
\begin{aligned}
& \sum_{j=1}^{s} \sum_{k=1}^{m_{j}} \operatorname{res}_{z=\alpha_{j, k}} \frac{P_{j}(z)}{Q_{j}(z)} \neq 0, \\
& \alpha_{j, k} \notin \mathbb{Z}
\end{aligned}
$$

(ii) $b_{j_{0}, k_{0}}:=\min \left\{b_{j, k}: b_{j, k}>0\right\}$ is a unique minimum of the positive numbers $b_{j, k}$ and $\operatorname{res}_{z=\alpha_{j_{0}, k_{0}}} P_{j_{0}}(z) / Q_{j_{0}}(z) \neq 0$,
(iii) there exists a unique maximum $l_{j_{0}, k_{0}}$ of the sequence $l_{j, k}, 1 \leq j \leq s$, $1 \leq k \leq m_{j}$, and $b_{j_{0}, k_{0}}>0, P_{j_{0}}\left(\alpha_{j_{0}, k_{0}}\right) \neq 0$.
Proof. By Lemma 2, we have

$$
S=\sum_{j=1}^{s} \sum_{n=0}^{\infty} \frac{P_{j}(n)}{Q_{j}(n)}=\sum_{j=1}^{s} \sum_{k=1}^{2 m_{j}} \sum_{l=1}^{l_{j, k}} \frac{(-1)^{l}}{(l-1)!} A_{j, k, l} \psi^{(l-1)}\left(-\alpha_{j, k}\right)
$$

where

$$
\begin{equation*}
A_{j, k, l}=\left.\frac{1}{\left(l_{j, k}-l\right)!}\left(\frac{d}{d x}\right)^{l_{j, k}-l}\left(\frac{P_{j}(x)}{Q_{j}(x)}\left(x-\alpha_{j, k}\right)^{l_{j, k}}\right)\right|_{x=\alpha_{j, k}} \in \overline{\mathbb{Q}} \tag{15}
\end{equation*}
$$

From (14), (15) for $1 \leq k \leq m_{j}$ it follows that

$$
\begin{aligned}
A_{j, m_{j}+k, l} & =\left.\frac{1}{\left(l_{j, k}-l\right)!}\left(\frac{d}{d x}\right)^{l_{j, k}-l}\left(\frac{P_{j}\left(r_{j}-x\right)}{Q_{j}\left(r_{j}-x\right)}\left(x-r_{j}+\alpha_{j, k}\right)^{l_{j, k}}\right)\right|_{x=r_{j}-\alpha_{j, k}} \\
& =\left.\frac{(-1)^{l}}{\left(l_{j, k}-l\right)!}\left(\frac{d}{d y}\right)^{l_{j, k}-l}\left(\frac{P_{j}(y)}{Q_{j}(y)}\left(y-\alpha_{j, k}\right)^{l_{j, k}}\right)\right|_{y=\alpha_{j, k}}=(-1)^{l} A_{j, k, l}
\end{aligned}
$$

with $y=r_{j}-x$. Therefore,

$$
S=\sum_{j=1}^{s} \sum_{k=1}^{m_{j}} \sum_{l=1}^{l_{j, k}} \frac{(-1)^{l}}{(l-1)!} A_{j, k, l}\left(\psi^{(l-1)}\left(-\alpha_{j, k}\right)+(-1)^{l} \psi^{(l-1)}\left(\alpha_{j, k}-r_{j}\right)\right)
$$

Now if for some pair (j, k) we have $-\alpha_{j, k}$ and $\alpha_{j, k}-r_{j} \in \mathbb{N}$, then by (2), (7), we get

$$
\begin{aligned}
S= & C_{0}+\sum_{j=1}^{s} \sum_{\substack{k=1 \\
\alpha_{j, k} \in \mathbb{Z}}}^{m_{j}} \sum_{l=1}^{l_{j, k}} C_{j, k, l} \pi^{l} \\
& +\sum_{\substack{j=1 \\
\alpha_{j, k} \notin \mathbb{Z}}}^{s} \sum_{k=1}^{m_{j}} \sum_{l=1}^{l_{j, k}} \frac{A_{j, k, l}}{(l-1)!}\left(\psi^{(l-1)}\left(\alpha_{j, k}+1\right)+(-1)^{l} \psi^{(l-1)}\left(-\alpha_{j, k}\right)\right)
\end{aligned}
$$

where $C_{0}, C_{j, k, l} \in \overline{\mathbb{Q}}$. Combining this with (3) and Lemma 3 we conclude that

$$
\begin{align*}
S= & C_{0}+\sum_{\substack{j=1 \\
\alpha_{j, k} \in \mathbb{Z}}}^{\sum_{k=1}^{m_{j}}} \sum_{l=1}^{l_{j, k}} C_{j, k, l} \pi^{l} \tag{16}\\
& +\sum_{\substack{j=1 \\
\alpha_{j, k} \notin \mathbb{Z}}}^{s} \sum_{k=1}^{m_{j}} \sum_{l=1}^{l_{j, k}} \frac{(-1)^{l-1} A_{j, k, l}}{(l-1)!} \pi^{l} p_{l-1}\left(-\cot \pi \alpha_{j, k}\right)
\end{align*}
$$

According to the formula

$$
\cot \pi \alpha_{j, k}=i \frac{e^{2 \pi i a_{j, k}}+e^{2 \pi b_{j, k} \sqrt{d}}}{e^{2 \pi i a_{j, k}}-e^{2 \pi b_{j, k} \sqrt{d}}}=-i-\frac{2 i e^{2 \pi i a_{j, k}}}{e^{2 \pi b_{j, k} \sqrt{d}}-e^{2 \pi i a_{j, k}}}
$$

we see that $S-C_{0} \in \overline{\mathbb{Q}}\left(\pi, e^{\pi \sqrt{d} / B}\right)$, where $B \in \mathbb{N}$ is the least common denominator of the numbers $b_{j, k}$, and therefore $S-C_{0}$ is either zero or transcendental in view of the algebraic independence of π and $e^{\pi \sqrt{d}}[7]$.

If we suppose that S is algebraic and condition (i) holds, then considering the summands in (16) involving π to the first power we get

$$
-\pi \sum_{\substack{j=1 \\ \alpha_{j, k} \notin \mathbb{Z}}}^{s} \sum_{\substack{k=1}}^{m_{j}} A_{j, k, 1} \cot \pi \alpha_{j, k}+\pi^{2}(\ldots)=0
$$

or

$$
\pi i \sum_{\substack{j=1 \\ b_{j, k}>0}}^{s} \sum_{k=1}^{m_{j}} A_{j, k, 1}+2 \pi i \sum_{\substack{j=1 \\ b_{j, k}>0}}^{s} \sum_{k=1}^{m_{j}} \frac{A_{j, k, 1} e^{2 \pi i a_{j, k}}}{e^{2 \pi b_{j, k} \sqrt{d}}-e^{2 \pi i a_{j, k}}}+\pi^{2}(\ldots)=0
$$

Now multiplying both sides of the last equality by

$$
\begin{equation*}
\prod_{\substack{j=1 \\ b_{j, k}>0}}^{s} \prod_{k=1}^{m_{j}}\left(e^{2 \pi b_{j, k} \sqrt{d}}-e^{2 \pi i a_{j, k}}\right)^{l_{j, k}} \tag{17}
\end{equation*}
$$

we get a contradiction with the algebraic independence of π and $e^{\pi \sqrt{d}}$.
If (ii) is valid and S is algebraic, then (16) can be rewritten as

$$
\begin{equation*}
\pi C_{1}+2 \pi i \sum_{\substack{j=1 \\ b_{j, k}>0}}^{s} \sum_{k=1}^{m_{j}} \frac{A_{j, k, 1} e^{2 \pi i a_{j, k}}}{e^{2 \pi b_{j, k} \sqrt{d}}-e^{2 \pi i a_{j, k}}}+\pi^{2}(\ldots)=0 \tag{18}
\end{equation*}
$$

If $C_{1} \neq 0$, then this is impossible by the same argument as above. If $C_{1}=0$, then multiplying both sides of (18) by (17) we get

$$
2 \pi i A_{j_{0}, k_{0}, 1} e^{2 \pi i a_{j_{0}, k_{0}}} e^{2 \pi\left(\beta-b_{j_{0}, k_{0}}\right) \sqrt{d}}+\cdots=0
$$

which is impossible, and therefore S is transcendental.
If condition (iii) holds, then the summands with the maximal power of π in (16) have the form

$$
\begin{equation*}
\pi^{l_{j_{0}, k_{0}}}\left(\pm \frac{A_{j_{0}, k_{0}, l_{j_{0}, k_{0}}}}{\left(l_{j_{0}, k_{0}}-1\right)!} p_{l_{j_{0}, k_{0}}-1}\left(-\cot \pi \alpha_{j_{0}, k_{0}}\right)+C_{j_{0}, k_{0}, l_{j_{0}, k_{0}}}\right) \tag{19}
\end{equation*}
$$

where $A_{j_{0}, k_{0}, l_{j_{0}, k_{0}}}, C_{j_{0}, k_{0}, l_{j_{0}, k_{0}}} \in \overline{\mathbb{Q}}$ and $A_{j_{0}, k_{0}, l_{j_{0}, k_{0}}}$ is not zero by (15). Since $\cot \pi \alpha_{j_{0}, k_{0}}$ is transcendental, the term (19) does not vanish in (16), and hence S is transcendental. This completes the proof of the theorem.

REMARK 1.1. If under the assumptions of Theorem 1 we have $r_{1}=\cdots=$ $r_{s}=-1$, then S is either zero or transcendental.

Corollary 4. If $a, b \in \mathbb{Z}, 4 b>a^{2}, m \in \mathbb{N}$, then the sum

$$
\sum_{n=0}^{\infty} \frac{P(n)}{\left(n^{2}+a n+b\right)^{m}}
$$

is transcendental for any polynomial $P(x) \in \overline{\mathbb{Q}}[x]$ such that

$$
\operatorname{deg} P(x) \leq 2 m-2 \quad \text { and } \quad P(-x)=P(x-a)
$$

In particular, the sum of the series

$$
\sum_{n=0}^{\infty} \frac{\left(n^{2}+a n+c\right)^{k}}{\left(n^{2}+a n+b\right)^{m}}
$$

is transcendental for any $c, k \in \mathbb{Z}, 0 \leq k<m$.
Theorem 2. Let $P_{1}, \ldots, P_{s}, Q_{1}, \ldots, Q_{s} \in \overline{\mathbb{Q}}[x], m_{1}, \ldots, m_{s} \in \mathbb{N}, r_{1}, \ldots, r_{s}$ $\in \mathbb{Z}$ satisfy the following conditions: for any $1 \leq j \leq s$, $\operatorname{deg} P_{j} \leq \operatorname{deg} Q_{j}-1$,

$$
\begin{equation*}
\frac{P_{j}(-x)}{Q_{j}(-x)}=(-1)^{r_{j}} \frac{P_{j}\left(r_{j}+x\right)}{Q_{j}\left(r_{j}+x\right)} \tag{20}
\end{equation*}
$$

$Q_{j}(x)=\prod_{k=1}^{2 m_{j}}\left(x-\alpha_{j, k}\right)^{l_{j, k}}$, where $\alpha_{j, k}=a_{j, k}+i b_{j, k} \sqrt{d} \in \mathbb{Q}(i \sqrt{d}) \backslash \mathbb{N}_{0}$, $k=1, \ldots, 2 m_{j}$, are distinct and such that $\alpha_{j, m_{j}+k}=r_{j}-\alpha_{j, k}, b_{j, k} \geq 0$, $l_{j, m_{j}+k}=l_{j, k} \in \mathbb{N}, k=1, \ldots, m_{j}$. Then the sum

$$
T=\sum_{n=0}^{\infty}\left(\frac{P_{1}(n)}{Q_{1}(n)}+\cdots+\frac{P_{s}(n)}{Q_{s}(n)}\right)(-1)^{n}
$$

is either a computable algebraic number or transcendental. Moreover, T is transcendental if at least one of the following conditions holds:
(i) $b_{j_{0}, k_{0}}:=\min \left\{b_{j, k}: b_{j, k}>0\right\}$ is a unique minimum of the positive numbers $b_{j, k}$ and $\operatorname{res}_{z=\alpha_{j_{0}, k_{0}}} P_{j_{0}}(z) / Q_{j_{0}}(z) \neq 0$,
(ii) there exists a unique maximum $l_{j_{0}, k_{0}}$ of the sequence $l_{j, k}, 1 \leq j \leq s$, $1 \leq k \leq m_{j}$, and $b_{j_{0}, k_{0}}>0, P_{j_{0}}\left(\alpha_{j_{0}, k_{0}}\right) \neq 0$.

Proof. From Lemma 2 it follows that

$$
T=\sum_{j=1}^{s} \sum_{n=0}^{\infty} \frac{P_{j}(n)}{Q_{j}(n)}(-1)^{n}=\sum_{j=1}^{s} \sum_{k=1}^{2 m_{j}} \sum_{l=1}^{l_{j, k}} \frac{(-1)^{l-1}}{(l-1)!} A_{j, k, l} g^{(l-1)}\left(-\alpha_{j, k}\right)
$$

where the coefficients $A_{j, k, l}$ are defined in (15). According to (15) and (20) for $1 \leq k \leq m_{j}$ we have $A_{j, m_{j}+k, l}=(-1)^{r_{j}+l} A_{j, k, l}$. Then

$$
T=\sum_{j=1}^{s} \sum_{k=1}^{m_{j}} \sum_{l=1}^{l_{j, k}} \frac{(-1)^{l-1}}{(l-1)!} A_{j, k, l}\left(g^{(l-1)}\left(-\alpha_{j, k}\right)+(-1)^{r_{j}+l} g^{(l-1)}\left(\alpha_{j, k}-r_{j}\right)\right)
$$

Now if for some pair (j, k) we have $-\alpha_{j, k}$ and $\alpha_{j, k}-r_{j} \in \mathbb{N}$, then by (5), (7), we get

$$
\begin{aligned}
T= & C_{0}+\sum_{\substack{j=1 \\
\alpha_{j, k} \in \mathbb{Z}}}^{s} \sum_{k=1}^{m_{j}} \sum_{l=1}^{l_{j, k}} C_{j, k, l} \pi^{l} \\
& +\sum_{\substack{j=1 \\
\alpha_{j, k} \notin \mathbb{Z}}}^{m_{j}} \sum_{k=1}^{l_{j, k}} \sum_{l=1}^{l_{j}} \frac{A_{j, k, l}}{(l-1)!}\left((-1)^{l-1} g^{(l-1)}\left(-\alpha_{j, k}\right)+g^{(l-1)}\left(\alpha_{j, k}+1\right)\right),
\end{aligned}
$$

where $C_{0}, C_{j, k, l} \in \overline{\mathbb{Q}}$. Hence, by (6) and Lemma 3, we have

$$
\begin{equation*}
T=C_{0}+\sum_{\substack{j=1 \\ \alpha_{j, k} \in \mathbb{Z}}}^{s} \sum_{\substack{l=1 \\ m_{j}}}^{\sum_{l} \text { even }}<C_{j, k, l} \pi^{l}-\sum_{\substack{j=1 \\ \alpha_{j, k} \notin \mathbb{Z}}}^{s} \sum_{k=1}^{m_{j}} \sum_{l=1}^{l_{j, k}} \frac{A_{j, k, l}}{(l-1)!} \pi^{l} \frac{q_{l-1}\left(\cos \pi \alpha_{j, k}\right)}{\sin ^{l} \pi \alpha_{j, k}} \tag{21}
\end{equation*}
$$

and according to Euler's formulas for cos and sin we conclude that either $T=C_{0}$ or T is transcendental.

If T is algebraic and condition (i) holds, then we rewrite (21) as

$$
\pi C_{1}+\pi \sum_{\substack{j=1 \\ b_{j, k}>0}}^{s} \sum_{k=1}^{m_{j}} \frac{A_{j, k, 1}}{\sin \pi \alpha_{j, k}}+\pi^{2}(\ldots)=0
$$

from which by the same argument as in the proof of Theorem 1(ii) and formula

$$
\frac{1}{\sin \pi \alpha_{j, k}}=-\frac{2 i e^{i \pi a_{j, k}} e^{\pi b_{j, k} \sqrt{d}}}{e^{2 \pi b_{j, k} \sqrt{d}}-e^{2 \pi i a_{j, k}}}
$$

we get a contradiction.
If condition (ii) is valid and T is algebraic, then from (21) we have

$$
\pi^{l_{j_{0}, k_{0}}}\left(C_{j_{0}, k_{0}, l_{j_{0}, k_{0}}}-\frac{A_{j_{0}, k_{0}, l_{j 0}, k_{0}}}{\left(l_{j_{0}, k_{0}}-1\right)!} \frac{q_{l_{0}, k_{0}-1}\left(\cos \pi \alpha_{j_{0}, k_{0}}\right)}{\sin ^{l_{j 0}, k_{0}} \pi \alpha_{j_{0}, k_{0}}}\right)+\cdots=0,
$$

where $A_{j_{0}, k_{0}, l_{j_{0}, k_{0}}} \neq 0$ by (15). Now applying Lemma 3 we easily see that the term containing π to the maximal power does not vanish and we get a contradiction with the algebraic independence of π and $e^{\pi \sqrt{d}}$. This completes the proof.

Remark 2.1. If under the assumptions of Theorem 2 we have $r_{1}=\cdots=$ $r_{s}=-1$, then T is either zero or transcendental.

Remark 2.2. We note that there are alternative proofs of formulas (16), (21) based on application of the residue theorem to the complex integrals

$$
\frac{1}{2 \pi i} \int_{L_{N}}\left(\sum_{j=1}^{s} \frac{P_{j}(z)}{Q_{j}(z)}\right)(\pi \cot \pi z) d z \quad \text { and } \quad \frac{1}{2 \pi i} \int_{L_{N}}\left(\sum_{j=1}^{s} \frac{P_{j}(z)}{Q_{j}(z)}\right) \frac{\pi}{\sin \pi z} d z,
$$

where L_{N} is a square contour with vertices $(N+1 / 2)(\pm 1 \pm i)$. (See also [3, Theorem 2].)

Corollary 5. Let $a, b \in \mathbb{Z}, 4 b>a^{2}$, and $m \in \mathbb{N}$. Then for any polynomial $P(x) \in \overline{\mathbb{Q}}[x]$ such that $\operatorname{deg} P(x)<2 m, P(-x)=(-1)^{a} P(x-a)$, the sum

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} P(n)}{\left(n^{2}+a n+b\right)^{m}}
$$

is transcendental. In particular, if $k \in \mathbb{Z}, 0 \leq k<2 m$, and the numbers k, a have the same parity, then the sum

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+a / 2)^{k}}{\left(n^{2}+a n+b\right)^{m}}
$$

is transcendental.
Theorem 3. Let $f: \mathbb{Z} \rightarrow \overline{\mathbb{Q}}$ be periodic with period $q \in \mathbb{N}$. Suppose that $r \in \mathbb{Z}, m, l_{1}, \ldots, l_{m} \in \mathbb{N}, P(x), Q(x) \in \overline{\mathbb{Q}}[x]$,

$$
\begin{equation*}
\frac{P(-x)}{Q(-x)}= \pm \frac{P(x+q r)}{Q(x+q r)}, \tag{22}
\end{equation*}
$$

$Q(x)=\left(x-\alpha_{0}\right) \prod_{k=1}^{2 m}\left(x-\alpha_{k}\right)^{l_{k}}$, where $\alpha_{0}=q r / 2, \alpha_{k}=a_{k}+i b_{k} \sqrt{d} \in$ $\mathbb{Q}(i \sqrt{d}) \backslash \mathbb{N}, k=1, \ldots, 2 m$, are distinct, $\alpha_{m+k}=q r-\alpha_{k}, l_{m+k}=l_{k}, b_{k} \geq 0$, $k=1, \ldots, m$, and f is an even or odd function according to whether we have the "plus" or "minus" sign in (22). Suppose further that the series

$$
U=\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} f(n)
$$

converges. Then U is either a computable algebraic number or transcendental. Moreover, U is transcendental if at least one of the following conditions holds:
(i) $P(q r / 2)=0$ and

$$
\sum_{\substack{t=1 \\ t-\alpha_{k} \notin q \mathbb{Z}}}^{q} \sum_{k=1}^{m} f(t) \underset{z=\alpha_{k}}{\operatorname{res}} \frac{P(z)}{Q(z)} \neq 0,
$$

(ii) $P(q r / 2)=0, b_{k_{0}}:=\min \left\{b_{k}>0\right\}$ is a unique minimum of the positive numbers b_{k}, res $_{z=\alpha_{k_{0}}} P(z) / Q(z) \neq 0$ and $\sum_{t=1}^{q} f(t) e^{-2 \pi i t / q} \neq 0$,
(iii) $\sum_{\substack{t=1 \\ t-\alpha_{k} \notin q \mathbb{Z}}}^{q-1} \sum_{\substack{ \\m}} f(t){\underset{z}{z=\alpha_{k}}}_{\operatorname{res}}^{P(z)} \neq \frac{i}{2(z)} \frac{P(q r / 2)}{Q^{\prime}(q r / 2)} \sum_{\substack{t=1 \\ t \neq q / 2}}^{q-1} f(t) \cot \left(\frac{\pi t}{q}+\pi\left\{\frac{r}{2}\right\}\right)$ and $P(q r / 2) \neq 0$, where $\{x\}$ denotes the fractional part of x.

Proof. By Lemma 1, using the partial fraction expansion

$$
\frac{P(x)}{Q(x)}=\sum_{k=1}^{2 m} \sum_{l=1}^{l_{k}} \frac{A_{k, l}}{\left(x-\alpha_{k}\right)^{l}}+\frac{A_{0,1}}{x-q r / 2},
$$

where the coefficients $A_{k, l}$ are defined in (11) with α_{k} replaced by $-\alpha_{k}$ and $A_{0,1}=P(q r / 2) / Q^{\prime}(q r / 2)$, we have
$U=\sum_{t=1}^{q} f(t) \sum_{k=1}^{2 m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \frac{A_{k, l}}{q^{l}} \psi^{(l-1)}\left(\frac{t-\alpha_{k}}{q}\right)-\frac{A_{0,1}}{q} \sum_{t=1}^{q} f(t) \psi\left(\frac{t}{q}-\frac{r}{2}\right)$.
By (22), for $1 \leq k \leq m, 1 \leq l \leq l_{k}$, it easily follows that $A_{m+k, l}=$ $\pm(-1)^{l} A_{k, l}$.

To prove the theorem, we first assume that $P(q r / 2)=0$. Then taking into account that $f(t)= \pm f(-t)$ and f is a q-periodic function we have

$$
\begin{aligned}
U= & \sum_{t=1}^{q} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \frac{A_{k, l}}{q^{l}}\left(\psi^{(l-1)}\left(\frac{t-\alpha_{k}}{q}\right)\right. \\
& \left. \pm(-1)^{l} \psi^{(l-1)}\left(\frac{t-\alpha_{m+k}}{q}\right)\right) \\
= & \sum_{t=1}^{q} \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l} f(t)}{(l-1)!} \frac{A_{k, l}}{q^{l}} \psi^{(l-1)}\left(\frac{t-\alpha_{k}}{q}\right) \\
& +\sum_{t=1}^{q} \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{A_{k, l} f(q-t)}{(l-1)!q^{l}} \psi^{(l-1)}\left(\frac{t-\alpha_{m+k}}{q}\right) \\
= & A+\sum_{t=1}^{q} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \\
& \times \frac{A_{k, l}}{q^{l}}\left(\psi^{(l-1)}\left(\frac{t-\alpha_{k}}{q}\right)+(-1)^{l} \psi^{(l-1)}\left(1-r-\frac{t-\alpha_{k}}{q}\right)\right),
\end{aligned}
$$

where $A=-f(q) \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} A_{k, l} / \alpha_{m+k}^{l} \in \overline{\mathbb{Q}}$. Now by (3), (7) and Lemma 3 we get

$$
\begin{aligned}
U= & C_{0}+\sum_{\substack{t=1 \\
t-\alpha_{k} \in q \mathbb{Z}}}^{q} \sum_{k=2}^{m} \sum_{l=2}^{l_{k}} C_{t, k, l} \pi^{l} \\
& -\sum_{\substack{t=1 \\
t-\alpha_{k} \notin \mathbb{Z}}}^{q} \sum_{k=1}^{m} \sum_{l}^{l_{k}} \frac{(-\pi)^{l} f(t) A_{k, l}}{q^{l}} p_{l-1}\left(\cot \left(\frac{\pi\left(t-\alpha_{k}\right)}{q}\right)\right)
\end{aligned}
$$

with $C_{0}, C_{t, k, l} \in \overline{\mathbb{Q}}$, from which it follows that U is either equal to $C_{0} \in \overline{\mathbb{Q}}$
or transcendental. If condition (i) or (ii) holds, then arguing as in the proof of Theorem 1(i), (ii) we find that U is transcendental.

If $P(q r / 2) \neq 0$, then $P(-x)=P(x+q r)$ and thus f is an odd function by the hypothesis. Arguing as above we deduce that $A_{k+m, l}=(-1)^{l-1} A_{k, l}$, $1 \leq k \leq m, 1 \leq l \leq l_{k}$, and

$$
\begin{aligned}
U= & \sum_{t=1}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \\
& \times \frac{A_{k, l}}{q^{l}}\left(\psi^{(l-1)}\left(\frac{t-\alpha_{k}}{q}\right)+(-1)^{l} \psi^{(l-1)}\left(1-r-\frac{t-\alpha_{k}}{q}\right)\right) \\
& -\frac{A_{0,1}}{2 q} \sum_{t=1}^{q-1} f(t)\left(\psi\left(\frac{t}{q}-\frac{r}{2}\right)-\psi\left(1-\frac{t}{q}-\frac{r}{2}\right)\right)
\end{aligned}
$$

As is easily seen, if q is even, then $f(q / 2)=0$ and we may assume that $t \neq q / 2$ in the last sum. Now by (2), for a positive integer $t \leq q-1, t \neq q / 2$, we have

$$
\begin{align*}
\psi\left(\frac{t}{q}-\frac{r}{2}\right) & =C+\psi\left(\frac{t}{q}-\frac{r}{2}+\left[\frac{r+1}{2}\right]\right), \\
\psi\left(1-\frac{t}{q}-\frac{r}{2}\right) & =\widetilde{C}+\psi\left(1-\frac{t}{q}-\frac{r}{2}+\left[\frac{r}{2}\right]\right), \tag{23}
\end{align*}
$$

where $C, \widetilde{C} \in \overline{\mathbb{Q}}$ and $[x]$ denotes the integer part of x. Now by $(3),(23)$ and Lemma 3 we get

$$
\begin{align*}
U= & C_{1}+\sum_{\substack{t=1 \\
t-\alpha_{k} \in q \mathbb{Z}}}^{q-1} \sum_{k=2}^{m} \sum_{t, k, l}^{l_{k}} \pi^{l} \tag{24}\\
& -\sum_{\substack{t=1 \\
t-\alpha_{k} \notin q \mathbb{Z}}}^{q-1} \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{A_{k, l} \pi^{l} f(t)}{(-q)^{l}} p_{l-1}\left(\cot \left(\frac{\pi\left(t-\alpha_{k}\right)}{q}\right)\right) \\
& +\frac{A_{0,1} \pi}{2 q} \sum_{t=1}^{q-1} f(t) \cot \left(\frac{\pi t}{q}+\pi\left\{\begin{array}{l}
r \\
2
\end{array}\right\}\right)
\end{align*}
$$

with $C_{1}, C_{t, k, l} \in \overline{\mathbb{Q}}$, and therefore U is either equal to C_{1} or transcendental. If $r=0$, i.e., if $P(x)$ and $Q(x)$ are even and odd polynomials respectively, then $C_{1}=0$ and hence U is either zero or transcendental. If condition (iii) is valid, then the coefficient of π does not vanish in (24) and we conclude that U is transcendental. This completes the proof of the theorem.

REMARK 3.1. If under the assumptions of Theorem 3 we have $r=0$, then either $U=-f(q) \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} A_{k, l} / \alpha_{k+m}^{l}$ or U is transcendental.

Theorem 4. Let $k \in \mathbb{N}, r \in \mathbb{Z}, q r / 2 \notin \mathbb{N}, P(x) \in \overline{\mathbb{Q}}[x]$ and $P(-x)=$ $\pm P(x+q r)$. Let $f: \mathbb{Z} \rightarrow \overline{\mathbb{Q}}$ be an even or odd periodic function with period $q \in \mathbb{N}$ depending on whether k and $\operatorname{deg} P(x)$ have the same parity or not. Suppose further that the series

$$
U=\sum_{n=1}^{\infty} \frac{f(n) P(n)}{(n-q r / 2)^{k}}
$$

converges. Then the sum U is either a computable algebraic number or transcendental. In particular, if $r=0$, then U is either zero or transcendental.

Proof. For the rational function $P(x) /(x-q r / 2)^{k}$ we have the following partial fraction expansion:
$\frac{P(x)}{(x-q r / 2)^{k}}=\sum_{l=0}^{[(\operatorname{deg} P) / 2]} \frac{A_{l}}{(x-q r / 2)^{k-\delta-2 l}} \quad$ with $\quad A_{l}=\frac{1}{(2 l+\delta)!} P^{(2 l+\delta)}\left(\frac{q r}{2}\right)$
and δ equal to 0 or 1 according to whether $P(-x)=P(x+q r)$ or $P(-x)=$ $-P(x+q r)$. Then by Lemma 1, we get

$$
U=\sum_{t=1}^{q} f(t) \sum_{l=0}^{[(\operatorname{deg} P) / 2]} \frac{(-1)^{k-\delta-1}}{(k-\delta-2 l-1)!} \frac{A_{l}}{q^{k-\delta-2 l}} \psi^{(k-\delta-2 l-1)}\left(\frac{t}{q}-\frac{r}{2}\right)
$$

Note that if k and $\operatorname{deg} P$ have the same (distinct) parity, then $k-\delta$ is even (odd) and f is an even (odd) function by the hypothesis. Thus we have $f(t)=(-1)^{k-\delta} f(q-t)$ and

$$
2 U=\sum_{t=1}^{q} \sum_{l=0}^{[(\operatorname{deg} P) / 2]} \frac{(-1)^{k-\delta-1} f(t)-f(q-t)}{(k-\delta-2 l-1)!} \frac{A_{l}}{q^{k-\delta-2 l}} \psi^{(k-\delta-2 l-1)}\left(\frac{t}{q}-\frac{r}{2}\right)
$$

or

$$
\begin{align*}
2 U= & \sum_{t=1}^{q-1} f(t) \sum_{l=0}^{[(\operatorname{deg} P) / 2]} \frac{(-1)^{k-\delta-1}}{(k-\delta-2 l-1)!} \frac{A_{l}}{q^{k-\delta-2 l}}\left(\psi^{(k-\delta-2 l-1)}\left(\frac{t}{q}-\frac{r}{2}\right)\right. \tag{25}\\
& \left.+(-1)^{k-\delta} \psi^{(k-\delta-2 l-1)}\left(1-\frac{t}{q}-\frac{r}{2}\right)\right)+\widetilde{U}
\end{align*}
$$

where

$$
\begin{align*}
\tilde{U}= & \left(f(q)+(-1)^{k-\delta} f(0)\right) \tag{26}\\
& \times \sum_{l=0}^{[(\operatorname{deg} P) / 2]} \frac{(-1)^{k-\delta-1}}{(k-\delta-2 l-1)!} \frac{A_{l}}{q^{k-\delta-2 l}} \psi^{(k-\delta-2 l-1)}\left(1-\frac{r}{2}\right) .
\end{align*}
$$

It can be easily seen that $\widetilde{U}=0$ if f is an odd function; if f is even, then
$k-\delta$ is even and by (7) we have

$$
\begin{equation*}
\widetilde{U}=C+\sum_{l=0}^{[(\operatorname{deg} P) / 2]} C_{l} \pi^{k-\delta-2 l} \tag{27}
\end{equation*}
$$

with algebraic coefficients C, C_{l}. From (23), (3), (7) and Lemma 3 it follows that

$$
\begin{align*}
& \psi^{(k-\delta-2 l-1)}\left(\frac{t}{q}-\frac{r}{2}\right)+(-1)^{k-\delta} \psi^{(k-\delta-2 l-1)}\left(1-\frac{t}{q}-\frac{r}{2}\right) \tag{28}\\
& \in \mathbb{Q} \pi^{k-\delta-2 l}+\mathbb{Q}
\end{align*}
$$

Finally, by (25)-(28), we find

$$
U=\widetilde{C}+\sum_{l=0}^{[(\operatorname{deg} P) / 2]} \widetilde{C}_{l} \pi^{k-\delta-2 l}
$$

with $\widetilde{C}, \widetilde{C}_{l} \in \overline{\mathbb{Q}}$, and therefore either U is equal to \widetilde{C} or $U \notin \overline{\mathbb{Q}}$. If $r=0$, then from $(25),(26)$ it easily follows that U is either zero or transcendental. This completes the proof of the theorem.

The special case of Theorem 4 for the number $U=L(k, \chi)=\sum_{n=1}^{\infty} \chi(n) / n^{k}$, where χ is an even (or odd) Dirichlet character, was proved in [10, $\S 6]$.

Now consider several applications of Theorem 3 which gives us means to construct new examples of transcendental numbers. If in Theorem 3 we put $f(n)=\chi(n)$, where $\chi(n)$ is a Dirichlet character mod q, then the Gauss sum

$$
\tau(\chi)=\sum_{k=1}^{q} \chi(k) e^{-2 \pi i k / q}
$$

is never zero when χ is a primitive character (see [4, Ch. 8]). Namely, we have $|\tau(\chi)|=\sqrt{q}$. This gives us the following.

Corollary 6. Let $q>1$ be an integer and χ be a primitive character mod q. Suppose that $P(x) \in \overline{\mathbb{Q}}[x], P(-x)= \pm P(x+q r), Q(x)=$ $\prod_{k=1}^{2 m}\left(x-\alpha_{k}\right)^{l_{k}}$ for some $m, l_{1}, \ldots, l_{2 m} \in \mathbb{N}, r \in \mathbb{Z}$, where $\alpha_{k}=a_{k}+i b_{k} \sqrt{d} \in$ $\mathbb{Q}(i \sqrt{d}) \backslash \mathbb{N}, k=1, \ldots, 2 m$, are distinct numbers such that $\alpha_{m+k}=q r-\alpha_{k}$, $b_{k} \geq 0, l_{m+k}=l_{k}, k=1, \ldots, m$, and χ is an even (resp. odd) character if $\operatorname{deg} P$ is even $\left(\right.$ resp. odd). If $b_{k_{0}}:=\min \left\{b_{k}>0\right\}$ is a unique minimum of the positive numbers b_{k} and $\operatorname{res}_{z=\alpha_{k_{0}}} P(z) / Q(z) \neq 0$, then the sum

$$
\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} \chi(n)
$$

is transcendental.

Corollary 7. Let $q>1$ be a square-free integer with $q \equiv 1(\bmod 4)$, and let $\left(\frac{n}{q}\right)$ denote Jacobi's symbol. Then

$$
\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)}\left(\frac{n}{q}\right) \notin \overline{\mathbb{Q}}
$$

where $P(x) \in \overline{\mathbb{Q}}[x], P(-x)=P(x+q r)$ and $Q(x)$ is as in Corollary 6. In particular, the sum

$$
\sum_{n=1}^{\infty} \frac{\left(\frac{n}{q}\right)}{\left(n^{2}+q r n+b\right)^{m}}
$$

is transcendental for any $m \in \mathbb{N}, b, r \in \mathbb{Z}$ such that $q^{2} r^{2}<4 b$.
Corollary 8. Let $q>1$ be a square-free integer with $q \equiv 3(\bmod 4)$. Then

$$
\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)}\left(\frac{n}{q}\right) \notin \overline{\mathbb{Q}}
$$

where $P(x) \in \overline{\mathbb{Q}}[x], P(-x)=-P(x+q r)$ and $Q(x)$ is as in Corollary 6. In particular, the sum

$$
\sum_{n=1}^{\infty}\left(\frac{n}{q}\right) \frac{(n+q r / 2)^{2 m-1}}{\left(n^{2}+q r n+b\right)^{m}}
$$

is transcendental for any $m \in \mathbb{N}, b, r \in \mathbb{Z}$ such that $q^{2} r^{2}<4 b$.
If χ_{0} is the principal character $\bmod q$, then

$$
\sum_{n=1}^{q} \chi_{0}(n)=\varphi(q), \quad \tau\left(\chi_{0}\right)=\sum_{\substack{k=1 \\(k, q)=1}}^{q} e^{-2 \pi i k / q}=\mu(q)
$$

where φ and μ are the Euler and Möbius functions, respectively (see [11, Ch. 3]) and we have

Corollary 9. If $q>1$ is a square-free integer and χ_{0} is the principal character mod q, then the sum

$$
\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} \chi_{0}(n)
$$

is transcendental, where $P(x) \in \overline{\mathbb{Q}}[x], P(-x)=P(x+q r)$ and the polynomial $Q(x)$ is as in Corollary 6. In particular, the sum of the series

$$
\sum_{n=1}^{\infty} \frac{\chi_{0}(n)}{\left(n^{2}+q r n+b\right)^{m}}
$$

is transcendental for any $m \in \mathbb{N}, b, r \in \mathbb{Z}$ such that $q^{2} r^{2}<4 b$.

Corollary 10. Let $q>1$ be an integer and χ_{0} the principal character $\bmod q$. Suppose that $P(x), Q(x) \in \overline{\mathbb{Q}}[x], P(-x)=P(x+q r)$ and $Q(x)=$ $\prod_{k=1}^{2 m}\left(x-\alpha_{k}\right)^{l_{k}}$ for some $m, l_{1}, \ldots, l_{2 m} \in \mathbb{N}, r \in \mathbb{Z}$, where $\alpha_{k}=a_{k}+i b_{k} \sqrt{d} \in$ $\mathbb{Q}(i \sqrt{d}) \backslash \mathbb{Q}, k=1, \ldots, 2 m$, are distinct and such that $\alpha_{k+m}=\alpha_{k}, b_{k} \geq 0$, $l_{k+m}=l_{k}, k=1, \ldots, m$. If $\sum_{k=1}^{m} \operatorname{res}_{z=\alpha_{k}} P(z) / Q(z) \neq 0$, then the sum

$$
\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} \chi_{0}(n)
$$

is transcendental.
Corollary 11. Let $f: \mathbb{Z} \rightarrow \overline{\mathbb{Q}}$ be odd, periodic with period $q \in \mathbb{N}$. Then the sum

$$
\sum_{n=1}^{\infty} \frac{P(n) f(n)}{n\left(n^{2}+b\right)^{m}}
$$

is either zero or transcendental for any $m, b \in \mathbb{N}$ and any even polynomial $P(x)$ with $\operatorname{deg} P \leq 2 m$.

4. Transcendence of trigonometric series

Theorem 5. Suppose that $\beta_{1}, \ldots, \beta_{s} \in[0,2)$ are distinct rational numbers, $Q(x), P_{1}(x), \ldots, P_{s}(x) \in \overline{\mathbb{Q}}[x], Q(x)=\left(x-\alpha_{1}\right)^{l_{1}} \ldots\left(x-\alpha_{m}\right)^{l_{m}}$, where $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Q}(i \sqrt{d}) \backslash \mathbb{Z}$ are distinct, $l_{1}, \ldots, l_{m} \in \mathbb{N}, h(n)=\sum_{j=1}^{s} P_{j}(n) e^{i \pi \beta_{j} n}$, and for $1 \leq j \leq s$,

$$
\operatorname{deg} P_{j}(x) \leq \begin{cases}\operatorname{deg} Q(x)-1 & \text { if } \beta_{j}>0 \\ \operatorname{deg} Q(x)-2 & \text { if } \beta_{j}=0\end{cases}
$$

Then the sum

$$
V=\sum_{n=-\infty}^{\infty} \frac{h(n)}{Q(n)}
$$

is either zero or transcendental.
Proof. We consider the complex integral

$$
I_{N}=\frac{1}{2 \pi i} \int_{L_{N}} \frac{h^{-}(z)}{Q(z)} \frac{\pi}{\sin \pi z} d z
$$

where $h^{-}(z)=\sum_{j=1}^{s} P_{j}(z) e^{i \pi\left(\beta_{j}-1\right) z}, L_{N}$ is a square contour with vertices $(N+1 / 2)(\pm 1 \pm i)$, and N is a large positive integer such that $\alpha_{1}, \ldots, \alpha_{m}$ are inside L_{N}. For $z= \pm(N+1 / 2)+i y, y \in[-N-1 / 2, N+1 / 2]$, we have

$$
\left|\frac{1}{\sin \pi z}\right|=\frac{2}{e^{\pi y}+e^{-\pi y}}
$$

and therefore,

$$
\begin{align*}
\left|\frac{P_{j}(z) e^{i \pi\left(\beta_{j}-1\right) z}}{Q(z) \sin \pi z}\right| & =\frac{2\left|P_{j}(z)\right|}{\left|Q_{j}(z)\right|\left(e^{\pi \beta_{j} y}+e^{\pi\left(\beta_{j}-2\right) y}\right)} \tag{29}\\
& \leq 2 \frac{\left|P_{j}(z)\right|}{\left|Q_{j}(z)\right|} e^{-\pi|y| \min \left\{\beta_{j}, 2-\beta_{j}\right\}}
\end{align*}
$$

If $\beta_{j}=0$, then from (29) it follows that

$$
\begin{align*}
\left\lvert\, \frac{1}{2 \pi i}\right. & \int_{\substack{z= \pm(N+1 / 2)+i y \\
-N-1 / 2 \leq y \leq N+1 / 2}} \frac{P_{j}(z) e^{i \pi\left(\beta_{j}-1\right) z}}{Q(z)} \tag{30}
\end{align*} \frac{\pi}{\sin \pi z} d z|\mid
$$

If $0<\beta_{j}<2$, then (29) implies

$$
\begin{align*}
& \left\lvert\, \frac{1}{2 \pi i}\right. \left.\int_{\substack{z= \pm(N+1 / 2)+i y \\
-N-1 / 2 \leq y \leq N+1 / 2}} \frac{P_{j}(z) e^{i \pi\left(\beta_{j}-1\right) z}}{Q(z)} \frac{\pi}{\sin \pi z} d z \right\rvert\, \tag{31}\\
& \leq O\left(\frac{1}{N}\right) \int_{-N-1 / 2}^{N+1 / 2} e^{-\pi|y| \min \left\{\beta_{j}, 2-\beta_{j}\right\}} d y=O\left(\frac{1}{N}\right)
\end{align*}
$$

If $z=x \pm i(N+1 / 2), x \in[-N-1 / 2, N+1 / 2]$, then

$$
\left|\frac{1}{\sin \pi z}\right|=\frac{2}{e^{\pi(N+1 / 2)}-e^{-\pi(N+1 / 2)}}
$$

and

$$
\begin{align*}
\left|\frac{P_{j}(z) e^{i \pi\left(\beta_{j}-1\right) z}}{Q(z) \sin \pi z}\right| & \leq \frac{2\left|P_{j}(z)\right|}{|Q(z)|} \frac{e^{\pi\left|\beta_{j}-1\right|(N+1 / 2)}}{e^{\pi(N+1 / 2)}-e^{-\pi(N+1 / 2)}} \tag{32}\\
& = \begin{cases}O\left(\frac{1}{N^{2}}\right) & \text { if } \beta_{j}=0 \\
O\left(\frac{1}{N e^{\pi\left(1-\left|\beta_{j}-1\right|\right) N}}\right) & \text { if } 0<\beta_{j}<2\end{cases}
\end{align*}
$$

Therefore, by (30)-(32), we conclude that $I_{N}=O\left(N^{-1}\right)$ as $N \rightarrow \infty$. On the other hand, by the residue theorem we have

$$
I_{N}-\sum_{k=1}^{m} \operatorname{res}_{z=\alpha_{k}}\left(\frac{h^{-}(z)}{Q(z)} \frac{\pi}{\sin \pi z}\right)=\sum_{k=-N}^{N} \operatorname{res}_{z=k}\left(\frac{h^{-}(z)}{Q(z)} \frac{\pi}{\sin \pi z}\right)=\sum_{k=-N}^{N} \frac{h(k)}{Q(k)}
$$

Now letting N tend to infinity we get
$V=-\sum_{k=1}^{m} \operatorname{res}_{z=\alpha_{k}}\left(\frac{\pi h^{-}(z)}{Q(z) \sin \pi z}\right)=\left.\sum_{k=1}^{m} \frac{-\pi}{\left(l_{k}-1\right)!}\left(\frac{h^{-}(z)\left(z-\alpha_{k}\right)^{l_{k}}}{Q(z) \sin \pi z}\right)^{\left(l_{k}-1\right)}\right|_{z=\alpha_{k}}$,
which implies that $V \in \overline{\mathbb{Q}}\left(\pi, e^{\pi \sqrt{d} / B}\right)$ for some $B \in \mathbb{N}$, and hence either $V=0$ or $V \notin \overline{\mathbb{Q}}$.

Corollary 12. If in addition to the assumptions of Theorem 5, $Q(x)$ is an even polynomial, then the sum

$$
W=\sum_{n=0}^{\infty} \frac{h(n)+h(-n)}{Q(n)}
$$

is either $h(0) / Q(0)$ or transcendental.
Corollary 13. Suppose that $\beta_{1}, \beta_{2} \in(0,1) \cup(1,2)$ are rational numbers, $Q(x), P_{1}(x), P_{2}(x) \in \overline{\mathbb{Q}}[x]$ such that $P_{1}(x), Q(x)$ are even polynomials, $P_{2}(x)$ is an odd polynomial, $\operatorname{deg} P_{j}(x) \leq \operatorname{deg} Q(x)-1, j=1,2$, and all roots of $Q(x)$ belong to $\mathbb{Q}(i \sqrt{d}) \backslash \mathbb{Z}$. Then the trigonometric series

$$
W=\frac{P_{1}(0)}{2 Q(0)}+\sum_{n=1}^{\infty} \frac{P_{1}(n) \cos \left(\pi \beta_{1} n\right)+P_{2}(n) \sin \left(\pi \beta_{2} n\right)}{Q(n)}
$$

is either zero or transcendental.
Proof. We define

$$
h(n)= \begin{cases}\frac{1}{2} P_{1}(n) e^{i \pi \beta_{1} n}-\frac{1}{2} i P_{2}(n) e^{i \pi \beta_{2} n} & \text { if } \beta_{1} \neq \beta_{2} \\ \frac{1}{2} P_{1}(n) e^{i \pi \beta_{1} n}+\frac{1}{2} i P_{2}(n) e^{i \pi\left(2-\beta_{1}\right) n} & \text { if } \beta_{1}=\beta_{2}\end{cases}
$$

and consider the sum

$$
\sum_{n=0}^{\infty} \frac{h(n)+h(-n)}{Q(n)}-\frac{h(0)}{Q(0)}=\frac{P_{1}(0)}{2 Q(0)}+\sum_{n=1}^{\infty} \frac{P_{1}(n) \cos \left(\pi \beta_{1} n\right)+P_{2}(n) \sin \left(\pi \beta_{2} n\right)}{Q(n)}
$$

which, by Corollary 12, is either zero or transcendental.
5. Schanuel's conjecture and infinite sums. For more general set of roots of the polynomials $Q_{j}(x)$, when not all $\alpha_{j, k}$ are in $\mathbb{Q}(i \sqrt{d})$, we give some statements on the transcendence of the sums S, T, U, V provided that the Schanuel conjecture holds (see [12, §3.1], [8, §10.7.G]).

Schanuel Conjecture (S). If $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ are linearly independent over \mathbb{Q}, then the transcendence degree over \mathbb{Q} of the field $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right.$, $\left.e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}\right)$ is at least n.

We formulate the following propositions, which are consequences of (S):

Conjecture (S_{1}). Let $P_{1}, \ldots, P_{s}, Q_{1}, \ldots, Q_{s} \in \overline{\mathbb{Q}}[x], r_{1}, \ldots, r_{s} \in \mathbb{Z}$, where for any $1 \leq j \leq s$ the polynomials P_{j}, Q_{j} satisfy the following conditions: $\operatorname{deg} P_{j} \leq \operatorname{deg} Q_{j}-2, Q_{j}\left(r_{j} / 2\right) \neq 0, Q_{j}(n) \neq 0, n=0,1, \ldots$, and

$$
\frac{P_{j}(-x)}{Q_{j}(-x)}=\frac{P_{j}\left(r_{j}+x\right)}{Q_{j}\left(r_{j}+x\right)} .
$$

Then the sum

$$
S=\sum_{n=0}^{\infty}\left(\frac{P_{1}(n)}{Q_{1}(n)}+\cdots+\frac{P_{s}(n)}{Q_{s}(n)}\right)
$$

is either a computable algebraic number or transcendental.
Proof. Under the conditions stated above, we see that for $1 \leq j \leq s$, $Q_{j}(x)=\prod_{k=1}^{2 m_{j}}\left(x-\alpha_{j, k}\right)^{l_{j, k}}$, where $\alpha_{j, k}$ are distinct algebraic numbers distinct from non-negative integers and such that $\alpha_{j, m_{j}+k}=r_{j}-\alpha_{j, k}, l_{j, m_{j}+k}=l_{j, k}$ $\in \mathbb{N}, k=1, \ldots, m_{j}$. Therefore, from (16) we have

$$
\begin{align*}
& S= C_{0}+\sum_{\substack{j=1 \\
\alpha_{j, k} \in \mathbb{Z}}}^{s} \sum_{k=1}^{m_{j}} \sum_{l=1}^{l=1} C_{j, k e n} \tag{33}\\
& l_{j, k} \\
& l_{j}^{l} \\
&+\sum_{\substack{j=1 \\
\alpha_{j, k} \notin \mathbb{Z}}}^{s} \sum_{k=1}^{m_{j}} \sum_{l=1}^{l_{j, k}} \frac{(-1)^{l-1} A_{j, k, l}}{(l-1)!} \pi^{l} p_{l-1}\left(-\cot \pi \alpha_{j, k}\right),
\end{align*}
$$

where C_{0} and all the coefficients $C_{j, k, l}, A_{j, k, l}$ are algebraic numbers. From (33) it follows that S is equal to C_{0} or transcendental by (S). Indeed, suppose that $S \neq C_{0}$ and S is algebraic. Assume that the numbers

$$
\begin{equation*}
\frac{1}{\lambda}, \frac{\alpha_{j_{1}, k_{1}}}{\lambda_{1}}, \ldots, \frac{\alpha_{j_{l}, k_{l}}}{\lambda_{l}} \tag{34}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{l} \in \mathbb{N}$, are linearly independent over \mathbb{Q} and all the other roots $\alpha_{j, k}$ are \mathbb{Z}-linear combinations of (34). Then the numbers

$$
\frac{\pi i}{\lambda}, \frac{\pi i \alpha_{j_{1}, k_{1}}}{\lambda_{1}}, \ldots, \frac{\pi i \alpha_{j_{l}, k_{l}}}{\lambda_{l}}
$$

are also linearly independent over \mathbb{Q}. Put

$$
\begin{aligned}
K & =\overline{\mathbb{Q}}\left(\frac{\pi i}{\lambda}, \frac{\pi i \alpha_{j_{1}, k_{1}}}{\lambda_{1}}, \ldots, \frac{\pi i \alpha_{j_{l}, k_{l}}}{\lambda_{l}}, e^{\pi i \alpha_{j_{1}, k_{1}} / \lambda_{1}}, \ldots, e^{\pi i \alpha_{j_{l}, k_{l}} / \lambda_{l}}\right) \\
& =\overline{\mathbb{Q}}\left(\frac{\pi i}{\lambda}, e^{\pi i \alpha_{j_{1}, k_{1}} / \lambda_{1}}, \ldots, e^{\pi i \alpha_{j_{l}, k_{l}} / \lambda_{l}}\right) .
\end{aligned}
$$

Then by (S), it follows that $\operatorname{tr} \operatorname{deg}(K: \overline{\mathbb{Q}})=l+1$. From (33) we see that $S-C_{0} \in K$. If $S-C_{0} \in \overline{\mathbb{Q}} \backslash\{0\}$, then there exists a non-zero polynomial
$A(x) \in \mathbb{Z}[x]$ such that $A\left(S-C_{0}\right)=0$. Hence $\operatorname{tr} \operatorname{deg}(K: \overline{\mathbb{Q}}) \leq l$ and the contradiction obtained proves $\left(\mathrm{S}_{1}\right)$.

Remark 5.1. If all $\alpha_{j, k} \in \mathbb{Q}(i \sqrt{d})$, then $\left(\mathrm{S}_{1}\right)$ is true by Theorem 1 .
By a similar argument we have
Conjecture $\left(\mathrm{S}_{2}\right)$. Let $P_{1}, \ldots, P_{s}, Q_{1}, \ldots, Q_{s} \in \overline{\mathbb{Q}}[x], r_{1}, \ldots, r_{s} \in \mathbb{Z}$, where for any $1 \leq j \leq s$ the polynomials P_{j}, Q_{j} satisfy the following conditions: $\operatorname{deg} P_{j} \leq \operatorname{deg} Q_{j}-1, Q_{j}\left(r_{j} / 2\right) \neq 0, Q_{j}(n) \neq 0, n=0,1, \ldots$, and

$$
\frac{P_{j}(-x)}{Q_{j}(-x)}=(-1)^{r_{j}} \frac{P_{j}\left(r_{j}+x\right)}{Q_{j}\left(r_{j}+x\right)} .
$$

Then the sum

$$
T=\sum_{n=0}^{\infty}\left(\frac{P_{1}(n)}{Q_{1}(n)}+\cdots+\frac{P_{s}(n)}{Q_{s}(n)}\right)(-1)^{n}
$$

is either a computable algebraic number or transcendental.
Conjecture $\left(\mathrm{S}_{3}\right)$. Let $f: \mathbb{Z} \rightarrow \overline{\mathbb{Q}}$ be periodic with period $q \in \mathbb{N}$. Suppose that $r \in \mathbb{Z}, P(x), Q(x) \in \overline{\mathbb{Q}}[x],\left(Q^{\prime}(q r / 2)\right)^{2}+(Q(q r / 2))^{2} \neq 0, Q(n) \neq 0$, $n=1,2, \ldots$,

$$
\begin{equation*}
\frac{P(-x)}{Q(-x)}= \pm \frac{P(x+q r)}{Q(x+q r)} \tag{35}
\end{equation*}
$$

and f is an even or odd function according to whether we have the "plus" or "minus" sign in (35). Suppose further that the series

$$
U=\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} f(n)
$$

converges. Then U is either a computable algebraic number or transcendental.

Conjecture $\left(\mathrm{S}_{4}\right)$. Suppose that $\beta_{1}, \ldots, \beta_{s} \in[0,2)$ are distinct rational numbers, $Q(x), P_{1}(x), \ldots, P_{s}(x) \in \overline{\mathbb{Q}}[x], Q(n) \neq 0, n \in \mathbb{Z}, h(n)=$ $\sum_{j=1}^{s} P_{j}(n) e^{i \pi \beta_{j} n}$, and for $1 \leq j \leq s, \operatorname{deg} P_{j}(x) \leq \operatorname{deg} Q(x)-1$ if $0<\beta_{j}<2$ and $\operatorname{deg} P_{j}(x) \leq \operatorname{deg} Q(x)-2$ if $\beta_{j}=0$. Then the sum

$$
V=\sum_{n=-\infty}^{\infty} \frac{h(n)}{Q(n)}
$$

is either zero or transcendental.

References

[1] S. D. Adhikari, N. Saradha, T. N. Shorey and R. Tijdeman, Transcendental infinite sums, Indag. Math. (N.S.) 12 (2001), 1-14.
[2] H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.
[3] P. Bundschuh, Zwei Bemerkungen über transzendente Zahlen, Monatsh. Math. 88 (1979), 293-304.
[4] A. A. Karatsuba, Principles of Analytic Number Theory, Nauka, Moscow, 1975 (in Russian).
[5] G. Molteni, Some arithmetical properties of the generating power series for the sequence $\{\zeta(2 k+1)\}_{k=1}^{\infty}$, Acta Math. Hungar. 90 (2001), 133-140.
[6] M. R. Murty and N. Saradha, Transcendental values of the digamma function, J. Number Theory 125 (2007), 298-318.
[7] Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), no. 9, 65-96 (in Russian).
[8] P. Ribenboim, My Numbers, My Friends, Popular Lectures on Number Theory, Springer, Berlin, 2000.
[9] N. Saradha and R. Tijdeman, On the transcendence of infinite sums of values of rational functions, J. London Math. Soc. (3) 67 (2003), 580-592.
[10] R. Tijdeman, On irrationality and transcendency of infinite sums of rational numbers, submitted.
[11] I. M. Vinogradov, An Introduction to the Theory of Numbers, Pergamon Press, London, 1955.
[12] M. Waldschmidt, Open diophantine problems, Moscow Math. J. 4 (2004), 245-305.
Institute for Studies in Theoretical Physics and Mathematics (IPM)
Tehran, Iran
Current address:
Mathematics Department
Faculty of Science
Shahrekord University
P.O. Box 115

Shahrekord, Iran
E-mail: hessamik@ipm.ir
hessamit@gmail.com

Received on 18.9.2006
and in revised form on 4.6.2007

[^0]: 2000 Mathematics Subject Classification: Primary 11J81.
 Key words and phrases: polygamma function, digamma function, transcendental number, Schanuel conjecture.

 Research of Kh. Hessami Pilehrood supported in part by a grant from IPM (No. 85110020).

 Research of T. Hessami Pilehrood supported in part by a grant from IPM (No. 85110021).

