
ACTA ARITHMETICA

130.3 (2007)

Representations of integers as

sums of primes from a Beatty sequence

by

William D. Banks, Ahmet M. Güloğlu
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1. Introduction. The celebrated 1937 theorem of Vinogradov states
that every sufficiently large odd number is the sum of three prime numbers.
However, the statement is no longer true if all three primes are required to
lie in the Beatty sequence

Bα = {⌊αm⌋ : m ∈ N}

for a fixed irrational number α > 3. Indeed, if N is odd and

(1) N = ⌊αm1⌋ + ⌊αm2⌋ + ⌊αm3⌋

for some m1,m2,m3 ∈ N, it is easy to see that

Nα−1 ≤ m1 +m2 +m3 < Nα−1 + 3α−1.

Hence, the relation (1) cannot hold if the fractional part {Nα−1} of Nα−1

lies in the open interval (0, 1−3α−1), which happens for about 1
2(1−3α−1)X

positive odd integers N ≤ X. On the other hand, for an irrational number α
of finite type (see Section 2.2) in the range 1 < α < 3, we show that every
sufficiently large odd number is the sum of three prime numbers, each of
which lies in the Beatty sequence Bα.

More generally, for fixed α, β ∈ R with α > 1, we study the problem of
representing integers as sums of primes from the non-homogeneous Beatty

sequence

Bα,β = {n ∈ N : n = ⌊αm+ β⌋ for some m ∈ Z}.

In this paper, we prove the following:

Theorem 1. Let α, β ∈ R with α > 1, and suppose that α is irrational

and of finite type. Then:
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(i) Almost all even numbers N can be expressed as the sum of two primes

from the Beatty sequence Bα,β if and only if α < 2.
(ii) For any integer κ ≥ 3, every sufficiently large number N ≡ κ (mod2)

can be expressed as the sum of κ primes from the Beatty sequence

Bα,β if and only if α < κ.

To state our results more explicitly, we define for every integer κ ≥ 2 the
function

Gκ(N) = Gκ(α, β;N) =
∑

n1+···+nκ=N
n1,...,nκ∈Bα,β

Λ(n1) · · ·Λ(nκ) (N ≥ 1),

where Λ is the von Mangoldt function:

Λ(n) =

{
log p if n is a positive power of the prime p,

0 otherwise.

By partial summation, our estimates for Gκ(N) lead to estimates for the
number of representations of an integer N ≡ κ (mod2) as the sum of
κ primes from the Beatty sequence Bα,β.

Let ψ = ψα be the periodic function with period one which is defined on
the interval (0, 1] as follows:

(2) ψ(x) =

{
1 if 0 < x ≤ α−1,

0 if α−1 < x ≤ 1.

The function ψ is closely related to the characteristic function of the set Bα,β.

Let ψ(1) = ψ, and for every κ ≥ 2, let ψ(κ) denote the κ-fold convolution of
ψ with itself, defined inductively by

ψ(κ)(x) =

1\
0

ψ(κ−1)(x− y)ψ(y) dy (κ ≥ 2).

Finally, for every κ ≥ 2 we define the singular series

Sκ(N) =
∏

p|N

(
1 +

(−1)κ

(p− 1)κ−1

) ∏

p ∤ N

(
1 +

(−1)κ+1

(p− 1)κ

)
(N ≥ 1).

The numbers Sκ(N) arise naturally in estimates for the number of repre-
sentations of an integer as a sum of κ prime numbers. Note that Sκ(N) = 0
if and only if N 6≡ κ (mod2).

Theorem 2. Let α, β ∈ R with α > 1, and suppose that α is irrational

and of finite type. Then, for any constant C > 0, the estimate

G2(N) = ψ(2)(γN + 2δ)S2(N)N +O

(
N

(logN)C

)

holds for all but O(X(logX)−C) integers N ≤ X, where γ = α−1, δ =
α−1(1 − β), and the implied constants depend only on α and C.



Representations of integers 257

Theorem 3. Let α, β ∈ R with α > 1, and suppose that α is irrational

and of finite type. Then, for every integer κ ≥ 3 and any constant C > 0,

Gκ(N) = ψ(κ)(γN + κδ)Sκ(N)
Nκ−1

(κ− 1)!
+O

(
Nκ−1

(logN)C

)
,

where γ = α−1, δ = α−1(1 − β), and the implied constant depends only on

α, κ and C.

The proof of Theorem 2 is given in Section 3 (see the Remark after the
statement of Theorem 4) and that of Theorem 3 is given in Section 4 (see
the Remark after the statement of Proposition 1). In Section 5 we study
properties of the convolutions ψ(κ) (κ ≥ 2) and, in particular, derive a sharp
lower bound for values of ψ(κ) in the special case that κ = ⌈α⌉. Our proof of
Theorem 1, which is given in Section 6, follows immediately from the results
of Section 5.

Our arguments have been strongly influenced by the treatment of the
Goldbach problem that is given in the book [6] of Iwaniec and Kowalski, and
we adopt a similar notation here. Our underlying approach relies heavily on
ideas from a recent paper of Banks and Shparlinski [2] on primes in a Beatty
sequence.

Acknowledgements. The authors wish to thank Ignacio Uriarte-Tuero
and Bob Vaughan for helpful conversations. This work was done entirely
at the University of Missouri-Columbia; the support of this institution is
gratefully acknowledged.

2. Preliminaries

2.1. Notation. The symbol JxK is used to denote the distance from the
real number x to the nearest integer; that is,

JxK = min
n∈Z

|x− n| (x ∈ R).

We denote by ⌊x⌋, ⌈x⌉ and {x} the greatest integer ≤ x, the least integer
≥ x, and the fractional part of x, respectively. We also put e(x) = e2πix

for all x ∈ R. As usual, we use µ and ϕ to denote the Möbius and Euler
functions, respectively.

Throughout the paper, the implied constants in symbols O, ≪ and ≫
may depend (where obvious) on the parameters α, κ, C but are absolute
otherwise. We recall that for functions F and G the notations F ≪ G,
G≫ F and F = O(G) are all equivalent to the statement that the inequality
|F | ≤ c|G| holds for some constant c > 0.

2.2. Discrepancy of fractional parts. Recall that the discrepancy D(M)
of a sequence of (not necessarily distinct) real numbers a1, . . . , aM ∈ [0, 1)
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is defined by

(3) D(M) = sup
I⊆[0,1)

∣∣∣∣
V (I,M)

M
− |I|

∣∣∣∣,

where the supremum is taken over all subintervals I = (c, d) of the interval
[0, 1), V (I,M) is the number of positive integers m ≤M such that am ∈ I,
and |I| = d− c is the length of I.

For any irrational number γ we define its type τ by the relation

τ = sup{t ∈ R : lim inf
n→∞

ntJγnK = 0}.

Using Dirichlet’s approximation theorem, it is easily seen that τ ≥ 1 for
every irrational number γ. The well known theorems of Khinchin [7] and of
Roth [13, 14] assert that τ = 1 for almost all real numbers (in the sense of
the Lebesgue measure) and all irrational algebraic numbers γ, respectively;
see also [3, 15].

For every irrational number γ, it is known that the sequence of fractional
parts {γ}, {2γ}, {3γ}, . . . , is uniformly distributed modulo 1 (for instance, see
[9, Chapter 1, Example 2.1]). When γ is of finite type, this statement can
be made more precise. Let Dγ,δ(M) denote the discrepancy of the sequence

of fractional parts ({γm+ δ})M
m=1. By [9, Chapter 2, Theorem 3.2] we have:

Lemma 1. Let γ be a fixed irrational number of finite type τ <∞. Then

for all δ ∈ R the following bound holds:

Dγ,δ(M) ≤M−1/τ+o(1) (M → ∞),

where the function implied by o(·) depends only on γ.

2.3. Numbers in a Beatty sequence. The following elementary result
characterizes the set of numbers that occur in the Beatty sequence Bα,β :

Lemma 2. Let α, β ∈ R with α > 1, and put γ = α−1, δ = α−1(1 − β).
Then n = ⌊αm+ β⌋ for some integer m if and only if 0 < {γn+ δ} ≤ γ.

2.4. Estimates with the von Mangoldt function. The estimate below fol-
lows immediately from the Siegel–Walfisz theorem (see, for example, the
book [5] by Huxley) using partial summation:

Lemma 3. Let κ ≥ 1 be fixed. Then for any fixed constant A > 0 and

uniformly for integers N ≥ 3 and 0 ≤ c < d ≤ (logN)A with gcd(c, d) = 1,
∑

n≤N
n≡c (mod d)

Λ(n)(N − n)κ−1 =
Nκ

κϕ(d)
+O(Nκ exp(−B(logN)1/2)),

where B > 0 is a constant that depends only on κ and A.

We also need the following:
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Lemma 4. Let κ ≥ 1 be fixed. For an arbitrary real number θ and co-

prime integers c, d with 0 ≤ c < d, if |θ − a/b| ≤ 1/N and gcd(a, b) = 1,
then∑

n≤N
n≡c (mod d)

Λ(n)e(θn)(N−n)κ−1 ≪ (b−1/2Nκ+b1/2Nκ−1/2+Nκ−1/5)(logN)3,

where the implied constant depends only on κ.

Proof. The special case κ = 1 is a simplified and weakened version of a
theorem of Balog and Perelli [1] (see also [11]), and the general case follows
by partial summation.

2.5. The singular series. For every integer κ ≥ 2, it is easy to check that
the singular series

Sκ(N) =
∏

p|N

(
1 +

(−1)κ

(p− 1)κ−1

) ∏

p ∤ N

(
1 +

(−1)κ+1

(p− 1)κ

)

satisfies the identity

(4) Sκ(N) =
∑

d|N

∑

c≥1
gcd(c,d)=1

µ(c)κ+1µ(d)κd

ϕ(c)κϕ(d)κ
,

and for every κ ≥ 3 we also have

(5) Sκ(N) =
∑

c,d≥1
gcd(d,cN)=1

µ(c)κµ(d)κ+1d

ϕ(c)κ−1ϕ(d)κ
.

We moreover have the bound

(6) S2(N) ≪ log logN,

and for every κ ≥ 3,

(7) Sκ(N) ≪ 1.

3. Two Beatty primes. Fix α, β ∈ R with α > 1, and suppose that α
is irrational and of finite type. In this section, we focus our attention on the
function

G2(N) =
∑

n1+n2=N
n1,n2∈Bα,β

Λ(n1)Λ(n2) (N ≥ 1).

Put γ = α−1 and δ = α−1(1 − β), and let τ denote the (finite) type of γ.
We recall that ψ is the periodic function with period one which is defined
by (2) on the interval (0, 1], and ψ(2) = ψ ∗ ψ is the convolution of ψ with
itself.
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Theorem 4. For any complex numbers cN and any constant C > 0,

∑

N≤X

cNG2(N) =
∑

N≤X

cNψ
(2)(γN + 2δ)S2(N)N +O

(
‖c‖2

X3/2

(logX)C

)
,

where ‖c‖2 = (
∑

N≤X |cN |2)1/2.

Remark. This result immediately yields a proof of Theorem 2. Indeed,
taking cN = G2(N) − ψ(2)(γN + 2δ)S2(N)N , we derive the bound

∑

N≤X

(G2(N) − ψ(2)(γN + 2δ)S2(N)N)2 ≪
X3

(logX)2C
,

and Theorem 2 follows at once.

Proof of Theorem 4. By Lemma 2 and the definition (2), it follows that

(8) G2(N) =
∑

n1+n2=N

Λ(n1)Λ(n2)ψ(γn1 + δ)ψ(γn2 + δ).

According to a classical result of Vinogradov (see [16, Chapter I, Lem-
ma 12]), for any ∆ such that

0 < ∆ <
1

8
and ∆ ≤

1

2
min{γ, 1 − γ}

there is a real-valued function Ψ with the following properties:

(i) Ψ is periodic with period one;
(ii) 0 ≤ Ψ(x) ≤ 1 for all x ∈ R;
(iii) Ψ(x) = ψ(x) if ∆ ≤ {x} ≤ γ −∆ or if γ +∆ ≤ {x} ≤ 1 −∆;
(iv) Ψ can be represented as a Fourier series

Ψ(x) =
∑

k∈Z

g(k)e(kx),

where g(0) = γ, and the Fourier coefficients satisfy the uniform
bound

(9) |g(k)| ≪ min{|k|−1, |k|−2∆−1} (k 6= 0).

From the properties (i)–(iii) above, it follows that the estimate

(10) Ψ (2)(x) = ψ(2)(x) +O(∆)

holds uniformly for all x ∈ R, where Ψ (2) is the convolution Ψ ∗ Ψ .

From (8) we see that

G2(N) =
∑

n1+n2=N

Λ(n1)Λ(n2)Ψ(γn1 + δ)Ψ(γn2 + δ)(11)

+O(V (I, N)(logN)2),
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where V (I, N) is the number of positive integers n ≤ N such that

{γn+ δ} ∈ I = [0, ∆) ∪ (γ −∆, γ +∆) ∪ (1 −∆, 1).

Since |I| = 4∆, it follows from the definition (3) and Lemma 1 that

(12) V (I, N) ≪ ∆N +N1−1/(2τ).

Now let K ≥ ∆−1 be a large real number (to be specified later), and let
ΨK be the trigonometric polynomial given by

(13) ΨK(x) =
∑

|k|≤K

g(k)e(kx).

Using (9), we see that the estimate

(14) ΨK(x) = Ψ(x) +O(K−1∆−1)

holds uniformly for all x ∈ R, and therefore

(15) Ψ
(2)
K (x) = Ψ (2)(x) +O(K−1∆−1) = ψ(2)(x) +O(∆+K−1∆−1),

where we have used (10) in the second step. From the definition (13) we also
have

(16) Ψ
(2)
K (x) =

∑

|k|≤K

g(k)2e(kx).

Inserting the estimate (14) into (11) and taking into account (12), we derive
that

G2(N) =
∑

n1+n2=N

Λ(n1)Λ(n2)ΨK(γn1 + δ)ΨK(γn2 + δ)

+O((∆+K−1∆−1 +N−1/(2τ))N(logN)2).

For a given real number Z ≥ 2, we now split Λ(n) as follows:

Λ(n) = −
∑

d|n

µ(d) log d = Λ♯(n) + Λ♭(n),

where

Λ♯(n) = −
∑

d|n
d≤Z

µ(d) log d and Λ♭(n) = −
∑

d|n
d>Z

µ(d) log d.

Then

G2(N) = G♯♯
2 (N) + 2G♯♭

2 (N) + G♭♭
2 (N)(17)

+O((∆+K−1∆−1 +N−1/(2τ))N(logN)2),
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where

G♯♯
2 (N) =

∑

n1+n2=N

Λ♯(n1)Λ
♯(n2)ΨK(γn1 + δ)ΨK(γn2 + δ),

G♯♭
2 (N) =

∑

n1+n2=N

Λ♯(n1)Λ
♭(n2)ΨK(γn1 + δ)ΨK(γn2 + δ),

G♭♭
2 (N) =

∑

n1+n2=N

Λ♭(n1)Λ
♭(n2)ΨK(γn1 + δ)ΨK(γn2 + δ).

From now on, let X be a large integer, and put

(18) ∆ = X−1/(8τ) and K = X1/(4τ).

Then for all N ≤ X the estimate (17) implies

G2(N) = G♯♯
2 (N) + 2G♯♭

2 (N) + G♭♭
2 (N) +O(X1−1/(10τ)).

Therefore, for any complex numbers cN , it follows that
∑

N≤X

cNG2(N) =
∑

N≤X

cN (G♯♯
2 (N) + 2G♯♭

2 (N) + G♭♭
2 (N))(19)

+O(‖c‖2X
3/2−1/(10τ)).

Next, we need the following result, the proof of which is given below:

Lemma 5. For any complex numbers ul and vm, the bound

∑

l+m+n=X

ulvm Λ♭(n)ΨK(γn+ δ) ≪ ‖u‖2‖v‖2
X(logX)2

(logZ)A

holds with any A > 0, where

‖u‖2 =
( ∑

l≤X

|ul|
2
)1/2

, ‖v‖2 =
( ∑

m≤X

|vm|2
)1/2

,

and the implied constant depends only on α and A.

For any complex numbers cN , we have
∑

N≤X

cNG♯♭
2 (N) =

∑

l+m+n=X

cX−lΛ
♯(m)ΨK(γm+ δ) · Λ♭(n)ΨK(γn+ δ).

We now apply Lemma 5 with

ul =

{
cX−l if 1 ≤ l ≤ X,

0 otherwise,

vm =

{
Λ♯(m)ΨK(γm+ δ) if 1 ≤ m ≤ X,

0 otherwise.

From the trivial bound

|Λ♯(m)ΨK(γm+ δ)| ≤ d(m) logm,
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where d(m) is the number of positive integer divisors of m, it follows that

‖v‖2
2 ≪ X(logX)5,

where we have used the well known bound
∑

m≤X d(m)2 ≪ X(logX)3 (see,
for example, the proof given by Hua [4, Theorem 5.3]; see also [12, 17, 18]).
Hence, using Lemma 5 with A = C + 9/2 we derive the bound

(20)
∑

N≤X

cNG♯♭
2 (N) ≪ ‖c‖2

X3/2(logX)9/2

(logZ)C+9/2

for any constant C > 0. Similarly,

(21)
∑

N≤X

cNG♭♭
2 (N) ≪ ‖c‖2

X3/2(logX)9/2

(logZ)C+9/2
.

Turning to the sum G♯♯
2 (N), we begin by inserting the Fourier expansion

of ΨK(x) and then changing the order of summation, obtaining

G♯♯
2 (N) =

∑

n1+n2=N

Λ♯(n1)Λ
♯(n2)ΨK(γn1 + δ)ΨK(γn2 + δ)

=
∑

n≤N

Λ♯(n)Λ♯(N − n)ΨK(γn+ δ)ΨK(γ(N − n) + δ)

=
∑

|k|≤K
|l|≤K

g(k)g(l)e(kδ)e(l(γN + δ))
∑

n≤N

Λ♯(n)Λ♯(N − n)e((k − l)γn).

We now collect terms in the double sum according to whether k = l or not.
Writing

G♯♯
2 (N) =

∑

n≤N

Λ♯(n)Λ♯(N − n),

the contribution to G♯♯
2 (N) coming from terms with k = l is

G♯♯
2 (N)

∑

|k|≤K

g(k)2e(k(γN + 2δ)) = Ψ
(2)
K (γN + 2δ)G♯♯

2 (N),

where we have used (16) in the second step. To bound the remainder

R =
∑

|k|,|l|≤K
k 6=l

g(k)g(l)e(kδ)e(l(γN + δ))
∑

n≤N

Λ♯(n)Λ♯(N − n)e((k − l)γn),

we use the following result, the proof of which is given below:

Lemma 6. For every integer k0 6= 0 with |k0| ≤ 2K = 2X1/(4τ), we have
∑

n≤N

Λ♯(n)Λ♯(N − n)e(k0γn) ≪ X1/2Z3+4τ ,

where the implied constant depends only on α.
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From Lemma 6, it follows that

R≪ X1/2Z3+4τ
∑

|k|≤K

|g(k)|
∑

|l|≤K

|g(l)| ≪ X1/2Z3+4τ (logX)2,

where we have used (9) together with our choice of K.

We have therefore shown that

G♯♯
2 (N) = Ψ

(2)
K (γN + 2δ)G♯♯

2 (N) +O(X1/2Z3+4τ (logX)2).

For any complex numbers cN , it follows that
∑

N≤X

cNG♯♯
2 (N) =

∑

N≤X

cNΨ
(2)
K (γN + 2δ)G♯♯

2 (N) +O(‖c‖2XZ
3+4τ (logX)2).

Now put Z = X1/(9+12τ). Using the previous estimate together with the
bounds (20) and (21), we derive from (19) the estimate

∑

N≤X

cNG2(N) =
∑

N≤X

cNΨ
(2)
K (γN + 2δ)G♯♯

2 (N) +O

(
‖c‖2

X3/2

(logX)C

)
.

Examining the proof of [6, Lemma 19.3] (which is stated only for even num-
bers N but holds for odd numbers as well) and taking into account the
identity (4) with κ = 2, we deduce that

G♯♯
2 (N) = S2(N)N +O

(
N

(logN)C

)
.

From the trivial estimate∑

N≤X

cNΨ
(2)
K (γN + 2δ) ≪ ‖c‖2X

1/2,

it follows that
∑

N≤X

cNG2(N) =
∑

N≤X

cNΨ
(2)
K (γN + 2δ)S2(N)N +O

(
‖c‖2

X3/2

(logX)C

)
.

Finally, by (15) and our choices of ∆ and K, we have

Ψ
(2)
K (x) = ψ(2)(x) +O(X−1/(8τ)).

In view of the trivial bound (6), it follows that

X−1/(8τ)
∑

N≤X

cNS2(N)N ≪ ‖c‖2X
3/2−1/(8τ) log logX;

therefore,

∑

N≤X

cNG2(N) =
∑

N≤X

cNψ
(2)(γN + 2δ)S2(N)N +O

(
‖c‖2

X3/2

(logX)C

)

as required.
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Proof of Lemma 5. We argue as in [6, Section 19.3] and begin with a
bound for the exponential sum

S♭
ΨK

(ξ) =
∑

n≤X

Λ♭(n)ΨK(γn+ β)e(ξn).

From the definition (13), it follows that

|S♭
ΨK

(ξ)| ≤
∑

|k|≤K

|g(k)S♭(ξ + kγ)|, where S♭(ξ) =
∑

n≤X

Λ♭(n)e(ξn).

Using the bound (19.17) from [6] together with (9), we immediately deduce
that the uniform bound

(22) |S♭
ΨK

(ξ)| ≪
X logX logK

(logZ)A
(ξ ∈ R)

holds with any fixed constant A > 0.

To complete the proof, we observe that
∑

l+m+n=X

ulvmΛ
♭(n)ΨK(γn+ δ)

=

1\
0

( ∑

l≤X

ule(ξl)
)( ∑

m≤X

vme(ξm)
)
S♭

ΨK
(ξ)e(−ξX) dξ.

Applying the Cauchy–Schwarz inequality and using (22) (with K = X1/(4τ))
together with the equalities

1\
0

∣∣∣
∑

l≤X

ule(ξl)
∣∣∣
2
dξ =

∑

l≤X

|ul|
2,

1\
0

∣∣∣
∑

m≤X

vme(ξm)
∣∣∣
2
dξ =

∑

m≤X

|vm|2,

we obtain the stated bound.

Proof of Lemma 6. We have:

(23)
∑

n≤N

Λ♯(n)Λ♯(N − n)e(k0γn)

=
∑

n≤N

( ∑

d1|n
d1≤Z

µ(d1) log d1

)( ∑

d2|N−n
d2≤Z

µ(d2) log d2

)
e(k0γn)

=
∑

d1,d2≤Z

µ(d1)µ(d2) log d1 log d2

∑

l1,l2≥1
l1d1+l2d2=N

e(k0γl1d1).

If l1 ≥ 1, then l1d1 + l2d2 = N for some l2 ≥ 1 if and only if l1 < N/d1,
f = gcd(d1, d2) is a divisor of N , and

l1(d1/f) ≡ (N/f) (modd2/f).
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Let a be the least positive integer such that

a ≡ (d1/f)−1(N/f) (modd2/f).

Then l1 varies over the set {a, a+ d2/f, . . . , a+ (L− 1)d2/f}, where

L =

⌊
N/d1 − a

d2/f

⌋
=

N

[d1, d2]
+O(1),

and it follows that

∑

l1,l2≥1
l1d1+l2d2=N

e(k0γl1d1) = e(k0γad1)
L−1∑

j=0

e(k0γj[d1, d2])(24)

≪
1

Jk0γ[d1, d2] K
,

where we have used a standard estimate in the second step (see, for example,
[8, Chapter 1, Lemma 1]). Since γ is of type τ , we have

JγnK ≫ n−2τ (n ≥ 1),

where the implied constant depends on α; thus,

1

Jk0γ[d1, d2] K
≪ k2τ

0 [d1, d2]
2τ ≤ (2X1/(4τ))2τZ4τ ≪ X1/2Z4τ .

Combining this bound with (23) and (24), and using the trivial bound
∑

d1,d2≤Z

log d1 log d2 ≤ Z2(logZ)2 ≪ Z3,

we obtain the desired result.

4. Three or more Beatty primes. In what follows, we use the same
notation as in the proof of Theorem 4, except that we now define

∆ = N−1/(8τ), K = N1/(4τ)

instead of (18). With these choices, we have the following analog of (15) for
every κ ≥ 2:

(25) Ψ
(κ)
K (x) = ψ(κ)(x) +O(N−1/(8τ)) (x ∈ R).

Also,

(26) Ψ
(κ)
K (x) =

∑

|l|≤K

g(l)κe(lx).

Proposition 1. Let κ ≥ 2 be fixed. If , for any constant C > 0, the

estimate

(27) Gκ(n) = Ψ
(κ)
K (γn+ κδ)Sκ(n)

nκ−1

(κ− 1)!
+O

(
nκ−1

(logn)C

)
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holds for all but O(N(logN)−C) integers n ≤ N , then the estimate

(28) Gκ+1(N) = Ψ
(κ+1)
K (γN + (κ+ 1)δ)Sκ+1(N)

Nκ

κ!
+O

(
Nκ

(logN)C

)

holds with any constant C > 0.

Remark. This result immediately yields a proof of Theorem 3. Indeed,
using (6) and (25) we obtain (27) with κ = 2. By induction, Proposition 1
implies that (28) holds for every fixed κ ≥ 2. Replacing κ by κ−1 in (28) and
then using the estimate (25) again, we obtain the statement of Theorem 3.

Proof of Proposition 1. To simplify our exposition in what follows, for
any functions F = F (N) and G = G(N) we use the notation

F = Õ(G)

to mean that for any choice of the constant C > 0 the inequality

|F | ≤ c
|G|

(logN)C

holds for all N ≥ 2 with a constant c > 0 that depends only on α, κ and C.
By Lemma 2 and the definition (2), we have

Gκ+1(N) =
∑

n1+···+nκ+1=N

Λ(n1) · · ·Λ(nκ+1)ψ(γn1 + δ) · · ·ψ(γnκ+1 + δ)

=
∑

n≤N

Λ(N − n)ψ(γ(N − n) + δ)Gκ(n)

=
∑

n≤N

∗
Λ(N − n)ψ(γ(N − n) + δ)Gκ(n) + Õ(Nκ),

where
∑∗ indicates that the sum is restricted to integers n satisfying (27);

note that we have used the trivial bound

Λ(N − n)ψ(γ(N − n) + δ)Gκ(n) ≪ Nκ−1(logN)κ

to estimate the contribution from exceptional integers. By (27), the previous
sum is equal to

∑

n≤N

∗
Λ(N − n)ψ(γ(N − n) + δ)Ψ

(κ)
K (γn+ κδ)Sκ(n)

nκ−1

(κ− 1)!
+ Õ(Nκ).

We now extend the sum to all integers n ≤ N , using (6) or (7) to bound
Sκ(n) for each exceptional n, then we replace ψ with ΨK using (25) to
control the error term. Finally, replacing n by N − n, we see that Gκ+1(N)
is equal to

∑

n≤N

Λ(n)ΨK(γn+ δ)Ψ
(κ)
K (γ(N − n) + κδ)Sκ(N − n)

(N − n)κ−1

(κ− 1)!
+ Õ(Nκ).
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In this sum, we substitute the Fourier expansions (13) and (26) for ΨK and

Ψ
(κ)
K , respectively, then change the order of summation, obtaining

(29) Gκ+1(N) =
∑

|k|,|l|≤K

g(k)g(l)κe(kδ + lγN + lκδ)
Sk,l(N)

(κ− 1)!
+ Õ(Nκ),

where

Sk,l(N) =
∑

n≤N

Λ(n)e((k − l)γn)Sκ(N − n)(N − n)κ−1.

We now show that the main contribution to Gκ+1(N) comes from the
sums Sk,l(N) with k = l. To this end, we use (4) to write

Sk,l(N) =
∑

n≤N

Λ(n)e((k − l)γn)(N − n)κ−1
∑

d|N−n

∑

c≥1
gcd(c,d)=1

µ(c)κ+1µ(d)κd

ϕ(c)κϕ(d)κ

=
∑

d≤N

∑

c≥1
gcd(c,d)=1

µ(c)κ+1µ(d)κd

ϕ(c)κϕ(d)κ
Tk,l,d(N),

where

Tk,l,d(N) =
∑

n≤N
n≡N (mod d)

Λ(n)e((k − l)γn)(N − n)κ−1.

Using the trivial uniform bound

Tk,l,d(N) ≪
Nκ logN

d

and the well known lower bound ϕ(d) ≫ d/log log d, for any y > 3 we have
(since κ ≥ 2)

∑

d>y

∑

c≥1
gcd(c,d)=1

µ(c)κ+1µ(d)κd

ϕ(c)κϕ(d)κ
Tk,l,d(N) ≪

∑

d>y

d(log log d)κ

dκ

Nκ logN

d

≪ Nκ logN
∑

d>y

1

d3/2
≪

Nκ logN

y1/2
.

Taking y = (logN)A with A = 2C + 2 and C > 0 arbitrary, we derive that

Sk,l(N) =
∑

d≤(log N)A

∑

c≥1
gcd(c,d)=1

µ(c)κ+1µ(d)κd

ϕ(c)κϕ(d)κ
Tk,l,d(N) +O

(
Nκ

(logN)C

)
.

Next, we observe that if d ≤ (logN)A and gcd(d,N) 6= 1, then the number
ω(d) of distinct prime divisors of d satisfies the bound ω(d) ≪ log logN ,
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and it is easy to see that the bound

Tk,l,d(N) ≪ Nκ−1 logN log logN

holds for all such d. Using this estimate in the preceding expression for
Sk,l(N), we deduce that

Sk,l(N) =
∑

d≤(log N)A

gcd(d,N)=1

∑

c≥1
gcd(c,d)=1

µ(c)κ+1µ(d)κd

ϕ(c)κϕ(d)κ
Tk,l,d(N) +O

(
Nκ

(logN)C

)
.

In the case where k = l, Lemma 3 immediately implies that

Tk,k,d(N) =
∑

n≤N
n≡N (mod d)

Λ(n)(N − n)κ−1 =
Nκ

κϕ(d)
+ Õ(Nκ),

and therefore,

Sk,k(N) =
Nκ

κ

∑

d≤(log N)A

gcd(d,N)=1

∑

c≥1
gcd(c,d)=1

µ(c)κ+1µ(d)κd

ϕ(c)κϕ(d)κ+1
+O

(
Nκ

(logN)C

)
.

Since
∑

d>(log N)A

gcd(d,N)=1

∑

c≥1
gcd(c,d)=1

µ(c)κ+1µ(d)κd

ϕ(c)κϕ(d)κ+1
≪

∑

d>(log N)A

(log log d)κ+1

dκ
≪

1

(logN)C+1
,

and C is arbitrary, it follows that

Sk,k(N) =
Nκ

κ

∑

c,d≥1
gcd(d,cN)=1

µ(c)κ+1µ(d)κd

ϕ(c)κϕ(d)κ+1
+ Õ(Nκ).

Finally, using (5) (with κ replaced by κ+ 1) we deduce that

(30) Sk,k(N) = Sκ+1(N)
Nκ

κ
+ Õ(Nκ) (|k| ≤ K).

To treat the case k 6= l, we use the following result, the proof of which
is given below:

Lemma 7. There exists a constant η > 0 that depends only on α and

has the following property. For any positive integer d coprime to N , and any

non-zero integer k0 such that |k0| ≤ 2N1/(4τ),
∑

n≤N
n≡N (mod d)

Λ(n)e(k0γn)(N − n)κ−1 ≪ Nκ−η,

where the implied constant depends only on κ.
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By Lemma 7 we have, for all |k|, |l| ≤ K with k 6= l,

Tk,l,d(N) =
∑

n≤N
n≡N (mod d)

Λ(n)e((k − l)γn)(N − n)κ−1 = Õ(Nκ),

and therefore,

(31) Sk,l(N) = Õ(Nκ) (|k|, |l| ≤ K, k 6= l).

Inserting the estimates (30) and (31) into (29), and taking into ac-
count (9), leads to

Gκ+1(N) = Sκ+1(N)
Nκ

κ!

∑

|k|≤K

g(k)κ+1e(kγN + (κ+ 1)kδ) + Õ(Nκ)

= Ψ
(κ+1)
K (γN + (κ+ 1)δ)Sκ+1(N)

Nκ

κ!
+ Õ(Nκ),

and this completes the proof.

Proof of Lemma 7. Fix a constant ̺ such that

1 ≤ τ < ̺ < 2τ.

Since γ is of type τ , for some constant c0 > 0 we have

(32) JγmK > c0m
−̺ (m ≥ 1).

Taking c0 smaller if necessary, we can assume that c0 < 2̺. Put

c1 = 2̺/c0 and ε = 1/(4τ + 2).

Let d and k0 be integers with the properties stated in the lemma; without
loss of generality, we can assume that k0 is positive. Let a/b be the convergent
in the continued fraction expansion of k0γ that has the largest denominator
b not exceeding c1N

1−ε; then

(33)

∣∣∣∣k0γ −
a

b

∣∣∣∣ ≤
1

bc1N1−ε
=

c0
b2̺N1−ε

.

Multiplying by b and taking (32) into account, we have
c0

2̺N1−ε
≥ |bk0γ − a| ≥ Jbk0γK > c0(bk0)

−̺.

Thus, since k0 ≤ 2N1/(4τ) and ̺ < 2τ , it follows that

(34) b ≥ N (1−ε)/(2τ)−1/(4τ) = N ε.

Inserting (34) into (33) and recalling that c0 < 2̺, we conclude that
∣∣∣∣k0γ −

a

b

∣∣∣∣ ≤
1

N
.

We are therefore in a position to apply Lemma 4 with θ = k0γ, and this
yields the stated result immediately since N ε ≤ b ≤ c1N

1−ε.
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5. Convolutions with ψ. In this section, we focus on properties of
the κ-fold convolutions of ψ. We recall that ψ is the periodic function with
period one defined by

ψ(x) =

{
1 if 0 < {x} ≤ γ,

0 if γ < {x} < 1 or x ∈ Z.

We assume that γ = α−1 < 1. As before, we put ψ(1) = ψ, and for every
κ ≥ 2, we denote by ψ(κ) the κ-fold convolution of ψ with itself:

ψ(κ)(x) =

1\
0

ψ(κ−1)(x− y)ψ(y) dy =

x\
x−γ

ψ(κ−1)(y) dy.

Since 0 ≤ ψ(x) ≤ γ for all x ∈ R, it is easy to see that

0 ≤ ψ(κ)(x) ≤ γκ−1 (κ ≥ 1, x ∈ R).

Note that ψ(κ) is continuous for κ ≥ 2 and differentiable for κ ≥ 3.

Proposition 2. If κ ≥ ⌈α⌉, then there exists a constant c > 0 which

depends only on α and κ such that ψ(κ)(x) ≥ c for all x ∈ R.

Proof. By periodicity, it suffices to prove this for all x in [ε, 1 + ε] for
some ε > 0. Since κγ ≥ ⌈α⌉/α > 1, there exists ε > 0 such that 1+2ε ≤ κγ.
Fixing ε, it is easy to see that for every x ∈ [ε, 1 + ε] the closed intervals

Ix =

[
x

κ
−
ε

κ
,
x

κ
+
ε

κ

]
and Jx =

[
x

κ
−

ε

κ(κ− 1)
,
x

κ
+

ε

κ(κ− 1)

]

are contained in [0, γ]. Also, if yj ∈ Jx for j = 1, . . . , κ−1, then the number
x− y1 − · · · − yκ−1 lies in Ix. Therefore,

ψ(κ)(x) =

1\
0

· · ·

1\
0

ψ(y1) · · ·ψ(yκ−1)ψ(x− y1 − · · · − yκ−1) dy1 · · · dyκ−1

≥
\
Jx

· · ·
\
Jx

dy1 · · · dyκ−1 =

(
2ε

κ(κ− 1)

)κ−1

for all x ∈ [ε, 1 + ε].

The remainder of this section is devoted to the problem of finding a sharp
lower bound for ψ(κ)(x) in the special case that κ = ⌈α⌉, which is given in
Theorem 5 below.

Lemma 8. If κ ≥ 2, then ψ(κ)(x) = ψ(κ)(κγ − x) for all x ∈ R.

Proof. Let ψ0 be the characteristic function of the set of real numbers x
such that JxK ≤ γ/2. Clearly, ψ(x) = ψ0(x− γ/2) for all x ∈ R \ Z, and by

induction on κ, we have ψ(κ)(x) = ψ
(κ)
0 (x− κγ/2) for all κ ≥ 2 and x ∈ R.
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Since ψ0 is an even function, so is ψ
(κ)
0 for all κ ≥ 2; therefore,

ψ(κ)(x) = ψ
(κ)
0 (x− κγ/2) = ψ

(κ)
0 (κγ/2 − x) = ψ(κ)(κγ − x)

for all κ ≥ 2 and x ∈ R.

Lemma 9. If 1 ≤ κ < ⌈α⌉ and x ∈ (κγ, 1], then ψ(κ)(x) = 0.

Proof. When κ = 1, this follows from the definition of ψ. Now suppose
that ψ(κ−1)(x) = 0 for all x ∈ ((κ − 1)γ, 1], where κ ≥ 2. Then for each
x ∈ (κγ, 1] the interval [x− γ, x] is contained in ((κ− 1)γ, 1]; therefore,

ψ(κ)(x) =

x\
x−γ

ψ(κ−1)(y) dy = 0,

and the result follows by induction.

The next result is an easy consequence of Lemma 9:

Lemma 10. If 2 ≤ κ < ⌈α⌉ and x ∈ [0, γ], then

ψ(κ)(x) =

x\
0

ψ(κ−1)(y) dy.

The same result holds for κ = ⌈α⌉ and x ∈ [κγ − 1, γ].

Lemma 11. For 1 ≤ κ < ⌈α⌉ and x ∈ (0, γ], we have

ψ(κ)(x) =
xκ−1

(κ− 1)!
.

Proof. This is immediate for κ = 1. Suppose ψ(κ−1)(x) = xκ−2/(κ− 2)!
for x ∈ (0, γ], where 2 ≤ κ < ⌈α⌉. Then by Lemma 10 we have

ψ(κ)(x) =

x\
0

ψ(κ−1)(y) dy =

x\
0

yκ−2

(κ− 2)!
dy =

xκ−1

(κ− 1)!
,

and the result follows by induction.

Lemma 12. If 1 ≤ κ < ⌈α⌉, then ψ(κ) is increasing on [0, κγ/2].

Proof. For κ = 1 this is immediate, and for κ = 2 it follows from the
fact that ψ(2)(x) = x for x ∈ [0, γ] by Lemma 11 and the continuity of ψ(2).
Now suppose that ψ(κ−1) is increasing on [0, (κ−1)γ/2], where κ ≥ 3. Since
ψ(κ) is differentiable, for x ∈ [γ, (κ− 1)γ/2] we have

dψ(κ)(t)

dt

∣∣∣∣
t=x

= ψ(κ−1)(x) − ψ(κ−1)(x− γ) ≥ 0.

If x ∈ [0, γ], then by Lemma 10 it follows that

dψ(κ)(t)

dt

∣∣∣∣
t=x

= ψ(κ−1)(x) − ψ(κ−1)(0) ≥ 0.
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Finally, suppose that x ∈ [(κ − 1)γ/2, κγ/2]. Since ψ(κ−1) is increasing on
[0, (κ−1)γ/2], it is decreasing on [(κ−1)γ/2, (κ−1)γ] by Lemma 8; therefore,
using the same lemma we have

dψ(κ)(t)

dt

∣∣∣∣
t=x

= ψ(κ−1)(x) − ψ(κ−1)(x− γ)

≥ ψ(κ−1)(κγ/2) − ψ(κ−1)((κ− 2)γ/2) = 0,

and the proof is completed by induction.

Theorem 5. For κ = ⌈α⌉, the sharp lower bound

ψ(κ)(x) ≥
(κγ − 1)κ−1

2κ−2(κ− 1)!

holds uniformly for all x ∈ R.

Proof. Since ψ(κ) has period one, we can assume that x ∈ [0, 1].
Using Lemmas 8 and 10 and arguing as in the proof of Lemma 12, one

sees that ψ(κ) is increasing on the interval [κγ − 1, κγ/2] and decreasing on
the interval [κγ/2, 1]. Therefore,

ψ(κ)(x) ≥ ψ(κ)(1) = ψ(κ)(0)

for all x ∈ [κγ − 1, 1]. On the other hand, by Lemmas 8, 9 and 11, for
x ∈ [0, κγ − 1] we have

ψ(κ)(x) =

1\
x+1−γ

ψ(κ−1)(y) dy +

x\
0

ψ(κ−1)(y) dy

=

κγ−1−x\
(κ−1)γ−1

ψ(κ−1)(y) dy +

x\
0

ψ(κ−1)(y) dy

=

κγ−1−x\
0

ψ(κ−1)(y) dy +

x\
0

ψ(κ−1)(y) dy = f(x),

where

f(x) =
(κγ − 1 − x)κ−1 + xκ−1

(κ− 1)!
.

Since the function f(x) attains its minimum on [0, κγ−1] at x = (κγ−1)/2,
we obtain the stated result.

6. Proof of Theorem 1. Suppose that κ < α. If N ≡ κ (mod2), and

(35) N = ⌊αm1 + β⌋ + ⌊αm2 + β⌋ + · · · + ⌊αmκ + β⌋

for some m1, . . . ,mκ ∈ N, then

(N − κβ)α−1 ≤ m1 + · · · +mκ < (N − κβ)α−1 + κα−1.
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Therefore, the relation (35) cannot hold if the fractional part {(N−κβ)α−1}
of (N − κβ)α−1 lies in the open interval (0, 1 − κα−1), which happens for
about 1

2(1 − κα−1)X positive integers N ≤ X with N ≡ κ (mod2). This
proves the forward implications of the statements in Theorem 1. The reverse
implications follow immediately from Theorems 2 and 3 combined with the
lower bound of Proposition 2 and partial summation.

7. Remarks. For an irrational number α in the range 0 < α < 1, it is
clear that the Beatty sequence Bα,β contains all prime numbers. In this case,

since ψ(κ)(x) = 1 for all κ ≥ 1 and x ∈ R, the statements in Theorems 2
and 3 are consistent with known results for the number of representations
of an integer N as a sum of κ prime numbers.

It would be interesting to see whether the results of this paper can be
extended to include irrational numbers α of infinite type (with a weakened
error term).

To address a question that was posed in a preprint of the present paper,
Kumchev [10] has studied representations of the form N = p1 + · · ·+pk with
each prime pj lying in the Beatty sequence Bαj ,βj

, where the numbers αj , βj

are real, each αj is irrational (of finite type) and greater than one, and at
least one ratio αi/αj is irrational.

During the course of our investigations, we observed an interesting phe-
nomenon. If α, β, β′ ∈ R with α > 1 and α is an irrational number of finite
type, put

Gκ(α, β;N) =
∑

n1+···+nκ=N
n1,...,nκ∈Bα,β

Λ(n1) · · ·Λ(nκ)

as before, and let Gκ(α, β′;N) be defined similarly. If β′ = β + α/κ for
some fixed κ > α, then it is easy to see that the Beatty sequences Bα,β and
Bα,β′ contain different sets of primes. Nevertheless, by Theorem 3 one can
immediately conclude that

Gκ(α, β;N) ∼ Gκ(α, β′;N) (N → ∞).
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