Infinite sums as linear combinations of polygamma functions

by

KH. HESSAMI PILEHROOD and T. HESSAMI PILEHROOD (Tehran and Shahrekord)

> Dedicated to Professor Yu. V. Nesterenko on the occasion of his 60th birthday

1. Introduction. 1. We begin with some notations and definitions. Let d be a positive square-free integer. We denote by \mathbb{Z} , \mathbb{Q} , $\overline{\mathbb{Q}}$, and $\mathbb{Q}(i\sqrt{d})$ the set of integers, the field of rational numbers, the field of algebraic numbers, and an imaginary quadratic field, respectively.

We will use the polygamma function

$$\psi^{(k)}(z) = \frac{d^k}{dz^k}\psi(z) = \frac{d^{k+1}}{dz^{k+1}}\log\Gamma(z), \quad k = 1, 2, \dots,$$

which has the following series expansion (see $[2, \S 1.16]$):

(1)
$$\psi^{(k)}(z) = (-1)^{k+1} k! \sum_{n=0}^{\infty} \frac{1}{(n+z)^{k+1}}, \quad z \neq 0, -1, -2, \dots,$$

and the logarithmic derivative of $\Gamma(z)$,

$$\psi(z) = \frac{d}{dz} \log \Gamma(z) = -\gamma + \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+z} \right), \quad z \neq 0, -1, -2, \dots,$$

called the digamma function. Obviously, $\psi(1) = -\gamma$, where γ is Euler's constant. The function $\psi^{(k)}(z)$, $k = 0, 1, 2, \ldots$, is single-valued and analytic in the whole complex plane except for the points z = -m, $m = 0, 1, 2, \ldots$,

²⁰⁰⁰ Mathematics Subject Classification: Primary 11J81.

Key words and phrases: polygamma function, digamma function, transcendental number, Schanuel conjecture.

Research of Kh. Hessami Pilehrood supported in part by a grant from IPM (No. 85110020).

Research of T. Hessami Pilehrood supported in part by a grant from IPM (No. 85110021).

where it has poles of order k + 1. The polygamma function satisfies many functional relations [2, §1.16] such as

• "recurrence formula":

(2)
$$\psi^{(k)}(z+1) = \psi^{(k)}(z) + \frac{(-1)^k k!}{z^{k+1}}$$

• "reflection formula":

(3)
$$\psi^{(k)}(1-z) + (-1)^{k+1}\psi^{(k)}(z) = (-1)^k \pi \frac{d^k}{dz^k} \cot \pi z,$$

• "multiplication formula":

$$\psi^{(k)}(mz) = \delta \log m + \frac{1}{m^{k+1}} \sum_{r=0}^{m-1} \psi^{(k)} \left(z + \frac{r}{m} \right),$$

where $\delta = 1$ if k = 0 and $\delta = 0$ if k > 0.

We also introduce its alternating analog (see $[2, \S1.16]$)

(4)
$$g^{(k)}(z) = (-1)^k k! \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+z)^{k+1}} = \frac{1}{2^{k+1}} \left(\psi^{(k)} \left(\frac{z+1}{2} \right) - \psi^{(k)} \left(\frac{z}{2} \right) \right),$$

which satisfies the similar functional relations

(5)
$$g^{(k)}(z+1) = \frac{(-1)^k k!}{z^{k+1}} - g^{(k)}(z), \quad k = 1, 2, \dots,$$

(6)
$$g^{(k)}(z) + (-1)^k g^{(k)}(1-z) = \pi \frac{d^k}{dz^k} \left(\frac{1}{\sin \pi z}\right).$$

Obviously by (1) and (4), the numbers $\psi^{(k)}(1)/\zeta(k+1)$, $g^{(k)}(1)/\zeta(k+1)$, $\psi^{(k)}(1/2)/\zeta(k+1)$ are rational (here $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$ is the Riemann zeta function) and therefore from (2), (5) we get the following inclusions:

(7)
$$\psi^{(2k-1)}(m), g^{(2k-1)}(m), \psi^{(2k-1)}(m+1/2) \in \mathbb{Q}^{\times} \cdot \pi^{2k} + \mathbb{Q}, \quad m \in \mathbb{N}.$$

2. In this paper, we consider the values of the series

(8)
$$S = \sum_{n=0}^{\infty} \frac{P(n)}{Q(n)}, \quad T = \sum_{n=0}^{\infty} \frac{P(n)}{Q(n)} (-1)^n, \quad U = \sum_{n=0}^{\infty} \frac{P(n)}{Q(n)} f(n),$$

where $P(x), Q(x) \in \overline{\mathbb{Q}}[x]$ and f is a periodic number-theoretic function, and express them as linear combinations of values of the polygamma functions (see Lemmas 1–2 below). Such a representation allows one to give simple sufficient conditions for the numbers S, T to be algebraic or transcendental, which is done in Section 2. Further, we assume that all the zeros of Q(x)are in the imaginary quadratic field $\mathbb{Q}(i\sqrt{d})$ and the polynomials P(x), Q(x)have some symmetry properties. By formulas (3), (6), summing the series

S, T, U explicitly and applying Nesterenko's famous result [7] on algebraic independence of the numbers $\pi, e^{\pi\sqrt{d}}$ we show that the infinite sums (8) either have a computable algebraic value or are transcendental. (By a *computable value*, we mean a number which can be explicitly determined in terms of its defining parameters.) Actually, we describe a mixed approach for computation of infinite sums (8) combining linear combinations of values of the polygamma functions and contour integration. The latter can be applied to the trigonometric series

$$V = \sum_{n=-\infty}^{\infty} \frac{P_1(n)e^{i\beta_1 n} + \dots + P_s(n)e^{i\beta_s n}}{Q(n)}, \quad \beta_1, \dots, \beta_s \in \mathbb{Q},$$

and enables us to prove that under certain conditions on the polynomials P_1, \ldots, P_s, Q , the sum V is either zero or transcendental. As a consequence, we establish the transcendence of some Fourier series (see Section 4). In Section 5 we extend these results to a more general set of roots of the polynomial Q(x) provided that the Schanuel conjecture holds. This generalizes the well-known result of P. Bundschuh on the series $\sum_{n=2}^{\infty} 1/(n^{2k}-1), k \geq 2$ (see [3], [12, Section 3.2]).

Special cases of the infinite sums (8) were considered by P. Bundschuh in [3]. Using Baker's theory on linear forms in logarithms, he proved that the value of the series

$$F(z) = z \sum_{m=1}^{\infty} \frac{a_m}{m(m-z)},$$

where $\{a_m\}_{m=1}^{\infty}$ is a periodic sequence of algebraic numbers and $z \in \mathbb{Q} \cap (0,1)$, is either zero or transcendental. In particular, this yields the transcendence of the numbers $\psi(z) + \gamma$, $\psi(z) - \psi(z/2)$ for any $z \in \mathbb{Q} \setminus \mathbb{Z}$, and of the series $\sum_{n=2}^{\infty} \zeta(n) z^n$, $\sum_{n=2}^{\infty} \beta(n) z^n$ for any rational z with 0 < |z| < 1, where $\beta(s) = \sum_{k=0}^{\infty} (-1)^k / (2k+1)^s$ is the Dirichlet beta function.

The case when all the roots $\alpha_1, \ldots, \alpha_m$ of Q(x) are distinct rational numbers was considered in [1], where by Baker's theory it was proved that each of the numbers (8) is either a computable algebraic number or is transcendental. In particular, if Q(x) is a reduced polynomial, i.e., if $\alpha_1, \ldots, \alpha_m$ are distinct rational numbers from [-1, 0), then S, T, U and the series

$$\sum_{n=0}^{\infty} \frac{P_1(n)\beta_1^n + \dots + P_s(n)\beta_s^n}{Q(n)}, \quad \beta_1, \dots, \beta_s \in \overline{\mathbb{Q}},$$

are either zero or transcendental.

Notice that from [1] it follows that for any rational numbers $\alpha_1, \ldots, \alpha_m$ distinct from nonnegative integers and such that $\alpha_k - \alpha_l \notin \mathbb{Z}, 1 \leq k \neq l \leq m$,

all the values

(9)
$$\psi(\alpha_1), \ldots, \psi(\alpha_m)$$

are transcendental except for at most one value of α_k (compare this with [6, Theorem 3]). In fact, taking into account (2) we can assume without loss of generality that $\alpha_1, \ldots, \alpha_m$ are distinct numbers from (0, 1] and then by [1, Theorem 3] we have, for $k \neq l$,

$$\psi(\alpha_l) - \psi(\alpha_k) = \sum_{n=0}^{\infty} \left(\frac{1}{n + \alpha_k} - \frac{1}{n + \alpha_l} \right) = \sum_{n=0}^{\infty} \frac{\alpha_l - \alpha_k}{(n + \alpha_k)(n + \alpha_l)} \notin \overline{\mathbb{Q}}.$$

Therefore the set (9) cannot contain two algebraic numbers.

In 2001, G. Molteni [5] considered the generating power series for the sequence $\{\zeta(2k+1)\}_{k=1}^{\infty}$, which can also be written as a linear combination of values of the digamma function,

$$F(z) = \sum_{k=1}^{\infty} \zeta(2k+1)z^{2k} = -\frac{1}{2}\psi(1+z) - \frac{1}{2}\psi(1-z) + \psi(1),$$

and proved that the numbers $1, F(\alpha_1), \ldots, F(\alpha_m)$ are linearly independent over $\overline{\mathbb{Q}}$ if all $\alpha_k = a_k/b_k$ are distinct rational numbers from the interval (0, 1)such that $(a_k, b_k) = 1$ and for any k there exists an odd prime p_k dividing b_k and $p_k \nmid b_j$ when $j \neq k$. An obvious corollary is that $F(\alpha)$ is transcendental for all $\alpha = a/b \in (0, 1)$ with b not a power of 2. Actually, this restriction can be removed and $F(\alpha)$ is transcendental for any rational α with $0 < |\alpha| < 1$ by [1, Theorem 3], since

$$F(\alpha) = \sum_{n=0}^{\infty} \frac{\alpha^2}{(n+1)(n+1+\alpha)(n+1-\alpha)}$$

and the last series does not vanish.

2. Sums S, T, U as linear combinations of polygamma functions

LEMMA 1. Let $f : \mathbb{Z} \to \overline{\mathbb{Q}}$ be periodic with period $q \in \mathbb{N}$. Suppose that $P(x), Q(x) \in \overline{\mathbb{Q}}[x], \deg P(x) \leq \deg Q(x) - 1$, and $Q(x) = (x + \alpha_1)^{l_1} \dots (x + \alpha_m)^{l_m}$, where $l_1, \dots, l_m \in \mathbb{N}$ and $\alpha_1, \dots, \alpha_m$ are distinct, and distinct from non-negative integers. If $\deg P(x) = \deg Q(x) - 1$, suppose also that $\sum_{t=0}^{q-1} f(t) = 0$ (convergence condition). Then the series

$$U = \sum_{n=0}^{\infty} \frac{P(n)}{Q(n)} f(n)$$

converges and we have the following representation:

(10)
$$U = \sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_k} \frac{(-1)^l}{(l-1)!} \frac{A_{k,l}}{q^l} \psi^{(l-1)}\left(\frac{t+\alpha_k}{q}\right)$$

with

(11)
$$A_{k,l} = \frac{1}{(l_k - l)!} \left. \frac{d^{l_k - l}}{dx^{l_k - l}} \left(\frac{P(x)}{Q(x)} (x + \alpha_k)^{l_k} \right) \right|_{x = -\alpha_k} \in \overline{\mathbb{Q}}.$$

Proof. Writing n in the form $n = q\tau + t, \tau, t \in \mathbb{Z}, 0 \le t \le q - 1, \tau \ge 0$, we get

(12)
$$U = \sum_{\tau=0}^{\infty} \sum_{t=0}^{q-1} f(q\tau+t) \frac{P(q\tau+t)}{Q(q\tau+t)} = \sum_{\tau=0}^{\infty} \sum_{t=0}^{q-1} f(t) \frac{P(q\tau+t)}{Q(q\tau+t)}.$$

Decomposing P(x)/Q(x) into partial fractions, we have

$$\frac{P(x)}{Q(x)} = \sum_{k=1}^{m} \sum_{l=1}^{l_k} \frac{A_{k,l}}{(x+\alpha_k)^l},$$

where the coefficients $A_{k,l}$ are defined in (11) and $\sum_{k=1}^{m} A_{k,1} = 0$ if $\deg P(x) \leq \deg Q(x) - 2$.

To prove (10), we first suppose that deg $P(x) \leq \deg Q(x) - 2$. Then from (12) we have

$$U = \sum_{t=0}^{q-1} f(t) \sum_{\tau=0}^{\infty} \frac{P(q\tau+t)}{Q(q\tau+t)},$$

where

$$\begin{aligned} \frac{P(q\tau+t)}{Q(q\tau+t)} &= \sum_{k=1}^{m} \sum_{l=1}^{l_k} \frac{A_{k,l}}{(q\tau+t+\alpha_k)^l} \\ &= \sum_{k=1}^{m} \frac{A_{k,1}}{q\tau+t+\alpha_k} + \sum_{k=1}^{m} \sum_{l=2}^{l_k} \frac{A_{k,l}}{(q\tau+t+\alpha_k)^l} \\ &= \frac{1}{q} \sum_{k=2}^{m} A_{k,1} \left(\frac{1}{\tau+\frac{t+\alpha_k}{q}} - \frac{1}{\tau+\frac{t+\alpha_1}{q}} \right) + \sum_{k=1}^{m} \sum_{l=2}^{l_k} \frac{A_{k,l}}{(q\tau+t+\alpha_k)^l}. \end{aligned}$$

Therefore,

$$\sum_{\tau=0}^{\infty} \frac{P(q\tau+t)}{Q(q\tau+t)} = \frac{1}{q} \sum_{k=2}^{m} A_{k,1} \left(\psi\left(\frac{t+\alpha_1}{q}\right) - \psi\left(\frac{t+\alpha_k}{q}\right) \right) \\ + \sum_{k=1}^{m} \sum_{l=2}^{l_k} \frac{(-1)^l}{(l-1)!} \frac{A_{k,l}}{q^l} \psi^{(l-1)} \left(\frac{t+\alpha_k}{q}\right) \\ = \sum_{k=1}^{m} \sum_{l=1}^{l_k} \frac{(-1)^l}{(l-1)!} \frac{A_{k,l}}{q^l} \psi^{(l-1)} \left(\frac{t+\alpha_k}{q}\right),$$

which yields (10). If deg $P(x) = \deg Q(x) - 1$, then we find $\sum_{t=0}^{q-1} \frac{P(q\tau+t)}{Q(q\tau+t)} f(t) = \sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_k} \frac{A_{k,l}}{(q\tau+t+\alpha_k)^l}$ $= \sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \frac{A_{k,1}}{q\tau+t+\alpha_k} + \sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=2}^{l_k} \frac{A_{k,l}}{(q\tau+t+\alpha_k)^l}$ $= \sum_{k=1}^{m} \frac{A_{k,1}}{q} \sum_{t=1}^{q-1} f(t) \left(\frac{1}{\tau+\frac{t+\alpha_k}{q}} - \frac{1}{\tau+\frac{\alpha_k}{q}} \right) + \sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=2}^{l_k} \frac{A_{k,l}}{(q\tau+t+\alpha_k)^l}.$ Hence, by (12), we get

Hence, by (12), we get

$$U = \sum_{k=1}^{m} \frac{A_{k,1}}{q} \sum_{t=1}^{q-1} f(t) \left(\psi \left(\frac{\alpha_k}{q} \right) - \psi \left(\frac{t + \alpha_k}{q} \right) \right) + \sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=2}^{l_k} \frac{(-1)^l}{(l-1)!} \frac{A_{k,l}}{q^l} \\ \times \psi^{(l-1)} \left(\frac{t + \alpha_k}{q} \right) = \sum_{t=0}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_k} \frac{(-1)^l}{(l-1)!} \frac{A_{k,l}}{q^l} \psi^{(l-1)} \left(\frac{t + \alpha_k}{q} \right),$$

as required. \blacksquare

Let us mention two particular cases $q = 1, f \equiv 1$ and $q = 2, f(n) = (-1)^n$ of Lemma 1.

LEMMA 2. Let $P(x), Q(x) \in \overline{\mathbb{Q}}[x], Q(x) = (x+\alpha_1)^{l_1} \dots (x+\alpha_m)^{l_m}$, where $l_1, \dots, l_m \in \mathbb{N}$ and $\alpha_1, \dots, \alpha_m$ are distinct, and distinct from non-negative integers. Suppose that the series

$$S = \sum_{n=0}^{\infty} \frac{P(n)}{Q(n)}, \quad T = \sum_{n=0}^{\infty} \frac{P(n)}{Q(n)} \, (-1)^n$$

converge. Then the following representations are valid:

$$S = \sum_{k=1}^{m} \sum_{l=1}^{l_k} \frac{(-1)^l}{(l-1)!} A_{k,l} \psi^{(l-1)}(\alpha_k), \quad T = \sum_{k=1}^{m} \sum_{l=1}^{l_k} \frac{(-1)^{l-1}}{(l-1)!} A_{k,l} g^{(l-1)}(\alpha_k),$$

where the coefficients $A_{k,l}$ are defined in (11).

If Q(x) has only simple zeros, then Lemma 2 enables us to give simple sufficient conditions for S, T to be algebraic or transcendental.

COROLLARY 1. Let $P(x), Q(x) \in \overline{\mathbb{Q}}[x], Q(x) = (x + \alpha_1) \dots (x + \alpha_m),$ where $\alpha_1, \dots, \alpha_m$ are distinct, and distinct from non-negative integers, and deg $P(x) \leq \deg Q(x) - 2$. If there is a subset L of $\{1, \dots, m\}$ with $\#L \geq 2$, with $j, k \in L \Rightarrow \alpha_j - \alpha_k \in \mathbb{Z}$, and with $P(-\alpha_l) = 0$ for $l \notin L$, then

$$S = \sum_{n=0}^{\infty} \frac{P(n)}{Q(n)}$$

is algebraic.

Proof. This statement easily follows from Lemma 2 and formula (2). \blacksquare

REMARK 0.1. In the case m = 3 and $\alpha_1, \ldots, \alpha_m \in \mathbb{Q}$, $P(x), Q(x) \in \mathbb{Q}[x]$ the conditions of Corollary 1 are necessary and sufficient for S to be rational (see [9, Theorem 2]).

COROLLARY 2. Let $P(x), Q(x) \in \overline{\mathbb{Q}}[x], Q(x) = (x + \alpha_1) \dots (x + \alpha_m),$ where $\alpha_1, \dots, \alpha_m$ are distinct, and distinct from non-negative integers, and $\deg P(x) \leq \deg Q(x) - 1$. If $\alpha_k - \alpha_1 =: n_k \in \mathbb{Z}$ for all $1 \leq k \leq m$ and

(13)
$$\sum_{k=1}^{m} (-1)^{n_k} \frac{P(-\alpha_k)}{Q'(-\alpha_k)} = 0,$$

then

$$T = \sum_{n=0}^{\infty} \frac{P(n)}{Q(n)} \left(-1\right)^n$$

is algebraic. (In particular, if all n_k are even and deg $P(x) \leq \deg Q(x) - 2$, then condition (13) holds automatically.)

Proof. This statement easily follows from Lemma 2 and formula (5).

REMARK 0.2. In the case m = 2 and $\alpha_1, \ldots, \alpha_m \in \mathbb{Q}$, $P(x), Q(x) \in \mathbb{Q}[x]$ the conditions of Corollary 2 are necessary and sufficient for T to be rational (see [9, Theorem 1] and [10, Theorem 3]).

COROLLARY 3. Let $P(x) \in \overline{\mathbb{Q}}[x]$, $Q(x) = (x + \alpha_1) \dots (x + \alpha_m)$, where $\alpha_1, \dots, \alpha_m$ are distinct rational numbers, distinct from non-negative integers, and deg P(x) = m-1. If $\alpha_k - \alpha_l \in 2\mathbb{Z}$ for all $1 \leq k, l \leq m$, then the sum

$$T = \sum_{n=0}^{\infty} \frac{P(n)}{Q(n)} \, (-1)^n$$

is transcendental.

Proof. By Lemma 2 and formula (5) it follows that

$$T = A + ag(\alpha_1) = B \pm ag(\alpha) = B \pm a \sum_{n=0}^{\infty} \left(\frac{1}{2n + \alpha} - \frac{1}{2n + \alpha + 1} \right),$$

where $A, B \in \overline{\mathbb{Q}}, a \neq 0$ is the leading coefficient of the polynomial P(x) and $\alpha \equiv \alpha_1 \pmod{1}, \alpha \in (0, 1]$. Since the infinite sum in the latter expression of T does not vanish, by [1, Theorem 3] we conclude that T is transcendental.

LEMMA 3. For the kth derivatives we have

(a)
$$(\cot \pi z)^{(k)} = \pi^k p_k(\cot \pi z),$$
 (b) $\left(\frac{1}{\sin \pi z}\right)^{(k)} = \pi^k \frac{q_k(\cos \pi z)}{\sin^{k+1} \pi z},$

where $p_k(z), q_k(z) \in \mathbb{Z}[z], \deg(p_k(z) - (-1)^k k! z^{k+1}) \le k, \deg(q_k(z) - (-z)^k) \le k - 1.$

Proof. The proof is by induction on k. Obviously, for k = 0 formulas (a), (b) are valid with $p_0(z) = z$ and $q_0(z) = 1$. Assuming (a), (b) to hold for k, we will prove them for k + 1. We have

$$(\cot \pi z)^{(k+1)} = \pi^k (p_k(\cot \pi z))' = \pi^{k+1} p_{k+1}(\cot \pi z),$$

where $p_{k+1}(z) = -p'_k(z)(z^2+1) = (-1)^{k+1}(k+1)!z^{k+2} + c_{k+1}z^{k+1} + \dots \in \mathbb{Z}[z]$, and

$$\left(\frac{1}{\sin \pi z}\right)^{(k+1)} = \pi^k \left(\frac{q_k(\cos \pi z)}{\sin^{k+1} \pi z}\right)' = \pi^{k+1} \frac{q_{k+1}(\cos \pi z)}{\sin^{k+2} \pi z}$$

with $q_{k+1}(z) = q'_k(z)(z^2 - 1) - (k+1)zq_k(z) = (-1)^{k+1}z^{k+1} + d_kz^k + \dots \in \mathbb{Z}[z].$

3. Main results

THEOREM 1. Let $P_1, \ldots, P_s, Q_1, \ldots, Q_s \in \overline{\mathbb{Q}}[x], m_1, \ldots, m_s \in \mathbb{N}, r_1, \ldots, r_s \in \mathbb{Z}$ satisfy the following conditions: for any $1 \leq j \leq s$, deg $P_j \leq \deg Q_j - 2$,

(14)
$$\frac{P_j(-x)}{Q_j(-x)} = \frac{P_j(r_j + x)}{Q_j(r_j + x)},$$

 $Q_j(x) = \prod_{k=1}^{2m_j} (x - \alpha_{j,k})^{l_{j,k}}, \text{ where } \alpha_{j,k} = a_{j,k} + ib_{j,k}\sqrt{d} \in \mathbb{Q}(i\sqrt{d}) \setminus \mathbb{N}_0, \\ k = 1, \ldots, 2m_j, \text{ are distinct and such that } \alpha_{j,m_j+k} = r_j - \alpha_{j,k}, b_{j,k} \ge 0, \\ l_{j,m_j+k} = l_{j,k} \in \mathbb{N}, k = 1, \ldots, m_j. \text{ Then the sum}$

$$S = \sum_{n=0}^{\infty} \left(\frac{P_1(n)}{Q_1(n)} + \dots + \frac{P_s(n)}{Q_s(n)} \right)$$

is either a computable algebraic number or transcendental. Moreover, S is transcendental if at least one of the following conditions holds:

- (i) $\alpha_{j,k} \notin \mathbb{Q} \setminus \mathbb{Z}, \ j = 1, \dots, s, \ k = 1, \dots, 2m_j, \ and$ $\sum_{\substack{j=1 \ \alpha_{j,k} \notin \mathbb{Z}}}^s \sum_{k=1}^{m_j} \operatorname{res}_{z=\alpha_{j,k}} \frac{P_j(z)}{Q_j(z)} \neq 0,$
- (ii) $b_{j_0,k_0} := \min\{b_{j,k} : b_{j,k} > 0\}$ is a unique minimum of the positive numbers $b_{j,k}$ and $\operatorname{res}_{z=\alpha_{j_0,k_0}} P_{j_0}(z)/Q_{j_0}(z) \neq 0$,
- (iii) there exists a unique maximum l_{j_0,k_0} of the sequence $l_{j,k}$, $1 \le j \le s$, $1 \le k \le m_j$, and $b_{j_0,k_0} > 0$, $P_{j_0}(\alpha_{j_0,k_0}) \ne 0$.

Proof. By Lemma 2, we have

$$S = \sum_{j=1}^{s} \sum_{n=0}^{\infty} \frac{P_j(n)}{Q_j(n)} = \sum_{j=1}^{s} \sum_{k=1}^{2m_j} \sum_{l=1}^{l_{j,k}} \frac{(-1)^l}{(l-1)!} A_{j,k,l} \psi^{(l-1)}(-\alpha_{j,k}),$$

where

(15)
$$A_{j,k,l} = \frac{1}{(l_{j,k}-l)!} \left(\frac{d}{dx}\right)^{l_{j,k}-l} \left(\frac{P_j(x)}{Q_j(x)} (x-\alpha_{j,k})^{l_{j,k}}\right) \Big|_{x=\alpha_{j,k}} \in \overline{\mathbb{Q}}.$$

From (14), (15) for $1 \le k \le m_j$ it follows that

$$A_{j,m_j+k,l} = \frac{1}{(l_{j,k}-l)!} \left(\frac{d}{dx}\right)^{l_{j,k}-l} \left(\frac{P_j(r_j-x)}{Q_j(r_j-x)} (x-r_j+\alpha_{j,k})^{l_{j,k}}\right) \bigg|_{x=r_j-\alpha_{j,k}}$$
$$= \frac{(-1)^l}{(l_{j,k}-l)!} \left(\frac{d}{dy}\right)^{l_{j,k}-l} \left(\frac{P_j(y)}{Q_j(y)} (y-\alpha_{j,k})^{l_{j,k}}\right) \bigg|_{y=\alpha_{j,k}} = (-1)^l A_{j,k,l}$$

with $y = r_j - x$. Therefore,

$$S = \sum_{j=1}^{s} \sum_{k=1}^{m_j} \sum_{l=1}^{l_{j,k}} \frac{(-1)^l}{(l-1)!} A_{j,k,l}(\psi^{(l-1)}(-\alpha_{j,k}) + (-1)^l \psi^{(l-1)}(\alpha_{j,k} - r_j)).$$

Now if for some pair (j,k) we have $-\alpha_{j,k}$ and $\alpha_{j,k} - r_j \in \mathbb{N}$, then by (2), (7), we get

$$S = C_0 + \sum_{\substack{j=1\\\alpha_{j,k} \in \mathbb{Z}}}^{s} \sum_{\substack{l=1\\l \text{ even}}}^{m_j} \sum_{\substack{l=1\\l \text{ even}}}^{l_{j,k}} C_{j,k,l} \pi^l$$

+
$$\sum_{\substack{j=1\\\alpha_{j,k} \notin \mathbb{Z}}}^{s} \sum_{\substack{l=1\\l=1}}^{m_j} \sum_{\substack{l=1\\l=1}}^{l_{j,k}} \frac{A_{j,k,l}}{(l-1)!} \left(\psi^{(l-1)}(\alpha_{j,k}+1) + (-1)^l \psi^{(l-1)}(-\alpha_{j,k}) \right),$$

where $C_0, C_{j,k,l} \in \overline{\mathbb{Q}}$. Combining this with (3) and Lemma 3 we conclude that

(16)
$$S = C_0 + \sum_{\substack{j=1\\ \alpha_{j,k} \in \mathbb{Z}}}^{s} \sum_{\substack{l=1\\ l \text{ even}}}^{m_j} \sum_{\substack{l=1\\ l \text{ even}}}^{l,k} C_{j,k,l} \pi^l + \sum_{\substack{j=1\\ \alpha_{j,k} \notin \mathbb{Z}}}^{s} \sum_{\substack{l=1\\ l=1}}^{m_j} \sum_{\substack{l=1\\ l=1}}^{l,k} \frac{(-1)^{l-1} A_{j,k,l}}{(l-1)!} \pi^l p_{l-1}(-\cot \pi \alpha_{j,k}).$$

According to the formula

$$\cot \pi \alpha_{j,k} = i \frac{e^{2\pi i a_{j,k}} + e^{2\pi b_{j,k}\sqrt{d}}}{e^{2\pi i a_{j,k}} - e^{2\pi b_{j,k}\sqrt{d}}} = -i - \frac{2ie^{2\pi i a_{j,k}}}{e^{2\pi b_{j,k}\sqrt{d}} - e^{2\pi i a_{j,k}}}$$

we see that $S - C_0 \in \overline{\mathbb{Q}}(\pi, e^{\pi\sqrt{d}/B})$, where $B \in \mathbb{N}$ is the least common denominator of the numbers $b_{j,k}$, and therefore $S - C_0$ is either zero or transcendental in view of the algebraic independence of π and $e^{\pi\sqrt{d}}$ [7].

If we suppose that S is algebraic and condition (i) holds, then considering the summands in (16) involving π to the first power we get

$$-\pi \sum_{\substack{j=1\\\alpha_{j,k} \notin \mathbb{Z}}}^{s} \sum_{k=1}^{m_j} A_{j,k,1} \cot \pi \alpha_{j,k} + \pi^2(\ldots) = 0$$

or

$$\pi i \sum_{\substack{j=1\\b_{j,k}>0}}^{s} \sum_{\substack{k=1\\b_{j,k}>0}}^{m_j} A_{j,k,1} + 2\pi i \sum_{\substack{j=1\\b_{j,k}>0}}^{s} \sum_{\substack{k=1\\b_{j,k}>0}}^{m_j} \frac{A_{j,k,1}e^{2\pi i a_{j,k}}}{e^{2\pi b_{j,k}\sqrt{d}} - e^{2\pi i a_{j,k}}} + \pi^2(\ldots) = 0.$$

Now multiplying both sides of the last equality by

(17)
$$\prod_{\substack{j=1\\b_{j,k}>0}}^{s} \prod_{\substack{k=1\\b_{j,k}>0}}^{m_{j}} (e^{2\pi b_{j,k}\sqrt{d}} - e^{2\pi i a_{j,k}})^{l_{j,k}}$$

we get a contradiction with the algebraic independence of π and $e^{\pi\sqrt{d}}$.

If (ii) is valid and S is algebraic, then (16) can be rewritten as

(18)
$$\pi C_1 + 2\pi i \sum_{\substack{j=1\\b_{j,k}>0}}^{s} \sum_{k=1}^{m_j} \frac{A_{j,k,1}e^{2\pi i a_{j,k}}}{e^{2\pi b_{j,k}\sqrt{d}} - e^{2\pi i a_{j,k}}} + \pi^2(\ldots) = 0$$

If $C_1 \neq 0$, then this is impossible by the same argument as above. If $C_1 = 0$, then multiplying both sides of (18) by (17) we get

$$2\pi i A_{j_0,k_0,1} e^{2\pi i a_{j_0,k_0}} e^{2\pi (\beta - b_{j_0,k_0})\sqrt{d}} + \dots = 0,$$

which is impossible, and therefore S is transcendental.

If condition (iii) holds, then the summands with the maximal power of π in (16) have the form

(19)
$$\pi^{l_{j_0,k_0}} \left(\pm \frac{A_{j_0,k_0,l_{j_0,k_0}}}{(l_{j_0,k_0}-1)!} p_{l_{j_0,k_0}-1}(-\cot \pi \alpha_{j_0,k_0}) + C_{j_0,k_0,l_{j_0,k_0}} \right),$$

where $A_{j_0,k_0,l_{j_0,k_0}}, C_{j_0,k_0,l_{j_0,k_0}} \in \overline{\mathbb{Q}}$ and $A_{j_0,k_0,l_{j_0,k_0}}$ is not zero by (15). Since $\cot \pi \alpha_{j_0,k_0}$ is transcendental, the term (19) does not vanish in (16), and hence S is transcendental. This completes the proof of the theorem.

REMARK 1.1. If under the assumptions of Theorem 1 we have $r_1 = \cdots = r_s = -1$, then S is either zero or transcendental.

COROLLARY 4. If $a, b \in \mathbb{Z}$, $4b > a^2$, $m \in \mathbb{N}$, then the sum

$$\sum_{n=0}^{\infty} \frac{P(n)}{(n^2 + an + b)^m}$$

is transcendental for any polynomial $P(x) \in \overline{\mathbb{Q}}[x]$ such that

$$\deg P(x) \le 2m - 2 \quad and \quad P(-x) = P(x - a).$$

In particular, the sum of the series

$$\sum_{n=0}^{\infty} \frac{(n^2 + an + c)^k}{(n^2 + an + b)^m}$$

is transcendental for any $c, k \in \mathbb{Z}, 0 \le k \le m$.

THEOREM 2. Let $P_1, \ldots, P_s, Q_1, \ldots, Q_s \in \overline{\mathbb{Q}}[x], m_1, \ldots, m_s \in \mathbb{N}, r_1, \ldots, r_s$ $\in \mathbb{Z}$ satisfy the following conditions: for any $1 \leq j \leq s$, deg $P_j \leq \deg Q_j - 1$,

(20)
$$\frac{P_j(-x)}{Q_j(-x)} = (-1)^{r_j} \frac{P_j(r_j+x)}{Q_j(r_j+x)},$$

 $Q_j(x) = \prod_{k=1}^{2m_j} (x - \alpha_{j,k})^{l_{j,k}}, \text{ where } \alpha_{j,k} = a_{j,k} + ib_{j,k}\sqrt{d} \in \mathbb{Q}(i\sqrt{d}) \setminus \mathbb{N}_0,$ $k = 1, \ldots, 2m_i$, are distinct and such that $\alpha_{j,m_i+k} = r_j - \alpha_{j,k}, b_{j,k} \ge 0$, $l_{j,m_i+k} = l_{j,k} \in \mathbb{N}, \ k = 1, \dots, m_j$. Then the sum

$$T = \sum_{n=0}^{\infty} \left(\frac{P_1(n)}{Q_1(n)} + \dots + \frac{P_s(n)}{Q_s(n)} \right) (-1)^n$$

is either a computable algebraic number or transcendental. Moreover, T is transcendental if at least one of the following conditions holds:

- (i) $b_{j_0,k_0} := \min\{b_{j,k} : b_{j,k} > 0\}$ is a unique minimum of the positive numbers $b_{j,k}$ and $\operatorname{res}_{z=\alpha_{j_0,k_0}} P_{j_0}(z)/Q_{j_0}(z) \neq 0$, (ii) there exists a unique maximum l_{j_0,k_0} of the sequence $l_{j,k}$, $1 \leq j \leq s$,
- $1 \le k \le m_j$, and $b_{j_0,k_0} > 0$, $P_{j_0}(\alpha_{j_0,k_0}) \ne 0$.

Proof. From Lemma 2 it follows that

$$T = \sum_{j=1}^{s} \sum_{n=0}^{\infty} \frac{P_j(n)}{Q_j(n)} (-1)^n = \sum_{j=1}^{s} \sum_{k=1}^{2m_j} \sum_{l=1}^{l_{j,k}} \frac{(-1)^{l-1}}{(l-1)!} A_{j,k,l} g^{(l-1)}(-\alpha_{j,k}),$$

where the coefficients $A_{i,k,l}$ are defined in (15). According to (15) and (20) for $1 \le k \le m_j$ we have $A_{j,m_j+k,l} = (-1)^{r_j+l} A_{j,k,l}$. Then

$$T = \sum_{j=1}^{s} \sum_{k=1}^{m_j} \sum_{l=1}^{l_{j,k}} \frac{(-1)^{l-1}}{(l-1)!} A_{j,k,l}(g^{(l-1)}(-\alpha_{j,k}) + (-1)^{r_j+l}g^{(l-1)}(\alpha_{j,k} - r_j)).$$

Now if for some pair (j,k) we have $-\alpha_{j,k}$ and $\alpha_{j,k} - r_j \in \mathbb{N}$, then by (5), (7), we get

$$T = C_0 + \sum_{\substack{j=1 \ \alpha_{j,k} \in \mathbb{Z} \\ \alpha_{j,k} \in \mathbb{Z} \\ l \text{ even}}}^{s} \sum_{\substack{l=1 \\ l \text{ even}}}^{m_j} \sum_{\substack{l=1 \\ \alpha_{j,k} \notin \mathbb{Z}}}^{l_{j,k}} \frac{A_{j,k,l}}{(l-1)!} \left((-1)^{l-1} g^{(l-1)}(-\alpha_{j,k}) + g^{(l-1)}(\alpha_{j,k}+1) \right),$$

where $C_0, C_{i,k,l} \in \overline{\mathbb{Q}}$. Hence, by (6) and Lemma 3, we have

(21)
$$T = C_0 + \sum_{\substack{j=1\\\alpha_{j,k} \in \mathbb{Z}}}^{s} \sum_{\substack{l=1\\l \text{ even}}}^{m_j} \sum_{\substack{j=1\\k=1\\l \text{ even}}}^{s} \sum_{\substack{j=1\\\alpha_{j,k} \notin \mathbb{Z}}}^{m_j} \sum_{\substack{l=1\\l=1}}^{l_{j,k}} \frac{A_{j,k,l}}{(l-1)!} \pi^l \frac{q_{l-1}(\cos \pi \alpha_{j,k})}{\sin^l \pi \alpha_{j,k}}$$

and according to Euler's formulas for \cos and \sin we conclude that either $T = C_0$ or T is transcendental.

If T is algebraic and condition (i) holds, then we rewrite (21) as

$$\pi C_1 + \pi \sum_{\substack{j=1\\b_{j,k}>0}}^{s} \sum_{k=1}^{m_j} \frac{A_{j,k,1}}{\sin \pi \alpha_{j,k}} + \pi^2(\ldots) = 0,$$

from which by the same argument as in the proof of Theorem 1(ii) and formula

$$\frac{1}{\sin \pi \alpha_{j,k}} = -\frac{2ie^{i\pi a_{j,k}}e^{\pi b_{j,k}}\sqrt{d}}{e^{2\pi b_{j,k}}\sqrt{d} - e^{2\pi i a_{j,k}}}$$

we get a contradiction.

If condition (ii) is valid and T is algebraic, then from (21) we have

$$\pi^{l_{j_0,k_0}} \left(C_{j_0,k_0,l_{j_0,k_0}} - \frac{A_{j_0,k_0,l_{j_0,k_0}}}{(l_{j_0,k_0}-1)!} \frac{q_{l_{j_0,k_0}-1}(\cos \pi \alpha_{j_0,k_0})}{\sin^{l_{j_0,k_0}} \pi \alpha_{j_0,k_0}} \right) + \dots = 0,$$

where $A_{j_0,k_0,l_{j_0,k_0}} \neq 0$ by (15). Now applying Lemma 3 we easily see that the term containing π to the maximal power does not vanish and we get a contradiction with the algebraic independence of π and $e^{\pi\sqrt{d}}$. This completes the proof.

REMARK 2.1. If under the assumptions of Theorem 2 we have $r_1 = \cdots = r_s = -1$, then T is either zero or transcendental.

REMARK 2.2. We note that there are alternative proofs of formulas (16), (21) based on application of the residue theorem to the complex integrals

$$\frac{1}{2\pi i} \int_{L_N} \left(\sum_{j=1}^s \frac{P_j(z)}{Q_j(z)} \right) (\pi \cot \pi z) \, dz \quad \text{and} \quad \frac{1}{2\pi i} \int_{L_N} \left(\sum_{j=1}^s \frac{P_j(z)}{Q_j(z)} \right) \frac{\pi}{\sin \pi z} \, dz,$$

where L_N is a square contour with vertices $(N + 1/2)(\pm 1 \pm i)$. (See also [3, Theorem 2].)

COROLLARY 5. Let $a, b \in \mathbb{Z}$, $4b > a^2$, and $m \in \mathbb{N}$. Then for any polynomial $P(x) \in \overline{\mathbb{Q}}[x]$ such that deg P(x) < 2m, $P(-x) = (-1)^a P(x-a)$, the sum

$$\sum_{n=0}^{\infty} \frac{(-1)^n P(n)}{(n^2 + an + b)^m}$$

is transcendental. In particular, if $k \in \mathbb{Z}, 0 \leq k < 2m$, and the numbers k, a have the same parity, then the sum

$$\sum_{n=0}^{\infty} \frac{(-1)^n (n+a/2)^k}{(n^2+an+b)^m}$$

is transcendental.

THEOREM 3. Let $f : \mathbb{Z} \to \overline{\mathbb{Q}}$ be periodic with period $q \in \mathbb{N}$. Suppose that $r \in \mathbb{Z}, m, l_1, \ldots, l_m \in \mathbb{N}, P(x), Q(x) \in \overline{\mathbb{Q}}[x],$

(22)
$$\frac{P(-x)}{Q(-x)} = \pm \frac{P(x+qr)}{Q(x+qr)}$$

 $Q(x) = (x - \alpha_0) \prod_{k=1}^{2m} (x - \alpha_k)^{l_k}$, where $\alpha_0 = qr/2$, $\alpha_k = a_k + ib_k \sqrt{d} \in \mathbb{Q}(i\sqrt{d}) \setminus \mathbb{N}$, $k = 1, \ldots, 2m$, are distinct, $\alpha_{m+k} = qr - \alpha_k$, $l_{m+k} = l_k$, $b_k \ge 0$, $k = 1, \ldots, m$, and f is an even or odd function according to whether we have the "plus" or "minus" sign in (22). Suppose further that the series

$$U = \sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} f(n)$$

converges. Then U is either a computable algebraic number or transcendental. Moreover, U is transcendental if at least one of the following conditions holds:

(i) P(qr/2) = 0 and

$$\sum_{\substack{t=1\\t-\alpha_k \notin q\mathbb{Z}}}^q \sum_{k=1}^m f(t) \operatorname{res}_{z=\alpha_k} \frac{P(z)}{Q(z)} \neq 0,$$

(ii) $P(qr/2) = 0, b_{k_0} := \min\{b_k > 0\}$ is a unique minimum of the positive numbers $b_k, \operatorname{res}_{z=\alpha_{k_0}} P(z)/Q(z) \neq 0$ and $\sum_{t=1}^q f(t)e^{-2\pi i t/q} \neq 0$,

(iii)
$$\sum_{\substack{t=1\\t-\alpha_k \notin q\mathbb{Z}}}^{q-1} \sum_{k=1}^m f(t) \operatorname{res}_{z=\alpha_k} \frac{P(z)}{Q(z)} \neq \frac{i}{2} \frac{P(qr/2)}{Q'(qr/2)} \sum_{\substack{t=1\\t\neq q/2}}^{q-1} f(t) \cot\left(\frac{\pi t}{q} + \pi \left\{\frac{r}{2}\right\}\right) and$$

 $P(qr/2) \neq 0$, where $\{x\}$ denotes the fractional part of x.

Proof. By Lemma 1, using the partial fraction expansion

$$\frac{P(x)}{Q(x)} = \sum_{k=1}^{2m} \sum_{l=1}^{l_k} \frac{A_{k,l}}{(x-\alpha_k)^l} + \frac{A_{0,1}}{x-qr/2},$$

where the coefficients $A_{k,l}$ are defined in (11) with α_k replaced by $-\alpha_k$ and $A_{0,1} = P(qr/2)/Q'(qr/2)$, we have

$$U = \sum_{t=1}^{q} f(t) \sum_{k=1}^{2m} \sum_{l=1}^{l_k} \frac{(-1)^l}{(l-1)!} \frac{A_{k,l}}{q^l} \psi^{(l-1)} \left(\frac{t-\alpha_k}{q}\right) - \frac{A_{0,1}}{q} \sum_{t=1}^{q} f(t) \psi\left(\frac{t}{q} - \frac{r}{2}\right).$$

By (22), for $1 \leq k \leq m$, $1 \leq l \leq l_k$, it easily follows that $A_{m+k,l} = \pm (-1)^l A_{k,l}$.

To prove the theorem, we first assume that P(qr/2) = 0. Then taking into account that $f(t) = \pm f(-t)$ and f is a q-periodic function we have

$$\begin{split} U &= \sum_{t=1}^{q} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \frac{A_{k,l}}{q^{l}} \left(\psi^{(l-1)} \left(\frac{t-\alpha_{k}}{q} \right) \right) \\ &\pm (-1)^{l} \psi^{(l-1)} \left(\frac{t-\alpha_{m+k}}{q} \right) \right) \\ &= \sum_{t=1}^{q} \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l} f(t)}{(l-1)!} \frac{A_{k,l}}{q^{l}} \psi^{(l-1)} \left(\frac{t-\alpha_{k}}{q} \right) \\ &+ \sum_{t=1}^{q} \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{A_{k,l} f(q-t)}{(l-1)! q^{l}} \psi^{(l-1)} \left(\frac{t-\alpha_{m+k}}{q} \right) \\ &= A + \sum_{t=1}^{q} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_{k}} \frac{(-1)^{l}}{(l-1)!} \\ &\times \frac{A_{k,l}}{q^{l}} \left(\psi^{(l-1)} \left(\frac{t-\alpha_{k}}{q} \right) + (-1)^{l} \psi^{(l-1)} \left(1-r - \frac{t-\alpha_{k}}{q} \right) \right), \end{split}$$

where $A = -f(q) \sum_{k=1}^{m} \sum_{l=1}^{l_k} A_{k,l} / \alpha_{m+k}^l \in \overline{\mathbb{Q}}$. Now by (3), (7) and Lemma 3 we get

$$U = C_0 + \sum_{\substack{t=1\\t-\alpha_k \in q\mathbb{Z}}}^{q} \sum_{\substack{k=1\\t-\alpha_k \notin q\mathbb{Z}}}^{m} \sum_{\substack{l=1\\t-\alpha_k \notin q\mathbb{Z}}}^{l_k} C_{t,k,l} \pi^l$$
$$- \sum_{\substack{t=1\\t-\alpha_k \notin q\mathbb{Z}}}^{q} \sum_{\substack{l=1\\t-\alpha_k \notin q\mathbb{Z}}}^{m} \sum_{\substack{l=1\\t-\alpha_k \notin q\mathbb{Z}}}^{l_k} \frac{(-\pi)^l f(t) A_{k,l}}{q^l} p_{l-1} \left(\cot\left(\frac{\pi(t-\alpha_k)}{q}\right) \right)$$

with $C_0, C_{t,k,l} \in \overline{\mathbb{Q}}$, from which it follows that U is either equal to $C_0 \in \overline{\mathbb{Q}}$

or transcendental. If condition (i) or (ii) holds, then arguing as in the proof of Theorem 1(i), (ii) we find that U is transcendental.

If $P(qr/2) \neq 0$, then P(-x) = P(x+qr) and thus f is an odd function by the hypothesis. Arguing as above we deduce that $A_{k+m,l} = (-1)^{l-1}A_{k,l}$, $1 \leq k \leq m, 1 \leq l \leq l_k$, and

$$\begin{split} U &= \sum_{t=1}^{q-1} f(t) \sum_{k=1}^{m} \sum_{l=1}^{l_k} \frac{(-1)^l}{(l-1)!} \\ &\times \frac{A_{k,l}}{q^l} \left(\psi^{(l-1)} \left(\frac{t-\alpha_k}{q} \right) + (-1)^l \psi^{(l-1)} \left(1 - r - \frac{t-\alpha_k}{q} \right) \right) \\ &- \frac{A_{0,1}}{2q} \sum_{t=1}^{q-1} f(t) \left(\psi \left(\frac{t}{q} - \frac{r}{2} \right) - \psi \left(1 - \frac{t}{q} - \frac{r}{2} \right) \right). \end{split}$$

As is easily seen, if q is even, then f(q/2) = 0 and we may assume that $t \neq q/2$ in the last sum. Now by (2), for a positive integer $t \leq q-1, t \neq q/2$, we have

(23)
$$\psi\left(\frac{t}{q} - \frac{r}{2}\right) = C + \psi\left(\frac{t}{q} - \frac{r}{2} + \left[\frac{r+1}{2}\right]\right),$$
$$\psi\left(1 - \frac{t}{q} - \frac{r}{2}\right) = \widetilde{C} + \psi\left(1 - \frac{t}{q} - \frac{r}{2} + \left[\frac{r}{2}\right]\right),$$

where $C, \widetilde{C} \in \overline{\mathbb{Q}}$ and [x] denotes the integer part of x. Now by (3), (23) and Lemma 3 we get

(24)
$$U = C_{1} + \sum_{\substack{t=1\\t-\alpha_{k} \in q\mathbb{Z}}}^{q-1} \sum_{\substack{k=1\\t-\alpha_{k} \in q\mathbb{Z}}}^{m} \sum_{\substack{l=2\\t-\alpha_{k} \notin q\mathbb{Z}}}^{l_{k}} C_{t,k,l} \pi^{l}$$
$$- \sum_{\substack{t=1\\t-\alpha_{k} \notin q\mathbb{Z}}}^{q-1} \sum_{\substack{l=1\\t-\alpha_{k} \notin q\mathbb{Z}}}^{m} \sum_{\substack{l=1\\t-\alpha_{k} \notin q\mathbb{Z}}}^{l_{k}} \frac{A_{k,l} \pi^{l} f(t)}{(-q)^{l}} p_{l-1} \left(\cot\left(\frac{\pi(t-\alpha_{k})}{q}\right) \right)$$
$$+ \frac{A_{0,1} \pi}{2q} \sum_{\substack{t=1\\t=1}}^{q-1} f(t) \cot\left(\frac{\pi t}{q} + \pi\left\{\frac{r}{2}\right\}\right)$$

with $C_1, C_{t,k,l} \in \overline{\mathbb{Q}}$, and therefore U is either equal to C_1 or transcendental. If r = 0, i.e., if P(x) and Q(x) are even and odd polynomials respectively, then $C_1 = 0$ and hence U is either zero or transcendental. If condition (iii) is valid, then the coefficient of π does not vanish in (24) and we conclude that U is transcendental. This completes the proof of the theorem.

REMARK 3.1. If under the assumptions of Theorem 3 we have r = 0, then either $U = -f(q) \sum_{k=1}^{m} \sum_{l=1}^{l_k} A_{k,l} / \alpha_{k+m}^l$ or U is transcendental. THEOREM 4. Let $k \in \mathbb{N}$, $r \in \mathbb{Z}$, $qr/2 \notin \mathbb{N}$, $P(x) \in \overline{\mathbb{Q}}[x]$ and $P(-x) = \pm P(x+qr)$. Let $f : \mathbb{Z} \to \overline{\mathbb{Q}}$ be an even or odd periodic function with period $q \in \mathbb{N}$ depending on whether k and deg P(x) have the same parity or not. Suppose further that the series

$$U = \sum_{n=1}^{\infty} \frac{f(n)P(n)}{(n - qr/2)^k}$$

converges. Then the sum U is either a computable algebraic number or transcendental. In particular, if r = 0, then U is either zero or transcendental.

Proof. For the rational function $P(x)/(x-qr/2)^k$ we have the following partial fraction expansion:

$$\frac{P(x)}{(x-qr/2)^k} = \sum_{l=0}^{\lfloor (\deg P)/2 \rfloor} \frac{A_l}{(x-qr/2)^{k-\delta-2l}} \quad \text{with} \quad A_l = \frac{1}{(2l+\delta)!} P^{(2l+\delta)}\left(\frac{qr}{2}\right)$$

and δ equal to 0 or 1 according to whether P(-x) = P(x+qr) or P(-x) = -P(x+qr). Then by Lemma 1, we get

$$U = \sum_{t=1}^{q} f(t) \sum_{l=0}^{\left[(\deg P)/2\right]} \frac{(-1)^{k-\delta-1}}{(k-\delta-2l-1)!} \frac{A_l}{q^{k-\delta-2l}} \psi^{(k-\delta-2l-1)}\left(\frac{t}{q}-\frac{r}{2}\right).$$

Note that if k and deg P have the same (distinct) parity, then $k - \delta$ is even (odd) and f is an even (odd) function by the hypothesis. Thus we have $f(t) = (-1)^{k-\delta} f(q-t)$ and

$$2U = \sum_{t=1}^{q} \sum_{l=0}^{\lfloor (\deg P)/2 \rfloor} \frac{(-1)^{k-\delta-1} f(t) - f(q-t)}{(k-\delta-2l-1)!} \frac{A_l}{q^{k-\delta-2l}} \psi^{(k-\delta-2l-1)} \left(\frac{t}{q} - \frac{r}{2}\right)$$

or

(25)
$$2U = \sum_{t=1}^{q-1} f(t) \sum_{l=0}^{[(\deg P)/2]} \frac{(-1)^{k-\delta-1}}{(k-\delta-2l-1)!} \frac{A_l}{q^{k-\delta-2l}} \left(\psi^{(k-\delta-2l-1)} \left(\frac{t}{q} - \frac{r}{2}\right) + (-1)^{k-\delta} \psi^{(k-\delta-2l-1)} \left(1 - \frac{t}{q} - \frac{r}{2}\right) \right) + \widetilde{U},$$

where

(26)
$$\widetilde{U} = (f(q) + (-1)^{k-\delta} f(0)) \\ \times \sum_{l=0}^{\left[(\deg P)/2\right]} \frac{(-1)^{k-\delta-1}}{(k-\delta-2l-1)!} \frac{A_l}{q^{k-\delta-2l}} \psi^{(k-\delta-2l-1)} \left(1-\frac{r}{2}\right).$$

It can be easily seen that $\widetilde{U} = 0$ if f is an odd function; if f is even, then

 $k - \delta$ is even and by (7) we have

(27)
$$\widetilde{U} = C + \sum_{l=0}^{\left[(\deg P)/2\right]} C_l \pi^{k-\delta-2l}$$

with algebraic coefficients C, C_l . From (23), (3), (7) and Lemma 3 it follows that

(28)
$$\psi^{(k-\delta-2l-1)}\left(\frac{t}{q}-\frac{r}{2}\right) + (-1)^{k-\delta}\psi^{(k-\delta-2l-1)}\left(1-\frac{t}{q}-\frac{r}{2}\right) \in \mathbb{Q}\pi^{k-\delta-2l} + \mathbb{Q}.$$

Finally, by (25)-(28), we find

$$U = \widetilde{C} + \sum_{l=0}^{[(\deg P)/2]} \widetilde{C}_l \pi^{k-\delta-2l}$$

with $\widetilde{C}, \widetilde{C}_l \in \overline{\mathbb{Q}}$, and therefore either U is equal to \widetilde{C} or $U \notin \overline{\mathbb{Q}}$. If r = 0, then from (25), (26) it easily follows that U is either zero or transcendental. This completes the proof of the theorem.

The special case of Theorem 4 for the number $U = L(k, \chi) = \sum_{n=1}^{\infty} \chi(n)/n^k$, where χ is an even (or odd) Dirichlet character, was proved in [10, §6].

Now consider several applications of Theorem 3 which gives us means to construct new examples of transcendental numbers. If in Theorem 3 we put $f(n) = \chi(n)$, where $\chi(n)$ is a Dirichlet character mod q, then the Gauss sum

$$\tau(\chi) = \sum_{k=1}^{q} \chi(k) e^{-2\pi i k/q}$$

is never zero when χ is a primitive character (see [4, Ch. 8]). Namely, we have $|\tau(\chi)| = \sqrt{q}$. This gives us the following.

COROLLARY 6. Let q > 1 be an integer and χ be a primitive character mod q. Suppose that $P(x) \in \overline{\mathbb{Q}}[x]$, $P(-x) = \pm P(x+qr)$, $Q(x) = \prod_{k=1}^{2m} (x - \alpha_k)^{l_k}$ for some $m, l_1, \ldots, l_{2m} \in \mathbb{N}$, $r \in \mathbb{Z}$, where $\alpha_k = a_k + ib_k \sqrt{d} \in \mathbb{Q}(i\sqrt{d}) \setminus \mathbb{N}$, $k = 1, \ldots, 2m$, are distinct numbers such that $\alpha_{m+k} = qr - \alpha_k$, $b_k \ge 0$, $l_{m+k} = l_k$, $k = 1, \ldots, m$, and χ is an even (resp. odd) character if deg P is even (resp. odd). If $b_{k_0} := \min\{b_k > 0\}$ is a unique minimum of the positive numbers b_k and $\operatorname{res}_{z=\alpha_{k_0}} P(z)/Q(z) \neq 0$, then the sum

$$\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} \chi(n)$$

is transcendental.

COROLLARY 7. Let q > 1 be a square-free integer with $q \equiv 1 \pmod{4}$, and let $\left(\frac{n}{q}\right)$ denote Jacobi's symbol. Then

$$\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} \left(\frac{n}{q}\right) \notin \overline{\mathbb{Q}},$$

where $P(x) \in \overline{\mathbb{Q}}[x]$, P(-x) = P(x+qr) and Q(x) is as in Corollary 6. In particular, the sum

$$\sum_{n=1}^{\infty} \frac{\left(\frac{n}{q}\right)}{(n^2 + qrn + b)^m}$$

is transcendental for any $m \in \mathbb{N}$, $b, r \in \mathbb{Z}$ such that $q^2r^2 < 4b$.

COROLLARY 8. Let q > 1 be a square-free integer with $q \equiv 3 \pmod{4}$. Then

$$\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} \left(\frac{n}{q}\right) \notin \overline{\mathbb{Q}},$$

where $P(x) \in \overline{\mathbb{Q}}[x]$, P(-x) = -P(x+qr) and Q(x) is as in Corollary 6. In particular, the sum

$$\sum_{n=1}^{\infty} \left(\frac{n}{q}\right) \frac{(n+qr/2)^{2m-1}}{(n^2+qrn+b)^m}$$

is transcendental for any $m \in \mathbb{N}$, $b, r \in \mathbb{Z}$ such that $q^2r^2 < 4b$.

If χ_0 is the principal character mod q, then

$$\sum_{n=1}^{q} \chi_0(n) = \varphi(q), \quad \tau(\chi_0) = \sum_{\substack{k=1\\(k,q)=1}}^{q} e^{-2\pi i k/q} = \mu(q),$$

where φ and μ are the Euler and Möbius functions, respectively (see [11, Ch. 3]) and we have

COROLLARY 9. If q > 1 is a square-free integer and χ_0 is the principal character mod q, then the sum

$$\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} \chi_0(n)$$

is transcendental, where $P(x) \in \overline{\mathbb{Q}}[x]$, P(-x) = P(x+qr) and the polynomial Q(x) is as in Corollary 6. In particular, the sum of the series

$$\sum_{n=1}^{\infty} \frac{\chi_0(n)}{(n^2 + qrn + b)^m}$$

is transcendental for any $m \in \mathbb{N}$, $b, r \in \mathbb{Z}$ such that $q^2r^2 < 4b$.

COROLLARY 10. Let q > 1 be an integer and χ_0 the principal character mod q. Suppose that $P(x), Q(x) \in \overline{\mathbb{Q}}[x], P(-x) = P(x+qr)$ and $Q(x) = \prod_{k=1}^{2m} (x-\alpha_k)^{l_k}$ for some $m, l_1, \ldots, l_{2m} \in \mathbb{N}, r \in \mathbb{Z}$, where $\alpha_k = a_k + ib_k \sqrt{d} \in \mathbb{Q}(i\sqrt{d}) \setminus \mathbb{Q}, k = 1, \ldots, 2m$, are distinct and such that $\alpha_{k+m} = \alpha_k, b_k \ge 0$, $l_{k+m} = l_k, k = 1, \ldots, m$. If $\sum_{k=1}^m \operatorname{res}_{z=\alpha_k} P(z)/Q(z) \ne 0$, then the sum

$$\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} \chi_0(n)$$

is transcendental.

COROLLARY 11. Let $f : \mathbb{Z} \to \overline{\mathbb{Q}}$ be odd, periodic with period $q \in \mathbb{N}$. Then the sum

$$\sum_{n=1}^{\infty} \frac{P(n)f(n)}{n(n^2+b)^m}$$

is either zero or transcendental for any $m, b \in \mathbb{N}$ and any even polynomial P(x) with deg $P \leq 2m$.

4. Transcendence of trigonometric series

THEOREM 5. Suppose that $\beta_1, \ldots, \beta_s \in [0, 2)$ are distinct rational numbers, $Q(x), P_1(x), \ldots, P_s(x) \in \overline{\mathbb{Q}}[x], Q(x) = (x - \alpha_1)^{l_1} \ldots (x - \alpha_m)^{l_m}$, where $\alpha_1, \ldots, \alpha_m \in \mathbb{Q}(i\sqrt{d}) \setminus \mathbb{Z}$ are distinct, $l_1, \ldots, l_m \in \mathbb{N}$, $h(n) = \sum_{j=1}^s P_j(n) e^{i\pi\beta_j n}$, and for $1 \leq j \leq s$,

$$\deg P_j(x) \le \begin{cases} \deg Q(x) - 1 & \text{if } \beta_j > 0, \\ \deg Q(x) - 2 & \text{if } \beta_j = 0. \end{cases}$$

Then the sum

$$V = \sum_{n = -\infty}^{\infty} \frac{h(n)}{Q(n)}$$

is either zero or transcendental.

Proof. We consider the complex integral

$$I_N = \frac{1}{2\pi i} \int_{L_N} \frac{h^-(z)}{Q(z)} \frac{\pi}{\sin \pi z} \, dz,$$

where $h^{-}(z) = \sum_{j=1}^{s} P_j(z) e^{i\pi(\beta_j - 1)z}$, L_N is a square contour with vertices $(N + 1/2)(\pm 1 \pm i)$, and N is a large positive integer such that $\alpha_1, \ldots, \alpha_m$ are inside L_N . For $z = \pm (N + 1/2) + iy$, $y \in [-N - 1/2, N + 1/2]$, we have

$$\left|\frac{1}{\sin \pi z}\right| = \frac{2}{e^{\pi y} + e^{-\pi y}},$$

and therefore,

(29)
$$\left|\frac{P_j(z)e^{i\pi(\beta_j-1)z}}{Q(z)\sin\pi z}\right| = \frac{2|P_j(z)|}{|Q_j(z)|(e^{\pi\beta_j y} + e^{\pi(\beta_j-2)y})} \le 2\frac{|P_j(z)|}{|Q_j(z)|}e^{-\pi|y|\min\{\beta_j, 2-\beta_j\}}.$$

If $\beta_j = 0$, then from (29) it follows that

(30)
$$\left|\frac{1}{2\pi i} \int_{\substack{z=\pm(N+1/2)+iy\\-N-1/2 \le y \le N+1/2}} \frac{P_j(z)e^{i\pi(\beta_j-1)z}}{Q(z)} \frac{\pi}{\sin \pi z} dz\right|$$

$$\leq \int_{-N-1/2}^{N+1/2} \frac{|P_j(z)|}{|Q_j(z)|} dy = O\left(\frac{1}{N}\right).$$

If $0 < \beta_j < 2$, then (29) implies

(31)
$$\begin{vmatrix} \frac{1}{2\pi i} & \int_{\substack{z=\pm(N+1/2)+iy\\-N-1/2 \le y \le N+1/2}} \frac{P_j(z)e^{i\pi(\beta_j-1)z}}{Q(z)} \frac{\pi}{\sin \pi z} dz \end{vmatrix}$$
$$\le O\left(\frac{1}{N}\right) \int_{-N-1/2}^{N+1/2} e^{-\pi|y|\min\{\beta_j,2-\beta_j\}} dy = O\left(\frac{1}{N}\right).$$

If $z = x \pm i(N+1/2), x \in [-N-1/2, N+1/2]$, then $\left|\frac{1}{\sin \pi z}\right| = \frac{2}{e^{\pi(N+1/2)} - e^{-\pi(N+1/2)}}$

$$\left|\frac{1}{\sin \pi z}\right| = \frac{2}{e^{\pi(N+1/2)} - e^{-\pi(N+1/2)}}$$

and

(32)
$$\left|\frac{P_{j}(z)e^{i\pi(\beta_{j}-1)z}}{Q(z)\sin\pi z}\right| \leq \frac{2|P_{j}(z)|}{|Q(z)|} \frac{e^{\pi|\beta_{j}-1|(N+1/2)}}{e^{\pi(N+1/2)} - e^{-\pi(N+1/2)}} \\ = \begin{cases} O\left(\frac{1}{N^{2}}\right) & \text{if } \beta_{j} = 0, \\ O\left(\frac{1}{Ne^{\pi(1-|\beta_{j}-1|)N}}\right) & \text{if } 0 < \beta_{j} < 2. \end{cases}$$

Therefore, by (30)–(32), we conclude that $I_N = O(N^{-1})$ as $N \to \infty$. On the other hand, by the residue theorem we have

$$I_N - \sum_{k=1}^m \operatorname{res}_{z=\alpha_k} \left(\frac{h^{-}(z)}{Q(z)} \frac{\pi}{\sin \pi z} \right) = \sum_{k=-N}^N \operatorname{res}_{z=k} \left(\frac{h^{-}(z)}{Q(z)} \frac{\pi}{\sin \pi z} \right) = \sum_{k=-N}^N \frac{h(k)}{Q(k)}.$$

Now letting N tend to infinity we get

$$V = -\sum_{k=1}^{m} \operatorname{res}_{z=\alpha_k} \left(\frac{\pi h^{-}(z)}{Q(z)\sin \pi z} \right) = \sum_{k=1}^{m} \frac{-\pi}{(l_k - 1)!} \left(\frac{h^{-}(z)(z - \alpha_k)^{l_k}}{Q(z)\sin \pi z} \right)^{(l_k - 1)} \Big|_{z=\alpha_k},$$

which implies that $V \in \overline{\mathbb{Q}}(\pi, e^{\pi\sqrt{d}/B})$ for some $B \in \mathbb{N}$, and hence either V = 0 or $V \notin \overline{\mathbb{Q}}$.

COROLLARY 12. If in addition to the assumptions of Theorem 5, Q(x) is an even polynomial, then the sum

$$W = \sum_{n=0}^{\infty} \frac{h(n) + h(-n)}{Q(n)}$$

is either h(0)/Q(0) or transcendental.

COROLLARY 13. Suppose that $\beta_1, \beta_2 \in (0, 1) \cup (1, 2)$ are rational numbers, $Q(x), P_1(x), P_2(x) \in \overline{\mathbb{Q}}[x]$ such that $P_1(x), Q(x)$ are even polynomials, $P_2(x)$ is an odd polynomial, $\deg P_j(x) \leq \deg Q(x) - 1$, j = 1, 2, and all roots of Q(x) belong to $\mathbb{Q}(i\sqrt{d}) \setminus \mathbb{Z}$. Then the trigonometric series

$$W = \frac{P_1(0)}{2Q(0)} + \sum_{n=1}^{\infty} \frac{P_1(n)\cos(\pi\beta_1 n) + P_2(n)\sin(\pi\beta_2 n)}{Q(n)}$$

is either zero or transcendental.

Proof. We define

$$h(n) = \begin{cases} \frac{1}{2}P_1(n)e^{i\pi\beta_1 n} - \frac{1}{2}iP_2(n)e^{i\pi\beta_2 n} & \text{if } \beta_1 \neq \beta_2, \\ \frac{1}{2}P_1(n)e^{i\pi\beta_1 n} + \frac{1}{2}iP_2(n)e^{i\pi(2-\beta_1)n} & \text{if } \beta_1 = \beta_2, \end{cases}$$

and consider the sum

$$\sum_{n=0}^{\infty} \frac{h(n) + h(-n)}{Q(n)} - \frac{h(0)}{Q(0)} = \frac{P_1(0)}{2Q(0)} + \sum_{n=1}^{\infty} \frac{P_1(n)\cos(\pi\beta_1 n) + P_2(n)\sin(\pi\beta_2 n)}{Q(n)},$$

which, by Corollary 12, is either zero or transcendental.

5. Schanuel's conjecture and infinite sums. For more general set of roots of the polynomials $Q_j(x)$, when not all $\alpha_{j,k}$ are in $\mathbb{Q}(i\sqrt{d})$, we give some statements on the transcendence of the sums S, T, U, V provided that the Schanuel conjecture holds (see [12, §3.1], [8, §10.7.G]).

SCHANUEL CONJECTURE (S). If $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ are linearly independent over \mathbb{Q} , then the transcendence degree over \mathbb{Q} of the field $\mathbb{Q}(\alpha_1, \ldots, \alpha_n, e^{\alpha_1}, \ldots, e^{\alpha_n})$ is at least n.

We formulate the following propositions, which are consequences of (S):

CONJECTURE (S₁). Let $P_1, \ldots, P_s, Q_1, \ldots, Q_s \in \overline{\mathbb{Q}}[x], r_1, \ldots, r_s \in \mathbb{Z}$, where for any $1 \leq j \leq s$ the polynomials P_j, Q_j satisfy the following conditions: deg $P_j \leq \deg Q_j - 2, Q_j(r_j/2) \neq 0, Q_j(n) \neq 0, n = 0, 1, \ldots, and$

$$\frac{P_j(-x)}{Q_j(-x)} = \frac{P_j(r_j+x)}{Q_j(r_j+x)}.$$

Then the sum

$$S = \sum_{n=0}^{\infty} \left(\frac{P_1(n)}{Q_1(n)} + \dots + \frac{P_s(n)}{Q_s(n)} \right)$$

is either a computable algebraic number or transcendental.

Proof. Under the conditions stated above, we see that for $1 \leq j \leq s$, $Q_j(x) = \prod_{k=1}^{2m_j} (x - \alpha_{j,k})^{l_{j,k}}$, where $\alpha_{j,k}$ are distinct algebraic numbers distinct from non-negative integers and such that $\alpha_{j,m_j+k} = r_j - \alpha_{j,k}$, $l_{j,m_j+k} = l_{j,k} \in \mathbb{N}$, $k = 1, \ldots, m_j$. Therefore, from (16) we have

(33)
$$S = C_0 + \sum_{\substack{j=1\\\alpha_{j,k} \in \mathbb{Z}}}^{s} \sum_{\substack{l=1\\l \text{ even}}}^{m_j} \sum_{\substack{l=1\\l \text{ even}}}^{l_{j,k}} C_{j,k,l} \pi^l + \sum_{\substack{j=1\\\alpha_{j,k} \notin \mathbb{Z}}}^{s} \sum_{\substack{l=1\\l=1}}^{m_j} \sum_{\substack{l=1\\l=1}}^{l_{j,k}} \frac{(-1)^{l-1} A_{j,k,l}}{(l-1)!} \pi^l p_{l-1}(-\cot \pi \alpha_{j,k}),$$

where C_0 and all the coefficients $C_{j,k,l}$, $A_{j,k,l}$ are algebraic numbers. From (33) it follows that S is equal to C_0 or transcendental by (S). Indeed, suppose that $S \neq C_0$ and S is algebraic. Assume that the numbers

(34)
$$\frac{1}{\lambda}, \frac{\alpha_{j_1,k_1}}{\lambda_1}, \dots, \frac{\alpha_{j_l,k_l}}{\lambda_l},$$

where $\lambda_1, \ldots, \lambda_l \in \mathbb{N}$, are linearly independent over \mathbb{Q} and all the other roots $\alpha_{j,k}$ are \mathbb{Z} -linear combinations of (34). Then the numbers

$$\frac{\pi i}{\lambda}, \ \frac{\pi i \alpha_{j_1,k_1}}{\lambda_1}, \ \dots, \ \frac{\pi i \alpha_{j_l,k_l}}{\lambda_l}$$

are also linearly independent over \mathbb{Q} . Put

$$K = \overline{\mathbb{Q}}\left(\frac{\pi i}{\lambda}, \frac{\pi i \alpha_{j_1,k_1}}{\lambda_1}, \dots, \frac{\pi i \alpha_{j_l,k_l}}{\lambda_l}, e^{\pi i \alpha_{j_1,k_1}/\lambda_1}, \dots, e^{\pi i \alpha_{j_l,k_l}/\lambda_l}\right)$$
$$= \overline{\mathbb{Q}}\left(\frac{\pi i}{\lambda}, e^{\pi i \alpha_{j_1,k_1}/\lambda_1}, \dots, e^{\pi i \alpha_{j_l,k_l}/\lambda_l}\right).$$

Then by (S), it follows that $\operatorname{tr} \operatorname{deg}(K : \overline{\mathbb{Q}}) = l + 1$. From (33) we see that $S - C_0 \in K$. If $S - C_0 \in \overline{\mathbb{Q}} \setminus \{0\}$, then there exists a non-zero polynomial

 $A(x) \in \mathbb{Z}[x]$ such that $A(S - C_0) = 0$. Hence $\operatorname{tr} \operatorname{deg}(K : \overline{\mathbb{Q}}) \leq l$ and the contradiction obtained proves (S_1) .

REMARK 5.1. If all $\alpha_{j,k} \in \mathbb{Q}(i\sqrt{d})$, then (S₁) is true by Theorem 1.

By a similar argument we have

CONJECTURE (S₂). Let $P_1, \ldots, P_s, Q_1, \ldots, Q_s \in \overline{\mathbb{Q}}[x], r_1, \ldots, r_s \in \mathbb{Z}$, where for any $1 \leq j \leq s$ the polynomials P_j, Q_j satisfy the following conditions: deg $P_j \leq \deg Q_j - 1, Q_j(r_j/2) \neq 0, Q_j(n) \neq 0, n = 0, 1, \ldots, and$

$$\frac{P_j(-x)}{Q_j(-x)} = (-1)^{r_j} \frac{P_j(r_j + x)}{Q_j(r_j + x)}.$$

Then the sum

$$T = \sum_{n=0}^{\infty} \left(\frac{P_1(n)}{Q_1(n)} + \dots + \frac{P_s(n)}{Q_s(n)} \right) (-1)^n$$

is either a computable algebraic number or transcendental.

CONJECTURE (S₃). Let $f : \mathbb{Z} \to \overline{\mathbb{Q}}$ be periodic with period $q \in \mathbb{N}$. Suppose that $r \in \mathbb{Z}$, $P(x), Q(x) \in \overline{\mathbb{Q}}[x], (Q'(qr/2))^2 + (Q(qr/2))^2 \neq 0, Q(n) \neq 0, n = 1, 2, \ldots,$

(35)
$$\frac{P(-x)}{Q(-x)} = \pm \frac{P(x+qr)}{Q(x+qr)}$$

and f is an even or odd function according to whether we have the "plus" or "minus" sign in (35). Suppose further that the series

$$U = \sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} f(n)$$

converges. Then U is either a computable algebraic number or transcendental.

CONJECTURE (S₄). Suppose that $\beta_1, \ldots, \beta_s \in [0,2)$ are distinct rational numbers, $Q(x), P_1(x), \ldots, P_s(x) \in \overline{\mathbb{Q}}[x], Q(n) \neq 0, n \in \mathbb{Z}, h(n) = \sum_{j=1}^s P_j(n)e^{i\pi\beta_j n}$, and for $1 \leq j \leq s$, deg $P_j(x) \leq \deg Q(x) - 1$ if $0 < \beta_j < 2$ and deg $P_j(x) \leq \deg Q(x) - 2$ if $\beta_j = 0$. Then the sum

$$V = \sum_{n = -\infty}^{\infty} \frac{h(n)}{Q(n)}$$

is either zero or transcendental.

References

S. D. Adhikari, N. Saradha, T. N. Shorey and R. Tijdeman, *Transcendental infinite sums*, Indag. Math. (N.S.) 12 (2001), 1–14.

- [2] H. Bateman and A. Erdélyi, *Higher Transcendental Functions*, Vol. 1, McGraw-Hill, New York, 1953.
- [3] P. Bundschuh, Zwei Bemerkungen über transzendente Zahlen, Monatsh. Math. 88 (1979), 293–304.
- [4] A. A. Karatsuba, Principles of Analytic Number Theory, Nauka, Moscow, 1975 (in Russian).
- [5] G. Molteni, Some arithmetical properties of the generating power series for the sequence $\{\zeta(2k+1)\}_{k=1}^{\infty}$, Acta Math. Hungar. 90 (2001), 133–140.
- [6] M. R. Murty and N. Saradha, Transcendental values of the digamma function, J. Number Theory 125 (2007), 298–318.
- Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), no. 9, 65–96 (in Russian).
- [8] P. Ribenboim, *My Numbers*, *My Friends*, Popular Lectures on Number Theory, Springer, Berlin, 2000.
- [9] N. Saradha and R. Tijdeman, On the transcendence of infinite sums of values of rational functions, J. London Math. Soc. (3) 67 (2003), 580–592.
- [10] R. Tijdeman, On irrationality and transcendency of infinite sums of rational numbers, submitted.
- [11] I. M. Vinogradov, An Introduction to the Theory of Numbers, Pergamon Press, London, 1955.
- [12] M. Waldschmidt, Open diophantine problems, Moscow Math. J. 4 (2004), 245–305.

Institute for Studies in Theoretical Physics and Mathematics (IPM) Tehran, Iran

Current address:

Mathematics Department Faculty of Science Shahrekord University P.O. Box 115 Shahrekord, Iran E-mail: hessamik@ipm.ir hessamit@gmail.com

> Received on 18.9.2006 and in revised form on 4.6.2007

(5273)